УДК 544.03

МЕТОДОЛОГИЯ И РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ СОСТОЯНИЙ ВОДОРОДА В ГРАФЕНЕ, ГРАФИТЕ И СТАЛЯХ

© 2021 г. Ю. С. Нечаев^{1,} *, Н. М. Александрова¹, Н. А. Шурыгина¹, А. О. Черетаева², Е. А. Денисов³, Е. К. Костикова⁴

¹Федеральное государственное унитарное предприятие

"Центральный научно-исследовательский институт черной металлургии имени И.П. Бардина", Научный центр металловедения и физики металлов, Москва, Россия

 $^2 \Phi$ едеральное государственное бюджетное образовательное учреждение высшего образования

"Тольяттинский государственный университет", Научно-исследовательский институт прогрессивных технологий, Тольятти, Россия

³Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет", физический факультет, Санкт-Петербург, Россия

 $^4 \Phi$ едеральное государственное бюджетное учреждение науки

"Карельский научный центр Российской академии наук", Институт прикладных математических исследований, Петрозаводск, Россия

**E-mail: yuri1939@inbox.ru* Поступила в редакцию 25.01.2021 г. После доработки 25.02.2021 г. Принята к публикации 29.03.2021 г.

Разработана и апробирована для углеродных наноструктур, графитовых материалов и сталей методология эффективной аппроксимации гауссианами и обработки (в приближении реакций первого и второго порядка) спектров термодесорбции водорода, полученных с использованием одной скорости нагрева. Определены энергии активации и константы скорости процессов десорбции водорода.

DOI: 10.31857/S0367676521070164

введение

Как известно, проблема детального изучения состояний и характеристик водорода в углеродных структурах и сталях является весьма актуальной в связи с влиянием водорода на физические свойства и технологические процессы в таких функциональных и конструкционных материалах.

Основным общепринятым методом изучения данной проблемы является термодесорбционная спектроскопия (ТДС) водорода с использованием нескольких скоростей линейного нагрева образца, так называемый метод Киссинджера, описанный, например, в [1–4]. Однако этот метод, наряду с большой трудоемкостью, характеризуется жесткими ограничениями его применения, отмеченными в [1–5].

В этой связи представляется целесообразным дальнейшее развитие эффективной методологии [5–9] термодесорбционной спектроскопии водорода с использованием одной скорости линейного нагрева образца применительно к ряду представительных ТДС данных для углеродных структур [10, 11] и сталей [12–16], чему посвящена данная работа.

МЕТОДОЛОГИЯ И МАТЕРИАЛЫ ИССЛЕДОВАНИЯ

Нами была применена (для ряда углеродных структур [10, 11] и сталей [12–16]) и получила дальнейшее развитие эффективная методология [5–9] "обработки" (аппроксимации) и детального анализа ТДС данных, полученных с использованием одной скорости линейного нагрева образцов.

Разработанная методика [5—9] не менее информативна, но гораздо менее трудоемка в экспериментальном плане по сравнению с общепринятым методом Киссинджера, который требует использования нескольких скоростей линейного нагрева образцов и имеет жесткие пределы применимости, отмеченные в работах [1—5].

Развитый подход позволяет из ТДС данных для одной скорости нагрева определить энергии активации (Q) и предэкспоненциальные множители (K_0) констант скорости (K) процессов десорбции, соответствующих различным самопроявляющимся (в определенной мере) термодесорбционным пикам (состояниям) с различными

Таблица 1. Результаты обработки [5–9] термодесорбционных спектров (ТДС) водорода для эпитаксиального наводороженного графена [10] и пиролитического графита [11] в приближении реакций первого и второго порядка (Q, Q^* – энергия активации десорбционного процесса; T_{max} – температура наибольшей скорости десорбции; K_0 – предэкспоненциальный фактор константы скорости процесса; $K(T_{max})$ – константа скорости процесса при T_{max} ; γ – доля пика в спектре; (H/C) – средняя (по образцу) атомная доля водорода; θ_m – доля оставшегося водорода при T_{max} ; погрешность в определении величин Q и ln K_0 может достигать ~15%)

Пик #, (порядок реакции)	T_{max} , K	<i>Q</i> , кДж/моль	K_0, c^{-1}	$K(T_{max}), c^{-1}$	<i>Q</i> *, кДж/моль	γ	(H/C)
Наводороженный графен [10]. Аппроксимация гауссианами ТДС из рис. 1а							
1 (1-ый)	543	24	$8.8\cdot 10^0$	$3.9\cdot10^{-2}$	32	0.15	0.06
2 (1-ый)	640	72	$5.1 \cdot 10^{4}$	$6.4 \cdot 10^{-2}$	72	0.40	0.16
3 (1-ый)	671	130	1.3 · 10 ⁹	$1.0 \cdot 10^{-1}$	129	0.30	0.12
4 (1-ый)	733	224	$1.4 \cdot 10^{15}$	$1.5 \cdot 10^{-1}$	222	0.15	0.06
Наводороженный графен [10]. Компьютерное моделирование ТДС (рис. 16)							
1 (1-ый)	545	12	$2.1 \cdot 10^{-1}$	$1.5 \cdot 10^{-2}$	0.55 (θ _m)	0.25	0.10
2 (1-ый)	640	90	$1.8 \cdot 10^6$	$7.9 \cdot 10^{-2}$	0.41 (θ _m)	0.27	0.11
3 (1-ый)	673	165	$8.4 \cdot 10^{11}$	$1.3 \cdot 10^{-1}$	0.40 (θ _m)	0.28	0.11
4 (1-ый)	729	195	$1.2 \cdot 10^{14}$	$1.3 \cdot 10^{-1}$	0.39 (θ _m)	0.20	0.08
Пиролитический графит [11]. Аппроксимация гауссианами ТДС из рис. 1 <i>в</i> ;							
компьютерное моделирование ТДС (рис. 1г)							
1 (1-ый)	1001	163	$1.5 \cdot 10^{8}$	$4.7 \cdot 10^{-1}$	162	0.02	$5.0 \cdot 10^{-9}$
2 (1-ый)	1145	201	$7.3 \cdot 10^{8}$	$4.9 \cdot 10^{-1}$	201	0.25	$6.0 \cdot 10^{-8}$
3 (1-ый)	1226	373	$5.7 \cdot 10^{15}$	$7.3 \cdot 10^{-1}$	371	0.04	$1.0 \cdot 10^{-8}$
4 (1-ый)	1300	227	$5.3 \cdot 10^{8}$	$4.0 \cdot 10^{-1}$	225	0.14	$3.5 \cdot 10^{-8}$
5 (1-ый)	1389	441	$2.6 \cdot 10^{16}$	$6.8 \cdot 10^{-1}$	437	0.04	$1.0 \cdot 10^{-8}$
6 (2-ой)	1538	377	$3.0 \cdot 10^{12}$	$4.7 \cdot 10^{-1}$	376	0.51	$1.3 \cdot 10^{-7}$

температурами (*T_{max}*) максимальной скорости десорбции.

Кроме того, методология позволяет выявить атомные механизмы процессов десорбции (путем термодинамического анализа полученных характеристик пиков (состояний) и сравнения с соответствующими независимыми экспериментальными и теоретическими данными).

Основная цель такой методологии — дальнейшее раскрытие малоизученной физики различных состояний водорода в углеродных структурах и особенно в сталях, а не тщательное математическое описание и/или численное моделирование термодесорбционных спектров (ТДС). При этом учитывается как большая разница, так и большой разброс известных экспериментальных и теоретических значений термодинамических характеристик процессов десорбции в таких материалах.

Разработанная методология содержит несколько последовательных этапов ее реализации, включая использование нескольких сформулированных критериев достоверности и некоторой проверки результатов с помощью методов численного моделирования [9], что подробно описано в [7].

АНАЛИЗ РЯДА ТЕРМОДЕСОРБЦИОННЫХ СПЕКТРОВ ВОДОРОДА. РЕЗУЛЬТАТЫ ДЛЯ ГИДРИРОВАННОГО ЭПИТАКСИАЛЬНОГО ГРАФЕНА

В [10] изучали индуцированный адсорбцией водорода фазовый переход в эпитаксиальном графене, содержащем от 1 до 4 графеновых слоев на подложке Рt (111), к алмазоподобной структуре, близкой к структуре графана [17, 18]. При этом применяли несколько (в т. ч. ТДС) современных методов исследования. Однако свои ТДС данные, полученные с использованием одной скорости нагрева, авторы [10] практически не обрабатывали.

Результаты анализа [5–9] ТДС данных [10] для однослойного эпитаксиального графена с графаноподобной структурой и соответствующим содержанием хемосорбированного водорода представлены в табл. 1, на рис. 1*а* и 1*б*. Физика процессов, отвечающих четырем изученным термодесорбционным пикам (состояниям), детально описана в [7, 19].

Следует отметить, что полученные характеристики пика № 4 ($Q_4 \approx 224$ кДж/моль(H), $K_{04} \approx \approx 1.4 \cdot 10^{15} \text{ с}^{-1}$) близки к теоретическим [17] и экс-

Рис. 1. Анализ [5–9] термодесорбционных спектров (ТДС) водорода для ряда углеродных структур: *a*) аппроксимация гауссианами ТДС (скорость линейного нагрева $\beta = 3$ K/c) для гидрированного эпитаксиального (на Pt подложке) однослойного графена [10] с алмазоподобной структурой (из-за *sp*³-гибридизации), сопоставимой со структурой графана [17, 18]; *b*) компьютерное моделирование ТДС графена [10] в приближении реакций первого порядка; *b*) аппроксимация гауссианами ТДС ($\beta = 25$ K/c) для пиролитического графита [11], подвергнутого облучению атомарным водородом (2 ч при ~10⁻² торр и 873 K); *c*) компьютерное моделирование ТДС для пиролитического графита [11] в приближении реакций первого и второго порядка.

периментальным [18] значениям энергии отрыва атома водорода от графана и частоте колебаний атома водорода в графане, соответственно, что рассмотрено в [7, 19].

РЕЗУЛЬТАТЫ ДЛЯ ПИРОЛИТИЧЕСКОГО ГРАФИТА

В [11] методом термодесорбционной спектроскопии (ТДС) изучали взаимодействие атомарного водорода с пиролитическим графитом плотностью 2.186 г · см⁻³. Образцы подвергали 2 ч облучению атомарным водородом при ~10⁻² торр и 873 К. В термодесорбционных спектрах, получаемых с использованием трех скоростей нагрева (25, 10 и 100 К/с), рассматривали [11] только два пика (состояния).

Результаты анализа [5–9] ТДС данных [11] для пиролитического графита (6 термодесорбционных пиков) представлены в табл. 1, на рис. 1*в* и 1*г*.

Физику процессов, отвечающих шести термодесорбционным пикам (состояниям), можно раскрыть, как это сделано в [5–7].

Следует отметить, что полученные характеристики для одного из основных пика № 2 ($Q_2 \approx 201 \text{ кДж/моль}(\text{H}), K_{02} \approx 7.3 \cdot 10^8 \text{ c}^{-1}$) могут отвечать реакции первого порядка. Процесс может лимитироваться диффузией водорода с обратимым захватом диффузанта хемосорбционными "ловушками" (возможная модель "F*" в [20]), т.е. диффузионным процессом типа III, описанным в [19, 20]. Характеристический диффузионный размер для процесса, отвечающего пику № 2, можно оценить как $L_{\text{пик № 2}} \approx (D_{0111[20]}/K_{02})^{1/2} \approx 2 \cdot 10^{-6} \text{ см},$ где $D_{0111[20]} \approx 3 \cdot 10^{-3} \text{ см}^2 \cdot \text{с}^{-1}$ – предэкспоненциальный фактор соответствующего коэффициента диффузии [20].

Полученные характеристики для другого основного пика № 6 ($Q_6 \approx 377$ кДж/моль(2H), $K_{06} \approx$

Пик # (время сорбции)	T_{max} , K	Q, кДж/моль	K_0, c^{-1}	$K(T_{max}), c^{-1}$	Q^* , кДж/моль	γ	(H/Fe)	
Сталь 12Х18Н10Т.								
Аппроксимация гауссианами ТДС из рис. 4 в [12], рис. 2 <i>а</i> и рис. 26								
1 (6 мин)	632	34.0	$3.3 \cdot 10^{0}$	$5.1 \cdot 10^{-3}$	33.9	0.27	$2.3 \cdot 10^{-5}$	
2 (6 мин)	891	68.7	$5.5 \cdot 10^{1}$	$5.2 \cdot 10^{-3}$	68.3	0.73	$6.2 \cdot 10^{-5}$	
1 (20 мин)	639	38.1	$7.3 \cdot 10^{0}$	$5.6 \cdot 10^{-3}$	38.0	0.24	$2.2 \cdot 10^{-5}$	
2 (20 мин)	890	77.3	$2.0 \cdot 10^{2}$	$5.8 \cdot 10^{-3}$	77.1	0.76	$7.0 \cdot 10^{-5}$	
1 (30 мин)	637	34.7	$3.6 \cdot 10^{0}$	$5.1 \cdot 10^{-3}$	34.6	0.26	$2.8\cdot 10^{-5}$	
2 (30 мин)	891	73.6	$1.1 \cdot 10^{2}$	$5.5 \cdot 10^{-3}$	73.2	0.74	$8.1\cdot 10^{-5}$	
1 (60 мин)	628	39.8	$1.2 \cdot 10^{1}$	$6.1 \cdot 10^{-3}$	39.7	0.25	$2.7\cdot 10^{-5}$	
2 (60 мин)	889	71.3	$8.3 \cdot 10^{2}$	$5.4 \cdot 10^{-3}$	70.9	0.75	$8.3 \cdot 10^{-5}$	
Сталь 12Х18Н10Т [12]. Компьютерное моделирование ТДС из рис. 2а								
1 (20 мин)	641	40	$1.1 \cdot 10^1$	$6.0 \cdot 10^{-3}$	$0.45(\theta_{\rm m})$	0.24	$2.2\cdot 10^{-5}$	
2 (20 мин)	902	86	$6.1 \cdot 10^{2}$	$6.4 \cdot 10^{-3}$	$0.42(\theta_{\rm m})$	0.76	$7.0 \cdot 10^{-5}$	
Сталь 12Х18Н10Т (0.016 ат.% ³ Не) [12].								
Аппроксимация гауссианами ТДС из рис. 26 и 2г								
1 (30 мин)	612	32.2	$2.9\cdot 10^0$	$5.2 \cdot 10^{-3}$	32.1	0.06	$6 \cdot 10^{-6}$	
2 (30 мин)	680	56.5	$1.6 \cdot 10^{2}$	$7.3 \cdot 10^{-3}$	56.4	0.08	$7\cdot 10^{-6}$	
3 (30 мин)	854	99.7	$1.0 \cdot 10^{4}$	$8.2 \cdot 10^{-3}$	99.4	0.11	$1.0 \cdot 10^{-5}$	
4 (30 мин)	911	55.0	$5.7 \cdot 10^0$	$4.0 \cdot 10^{-3}$	54.9	0.75	$7 \cdot 10^{-5}$	
	Сталь "7	Г RIP" [14]. Апт	проксимация г	ауссианами Т,	ДС из рис. 2∂	I		
1	374	33.8	$5.1 \cdot 10^{2}$	$9.6 \cdot 10^{-3}$	33.6	0.56	$7\cdot 10^{-6}$	
2	380	14.0	$3.2 \cdot 10^{-1}$	$3.9 \cdot 10^{-3}$	14.0	0.40	$5 \cdot 10^{-6}$	
3	801	85.8	$2.1 \cdot 10^{3}$	$5.3 \cdot 10^{-3}$	85.5	0.04	$6 \cdot 10^{-7}$	
Сталь "FB" [14]. Аппроксимация гауссианами ТДС из рис. 2e								
1	374	32.6	$3.3 \cdot 10^{2}$	$9.3 \cdot 10^{-3}$	32.6	0.56	$1.2\cdot 10^{-5}$	
2	394	14.9	$3.6 \cdot 10^{-1}$	$3.8 \cdot 10^{-3}$	14.9	0.44	$9 \cdot 10^{-6}$	
Железо. Аппроксимация гауссианами ТДС из рис. 5b (after 1h) в [14]								
1	348	26.6	$2.9 \cdot 10^{1}$	$2.9 \cdot 10^{-3}$	26.5	0.84	$4 \cdot 10^{-6}$	
2	425	33.6	$3.3 \cdot 10^{1}$	$2.5 \cdot 10^{-3}$	33.5	0.16	$8 \cdot 10^{-7}$	

Таблица 2. Результаты обработки [5–9] термодесорбционных спектров (ТДС) водорода для аустенитной нержавеющей стали 12Х18Н10Т [12, 13], многофазной "ТПР" (ТРИП или ПНП) стали [14], ферритно-бейнитной "FB" стали [14] и железа [14] в приближении реакций первого порядка ((H/Fe) – средняя (по образцу) атомная доля водорода; погрешность в определении величин Q и ln K_0 может достигать ~15%)

≈ $3.0 \cdot 10^{12} \text{ c}^{-1}$) могут отвечать реакции второго порядка. При этом могут лимитировать процессы рекомбинации атомов водорода в молекулы и их десорбции из обратимых хемосорбционных "ловушек" водорода (модели "G" и/или "F" в [19, 20]) на свободной поверхности образца, что описывается кинетическим уравнением Поляни–Вигнера для реакций второго порядка.

РЕЗУЛЬТАТЫ ДЛЯ АУСТЕНИТНОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ 12X18Н10Т

В [12] изучали термодесорбцию водорода из образцов стали 12Х18Н10Т, подвергнутых экспо-

зиции (зарядке) различной длительности в газообразном молекулярном водороде при давлении 20 торр и температуре 770 К. Термодесорбционные спектры получали [12] с использованием одной скорости нагрева (30 К/мин) и детально не обрабатывали.

Результаты анализа [5–9] ТДС данных [12] представлены в табл. 2, на рис. 2a-2a. Обработка ТДС данных (рис. 2e и 2a) для образцов, подвергнутых зарядке различной длительности в H₂ при 20 торр и 770 K, показывает, что процессы сорбции водорода из газа (H₂) в сталь, до предельного насыщения (Z_1 , Z_2 , Z_3 , Z_4) обратимых водород-ных "ловушек" различного типа в стали [8], оче-

Рис. 2. Анализ [5–9] ТДС водорода для ряда сталей: *a*) аппроксимация гауссианами ТДС ($\beta = 30$ К/мин) для стали 12X18H10T [12], подвергнутой 20 мин экспозиции (зарядке) в газообразном H₂ при 20 торр и 770 К; *b*) обработка ТДС для стали 12X18H10T [12], подвергнутой зарядке различной длительности в газообразном H₂ при 20 торр и 770 К; *b*) аппроксимация гауссианами ТДС ($\beta = 30$ К/мин) для стали 12X18H10T (0.016 ат. % ³He) [12], подвергнутой 30 мин зарядке в газообразном H₂ при 20 торр и 770 К; *c*) обработка ТДС для стали 12X18H10T [12] (0.016 ат. % ³He), подвергнутой 30 мин зарядке в газообразном H₂ при 20 торр и 770 К; *c*) обработка ТДС для стали 12X18H10T [12] (0.016 ат. % ³He), подвергнутой зарядке в газообразном H₂ при 20 торр и 770 К; *d*) аппроксимация гауссианами ТДС ($\beta = 20$ К/мин) для многофазной "TRIP" (ТРИП или ПНП) стали [14], подвергнутой 1 ч электрохимической зарядке (при плотности тока 0.8 мА · см⁻²); *e*) аппроксимация гауссианами ТДС ($\beta = 20$ К/мин) для ферритно-бейнитной "FB" стали [14], подвергнутой 1 ч электрохимической зарядке (при 0.8 мА · см⁻²).

видно, отвечающего в определенной мере изотерме сорбции Ленгмюра, протекают как реакции первого порядка. Константы скорости этих процессов близки к полученным значениям констант скорости (табл. 2) для аналогичных диффузионных процессов десорбции водорода из тех же обратимых "ловушек" в стали (при пересчете для 770 К).

Пик #	T_{max} , K	<i>Q</i> , кДж/моль	K_0, c^{-1}	$K(T_{max}), c^{-1}$	<i>Q</i> *, кДж/моль	γ	(H/Fe)		
Сталь "AISI 310" [15]. Аппроксимация гауссианами ТДС из рис. За и Зб									
1	513	36.3	$8.0\cdot 10^0$	$1.6 \cdot 10^{-3}$	36.1	0.80	$1.1 \cdot 10^{-3}$		
2	711	27.8	$7.3 \cdot 10^{-2}$	$1.0 \cdot 10^{-3}$	27.7	0.20	$2.7\cdot 10^{-4}$		
Сталь "DSS" (4 К/мин) [16]. Аппроксимация гауссианами ТДС из рис. 3 <i>в</i> ;									
компьютерное моделирование ТДС (рис. 3г)									
1	321	48.6	$2.7 \cdot 10^{5}$	$3.6 \cdot 10^{-3}$	46.2	0.14	$5.3 \cdot 10^{-2}$		
2	357	90.7	$9.4 \cdot 10^{10}$	$5.6 \cdot 10^{-3}$	88.9	0.13	$5.0 \cdot 10^{-2}$		
3	387	84.3	$9.5 \cdot 10^{8}$	$4.4 \cdot 10^{-3}$	82.1	0.21	$8.1 \cdot 10^{-2}$		
4	420	67.8	$7.7 \cdot 10^5$	$3.0 \cdot 10^{-3}$	65.9	0.13	$5.2 \cdot 10^{-2}$		
5	456	27.7	$1.5 \cdot 10^0$	$1.1 \cdot 10^{-3}$	28.5	0.29	$1.1\cdot 10^{-1}$		
6	604	31.7	$3.8 \cdot 10^{-1}$	$7.0 \cdot 10^{-4}$	31.8	0.10	$3.9 \cdot 10^{-2}$		
Сталь "DSS" (4 К/мин) [16]. Аппроксимация гауссианами ТДС из рис. 3∂;									
компьютерное моделирование ТДС (рис. 3е)									
1	307	50.2	$1.4 \cdot 10^{6}$	$4.3 \cdot 10^{-3}$	50.5	0.02	$9 \cdot 10^{-4}$		
2	356	86.5	$2.5\cdot 10^{10}$	$5.3 \cdot 10^{-3}$	83.7	0.01	$4 \cdot 10^{-4}$		
3	609	36.6	$1.0 \cdot 10^0$	$8.0\cdot 10^{-4}$	37.0	0.76	$3.8 \cdot 10^{-2}$		
4	661	99.5	$1.2 \cdot 10^{5}$	$1.8 \cdot 10^{-3}$	97.9	0.21	$1.1 \cdot 10^{-2}$		

Таблица 3. Результаты обработки [5–9] термодесорбционных спектров водорода для аустенитной нержавеющей стали "AISI 310" [15] и для двухфазной нержавеющей стали "DSS" [16] в приближении реакций первого порядка

РЕЗУЛЬТАТЫ ДЛЯ ТРИП СТАЛИ И ФЕРРИТНО-БЕЙНИТНОЙ "FB" СТАЛИ

В [14] изучали термодесорбцию водорода из образцов многофазной "ТРИП" стали и ферритно-бейнитной стали "FB", подвергнутых 1 ч электрохимической зарядке (при плотности тока $0.8 \text{ мA} \cdot \text{см}^{-2}$). Термодесорбционные спектры получали с использованием четырех скоростей нагрева (20, 13.3, 6.7 и 3.3 К/мин), энергии активации (для 3 пиков для ТРИП стали и 2 пиков для стали "FB") определяли [14] при помощи метода Киссинджера.

Результаты анализа [5–9] ТДС данных [14] представлены в табл. 2, на рис. 2∂ и 2е. Полученные значения (табл. 2) энергии активации для пика № 1 для ТРИП стали ($Q_{1ТРИП} \approx 33.8 \text{ кДж/моль}(H)$) и стали "FB" ($Q_{1FB} \approx 32.6 \text{ кДж/моль}(H)$) близки (в пределах погрешностей) к значениям ($Q_{1ТРИП[14]} = 33 \pm 5 \text{ кДж/моль}, Q_{1FB[14]} = 35 \pm 5 \text{ кДж/моль}, полученным в [14] при помощи метода Киссинджера. Аналогичная ситуация имеет место и для небольшого, отдельно расположенного пика № 3 в ТРИП стали (<math>Q_{3ТРИП} \approx 86 \text{ кДж/моль}(H)$, табл. 2, рис. 2d; $Q_{3ТРИП[14]} = 90 \pm 25 \text{ кДж/моль}, в [14]$).

Вместе с тем, полученные значения (табл. 2) энергии активации для пика № 2 (перекрывающегося с пиком №1 и несколько его меньшего по площади, см. рис. 2∂ и 2е) для ТРИП стали $(Q_{2\text{ТРИП}} \approx 14 \text{ кДж/моль}(\text{H}))$ и стали "FB" $(Q_{2\text{FB}} \approx 15 \text{ кДж/моль}(\text{H}))$ существенно (за пределами погрешностей) отличаются от значений $(Q_{2\text{ТРИП}[14]} = 28 \pm 5 \text{ кДж/моль}, Q_{2\text{FB}[14]} = 27 \pm 5 \text{ кДж/моль}),$ полученных в [14] при помощи метода Киссинджера. Это, очевидно, связано с отмеченными выше ограничениями применимости метода Киссинджера.

РЕЗУЛЬТАТЫ ДЛЯ АУСТЕНИТНОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ "AISI 310"

В [15] изучали термодесорбцию водорода из образцов аустенитной нержавеющей стали "AISI 310", подвергнутых электрохимической зарядке различной длительности (1, 3, 19 и 52 ч) в потенциостатическом режиме при 545 мВ и 323 К. Термодесорбционные спектры получали [15] с использованием одной скорости нагрева (6 К/мин), для описания и интерпретации ТДС решали соответствующую диффузионную задачу.

Результаты анализа [5–9] ТДС данных [15] представлены в табл. 3, на рис. За и Зб. Полученное таким образом значение энергии активации для десорбционного процесса, отвечающего основному преобладающему пику № 1 ($Q_{1AISI310} \approx 36$ кДж/моль(H)), близко к отмеченным выше (табл. 2) значениям для пика № 1 для ТРИП стали ($Q_{1ТРИП} \approx 34$ кДж/моль(H)) и стали

Puc. 3. Анализ [5–9] ТДС водорода для ряда сталей: *a*) аппроксимация гауссианами ТДС ($\beta = 6$ К/мин) для аустенитной нержавеющей стали "AISI 310" [15], подвергнутой 19 ч электрохимической зарядке в потенциостатическом режиме при 545 мВ и 323 К; *b*) обработка ТДС ($\beta = 6$ К/мин, рис. 4 в [15]) для аустенитной нержавеющей стали "AISI 310", подвергнутой электрохимической зарядке различной длительности (1, 3, 19 и 52 ч) в потенциостатическом режиме при 545 мВ и 323 К; *b*) аппроксимация гауссианами ТДС ($\beta = 4$ К/мин) для стали "DSS" [16], подвергнутой 24 ч катодной зарядке (при 50 мА · см⁻²); *c*) компьютерное моделирование в приближении реакций первого порядка ТДС ($\beta = 4$ К/мин) для стали "DSS" [16], подвергнутой 24 ч катодной зарядке (при 50 мА · см⁻²); *d*) аппроксимация гауссианами ТДС ($\beta = 4$ К/мин) для стали "DSS" [16], подвергнутой 5 ч зарядке в газообразном H₂ при 50 МПа и 573 К; *e*) компьютерное моделирование в приближении реакций первого порядка ТДС ($\beta = 4$ К/мин) для стали "DSS" [16], подвергнутой 5 ч зарядке в газообразном H₂ при 50 МПа и 573 К;

"FB" ($Q_{1FB} \approx 33 \text{ кДж/моль}(H)$), а также для двух пиков в железе ($Q_{1Fe} \approx 27 \text{ кДж/моль}(H)$, $Q_{2Fe} \approx 34 \text{ кДж/моль}(H)$), но существенно отличается от значения энергии активации диффузии ($Q_{D[15]} \approx 52 \text{ кДж/моль}(H)$), приведенного в [15].

Обработка ТДС данных (рис. 3δ) для образцов, подвергнутых зарядке различной длительности, показывает, что процессы сорбции водорода, до предельного насыщения (Z_1 и Z_2) обратимых водородных "ловушек" в стали [15], протекают как реакции первого порядка. Константы скорости этих процессов близки к полученным значениям констант скорости (табл. 3) для аналогичных диффузионных процессов десорбции водорода из тех же обратимых "ловушек" в стали (при пересчете для 323 K).

РЕЗУЛЬТАТЫ ДЛЯ ДВУХФАЗНОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ "DSS"

В [16] изучали термодесорбцию водорода из образцов нержавеющей стали "DSS", подвергнутых катодной зарядке различной длительности (при 50 мА \cdot см⁻²), а также 5 ч зарядке в газе (H₂) при 50 МПа и 573 К. Термодесорбционные спектры получали с использованием трех скоростей нагрева (6, 4 и 2 К/мин), энергии активации (для необоснованно заниженного количества пиков) определяли [1] при помощи метода Киссинджера (при этом неправомерно использовали градусы Цельсия).

Результаты анализа [5–9] ТДС данных [16] представлены в табл. 3, на рис. 3e-3e. В образцах, подвергнутых катодной зарядке (при 50 мА · см⁻²), проявляются 6 или 7 пиков (состояний) с различной (но вполне "физичной") энергией активации, а также с "физичными" значениями K_0 . Такое количество различных состояний водорода может быть связано с одновременным протеканием пластической деформации образца при такой высокой плотности тока, отвечающей высокому химическому потенциалу (и соответственно, высокому давлению) водорода.

В образцах, подвергнутых зарядке в газе (H₂), проявляются 4 пика, при этом преобладает пик № 3, занимающий 76% площади спектра (рис. 3*д*). Следует отметить, что энергия активации для пика № 3 ($Q_{3DSS} \approx 37 \text{ кДж/моль}$ (H), табл. 3) близка (в пределах погрешности) к энергиям активации для пика № 1 в стали "AISI 310", в стали "FB" и в ТРИП стали (табл. 2).

К ИНТЕРПРЕТАЦИИ РЕЗУЛЬТАТОВ ПО СТАЛЯМ

При интерпретации [8] результатов по сталям представляется целесообразным принять во внимание ряд исследований возможных эффективных обратимых водородных "ловушек", в качестве которых могут служить различные фазоподобные (карбидоподобные, нитридоподобные, интерметаллидоподобные и др.) наносегрегации на дислокациях и границах зерен, поскольку содержание "захваченного" водорода в таких наносегрегациях может достигать гидридных (в т.ч карбогидридных) значений, а эффективная энергия связи может быть порядка 30–100 кДж/моль [21–24].

В дальнейших исследованиях по сталям представляется целесообразным анализировать ТДС данные [25–36].

ЗАКЛЮЧЕНИЕ

Полученные результаты могут способствовать более глубокому пониманию атомных механизмов взаимодействия водорода с углеродными структурами и сталями, относящимися к материалам водородной и термоядерной энергетики.

Работа выполнена при финансовой поддержке РФФИ (проект № 18-29-19149-мк).

СПИСОК ЛИТЕРАТУРЫ

- Wei F.-G., Enomoto M., Tsuzaki K. // Comput. Mater. Sci. 2012. V. 51. P. 322.
- Atsumi H., Kondo Y. // Fusion Engin. Des. 2018. V. 131. P. 49.
- 3. Legrand E., Oudriss A., Savall C. et al. // Int. J. Hydrogen. Energy. 2015. V. 40. P. 2871.
- Ebihara K.-I., Kaburaki H., Suzudo T., Takai K. // ISIJ Int. 2009. V. 49. P. 1907.
- Nechaev Yu.S., Alexandrova N.M., Shurygina N.A. et al. // J. Nucl. Mater. 2020. V. 535. Art. No. 52162.
- Nechaev Yu.S., Alexandrova N.M., Shurygina N.A. et al. // Fuller. Nanotub. Carb. Nanostruct. 2020. V. 28. No. 2. P. 147.
- Nechaev Yu.S., Alexandrova N.M., Cheretaeva A.O. et al. // Int. J. Hydrogen. Energy. 2020. V. 45. No. 46. Art. No. 25030.
- 8. *Нечаев Ю.С., Родионова И.Г., Удод К.А. и др. //* Пробл. черн. металл. и материаловед. 2013. № 4. С. 5.
- Заика Ю.В., Костикова Е.К., Нечаев Ю.С. // ЖТФ. 2021. Т. 91. № 2. С. 232; Zaika Yu.V., Kostikova E.K., Nechaev Yu.S. // Tech. Phys. Russ. J. Appl. Phys. 2021. V. 66. No. 2. P. 210.
- Rajasekaran S, Abilid-Pedersen F, Ogasawara H. et al. // Phys. Rev. Lett. 2013. V. 111. No. 8. Art. No. 085503.
- Денисов Е.А., Компаниец Т.Н. // ЖТФ. 2001. Т. 71.
 № 2. С. 111; Denisov E.A., Kompaniets T.N. // Tech. Phys. Russ. J. Appl. Phys. 2001. V. 46. P. 240.
- Денисов Е.А., Компаниец Т.Н., Юхимчук А.А. и др. // ЖТФ. 2013. Т. 83. № 6. С. 3; Denisov E.A., Kompaniets T.N., Yukhimchuk А.А. et al. // Tech. Phys. Russ. J. Appl. Phys. 2013. V. 58. Р. 779.
- 13. *Компаниец Т.Н.* // ВАНТ. Сер. термояд. синтез. 2009. № 3. С. 16.
- Escobar D.P., Verbeken K., Duprez L., Verhaege M. // Mater. Sci. Eng. A. 2012. V. 551. P. 50.

- 15. Yagodzinskyy Y., Todoshchenko O., Papula S., Häanninen H. // Steel Res. Int. 2010. V. 82. No. 1. P. 20.
- Silverstein R., Eliezer D., Tal-Gutelmacher E. // J. Alloys. Comp. 2018. V. 747. P. 511.
- 17. *Sofo J.O., Chaudhari A.S., Barber G.D.* // Phys. Rev. B. 2007. V. 75. Art. No. 153401.
- Elias D.C., Nair R.R., Mohiuddin T.M.G. et al. // Science. 2009. V. 323. P. 610.
- Nechaev Yu.S., Veziroglu T.N. // Int. J. Phys. Sci. 2015. V. 10. P. 54.
- 20. Нечаев Ю.С. // УФН. 2006. Т. 176. № 6. С. 581; Nechaev Yu.S. // Phys. Usp. 2006. V. 49. No. 6. P. 563.
- 21. Nechaev Yu.S., Öchsner A. // DDF. 2019. V. 391. P. 246.
- 22. Нечаев Ю.С. // УФН. 2008. Т. 178. № 7. С. 709; Nechaev Yu.S. // Phys. Usp. 2008. V. 51. No. 7. P. 681.
- 23. Nechaev Yu.S. // Sol. St. Phenom. 2008. V. 138. P. 91.
- Nechaev Yu.S., Filippov G.A. // DDF. 2001. V. 194–199. P. 1099.
- 25. *Escobar D.P., Depover T., Duprez L. et al.* // Acta Mater. 2012. V. 60. P. 2593.
- Frappart S., Oudriss A., Feaugas X. et al. // Scr. Mater. 2011. V. 65. P. 859.

- 27. Ebihara K.-I., Kaburaki H. // ISIJ Int. 2012. V. 52. No. 2. P. 181.
- 28. *Enomoto M., Hirakami D., Tarui T. //* Metallurg. Mater. Trans. A. 2012. V. 43. No. 2. P. 572.
- 29. Bergers K., De Souza E.C., Thomas I. et al. // Steel Res. Int. 2010. V. 81. No. 7. P. 499.
- Enomoto M., Hirakami D., Tarui T. // ISIJ Int. 2006. V. 46. No. 9. P. 1381.
- 31. Wei F.G., Hara T., Tsuzaki K. // Metallurg. Mater. Trans. B. 2004. V. 35. No. 3. P. 587.
- Bar R., Dabah E., Eliezer D. et al. // Proc. Engin. 2011. V. 10. P. 3668.
- 33. *Ogorodnikova O.V., Zhou Z, Sugiyama K. et al.* // Nucl. Fusion. 2017. V. 57. Art. No. 036010.
- 34. *Alimov V., Hatano Y., Sugiyama K. et al.* // Fusion Engin. Des. 2016. V. 113. P. 336.
- 35. Ryabtsev S.A., Gasparyan Yu.M., Harutyunyan Z.R. et al. // Phys. Scr. 2017. V. 170. Art. No. 014016.
- 36. Рябцев С.А., Гаспарян Ю.М., Огородникова О.В. и др. // Поверхность. 2018. № 10. С. 96; Ryabtsev S.A., Gasparyan Yu.M., Ogorodnikova O.V. et al. // J. Surf. Invest. X-ray. Synchrotr. Neutr. Tech. 2018. V. 12. No. 5. P. 1032.

Methodology and results of studying the states of hydrogen in graphene, graphite, and steels

Yu. S. Nechaev^{a, *}, N. M. Alexandrova^a, N. A. Shurygina^a, A. O. Cheretaeva^b, E. A. Denisov^c, E. K. Kostikova^d

^aBardin Central Research Institute for Ferrous Metallurgy, Scientific Center of metals science and physics, Moscow, 105005 Russia

^bTogliatti State University, Research Institute of Progressive Technologies, Togliatti, 445020 Russia

^cSt. Petersburg State University, Physics Department, St. Petersburg, 198904 Russia

^dKarelian Research Centre of RAS, Institute of Applied Mathematical Research, Petrozavodsk, 185910 Russia *e-mail: yuri1939@inbox.ru

A methodology for effective approximation by Gaussians and processing (under the approximation of first and second order reactions) of hydrogen thermal desorption spectra, obtained using a single heating rate, has been developed and applied for carbon nanostructures, graphite materials and steels. The activation energies and rate constants of hydrogen desorption processes have been determined.