УДК 52.724:52.726

ГЕЛИОСФЕРНАЯ МОДУЛЯЦИЯ КОСМИЧЕСКИХ ЛУЧЕЙ В ЭПОХУ НЕЙТРОННОГО МОНИТОРИНГА

© 2021 г. П. Г. Кобелев^{1,} *, Л. А. Трефилова¹, В. Н. Зиракашвили¹, А. В. Белов¹, Р. Т. Гущина¹, В. Г. Янке¹

¹Федеральное государственное бюджетное учреждение науки Институт земного магнетизма, ионосферы и распространения радиоволн имени Н.В. Пушкова Российской академии наук, Москва, Россия

> **E-mail: kosmos061986@yandex.ru* Поступила в редакцию 25.03.2021 г. После доработки 22.04.2021 г. Принята к публикации 28.05.2021 г.

Выполнена реконструкция гелиосферного потенциала модуляции галактических космических лучей для эры нейтронного мониторинга. В основе лежит использование современной модели межзвездного спектра галактических космических лучей и спектра вариаций плотности космических лучей. Спектр вариаций космических лучей получен в результате обработки глобально-спектрографическим методом данных непрерывного мониторинга детекторами мировой сети и откалиброван по данным прямых измерений спектра частиц на магнитном спектрометре PAMELA в базовый 2009 г.

DOI: 10.31857/S0367676521090167

введение

Для многих целей полезно описать энергетический спектр галактических космических лучей (КЛ) вблизи Земли с помощью аппроксимации в приближении силового поля [1, 2] с единственным параметром – потенциалом модуляции. Приближение силового поля оправдано только для слабой модуляции и зависимости коэффициента диффузии от энергии $D(E) \propto vp$. Тем не менее, оно дает удобное эмпирическое описание фактической формы энергетического спектра галактических КЛ вблизи Земли, которая, хотя и не претендует на объяснение процесса модуляции, но предлагает простую параметризацию спектра галактических КЛ для многих практических целей (оценка радиационной опасности, моделирование климата, радиация окружающей среды и т.д.). Оценки потенциала модуляции космических лучей проведены в [3-5], где были получены среднемесячные значения потенциала с 1950-х годов. Для оценки потока частиц за пределами атмосферы и магнитосферы была предложена оригинальная модель [5] и выполнены собственные расчеты функций выхода [6].

Целью данной работы является выполнение оценки потенциала модуляции исходя из спектров, полученных по данным Мировой сети нейтронных мониторов и мюонных телескопов и калиброванных по прямым измерениям PAMELA с учетом современных данных о межзвездном спектре и химическом составе галактических КЛ.

МЕТОДИКА ВОССТАНОВЛЕНИЯ ПОТЕНЦИАЛА МОДУЛЯЦИИ

Исходными данными для оценки потенциала модуляции является спектр частиц $J_{GSM}(K)$, который определялся глобально спектрографическим методом (GSM) по данным Мировой сети станций космических лучей [7].

Для аппроксимации дифференциального энергетического спектра галактических космических лучей вблизи орбиты Земли использовалось приближение [8]:

$$J_{i}(K, \Phi) = J_{LIS,i}(K + \Phi_{i}) \frac{K(K + 2m)}{(K + \Phi_{i})(K + \Phi_{i} + 2m)} = J_{LIS,i}(K + \Phi_{i})M(K, \Phi_{i}),$$
(1)

где *К* кинетическая энергия на нуклон, Φ_i -средние потери энергии частиц в гелиосфере, определяемые потенциалом модуляции ϕ , $M(K, \Phi_i)$ функция модуляции.

Средние потери энергии частиц с зарядом Z_i и массовым числом A_i равны $\Phi_i = (eZ_i/A_i)\phi$. Локальный звездный спектр J_{LIS} взят из работы [9]

$$J_{LIS}(K) = 2.7 \times 10^3 \frac{K^{1.12}}{\beta^2} \left(\frac{K+0.67}{1.67}\right)^{-3.93},$$
 (2)

где безразмерная скорость $\beta = v/c$ определяется через кинетическую *K* энергию как $\beta = (1 - m^2/(K+m)^2)^{1/2}$.

Потенциал модуляции определяется из трансцендентного уравнения, которое решалось методом бисекции

$$J_{GSM}(K) = J_i(K, \phi), \qquad (3)$$

где $J_i(K, \phi)$ определяется выражением (1), а $J_{GSM}(t, 10 \ \Gamma B)$ для каждого момента времени определяется в результате GSM.

Учет альфа-частиц выполнен следующим образом. Предположим, что немодулированный спектр гелия составляет 14% [10] от спектра протонов. Учет альфа-частиц, потенциал для которых в 2 раза меньше, чем для протонов можно провести, добавив в уравнение (3) с коэффициентом 0.14 второе слагаемое, в котором используется $\phi/2$.

$$J_{GSM}(\mathbf{K}) = J(K,\phi) + 0.14 \times J(K,\phi/2), \qquad (4)$$

В случае слабой модуляции, можно разложить в ряд Тейлора по ф, а именно

$$J_{GSM}(K) = 1.14J(K,0) + 1.07\phi J'(K,0) =$$

= 1.14(J(K,0) + 0.93\phi J'(K,0)) = 1.14J(K,0.93\phi).

И окончательно

$$J_{GSM}(K) = 1.14J(K, 0.93\phi).$$
 (5)

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Нами была выполнена реконструкция потенциала модуляции за период с 1957 по 2019 г. На рис. 1 (верхняя панель) приведено сравнение потенциала модуляции с учетом вклада протонов и ядер гелия, полученного в настоящей работе и в работе [5]. В периоды вблизи минимумов наблюдаются большие разногласия двух кривых.

В [5] не приводятся временные изменения потока, который мы восстановили в соответствии с выражением (1) как функцию потенциала, полученного в [5]. Сравнение потока космических лучей, полученного нами [7] с потоком, восстановленного по данным о потенциале модуляции [5] проведено на рис. 1 (нижняя панель). В периоды вблизи минимумов также, как и потенциалов, наблюдаются большие разногласия двух потоков. Можно рассматривать несколько причин такого расхождения.

Например, проблема в GSM. Здесь могут быть вопросы к функциям связи или к спектру вариаций космических лучей, которые входят в спектрографические уравнения. Но имеется много косвенных подтверждений адекватности результатов, полученных методом GSM. Сравнение спектра GSM с результатами прямых измерений спектра с помощью магнитных спектрометров PAMELA и

Рис. 1. Результат восстановления потенциала модуляции по плотности частиц с жесткостью 10 ГВ с учетом вклада протонов и ядер гелия. Верхняя панель – сравнение потенциала модуляции с учетом протонов и ядер гелия, полученного в настоящей работе (кривая *I*) и в работе [5] (кривая *2*). Нижняя панель – сравнение потока космических лучей, полученного нами методом GSM [6] (кривая *I*) и восстановленного по данным о потенциале модуляции работы [5] (кривая *2*) в соответствии с выражением (1).

AMS-02 также показало хорошее согласие, особенно с высокоточными измерениями спектрометра AMS-02.

К методике оценки спектра вариаций, используемой в [5], можно также ставить вопросы. В этой работе при решении обратной задачи привлекались новые функции выхода [6], но которые детально тестировались и анализировались с функциями выхода других авторов. Наиболее уязвимый момент в методике [5] – это небольшое число (4–6) используемых детекторов, что совсем не гарантирует необходимую точность.

ЗАКЛЮЧЕНИЕ

Выполнена реконструкция гелиосферного потенциала модуляции галактических космических лучей для эпохи непрерывного наземного мониторинга. Реконструкция потенциала модуляции основана на данных мировой сети нейтронных мониторов с выделением плотности космических лучей глобально-спектрографическим методом (GSM). Число привлекаемых детекторов 40–45. Результат GSM калиброван по данным прямых измерений магнитных спектрометров PAMELA в период минимума солнечной активности (CA) 2009 года. Локальный звездный спектр взят из работы [9].

Расхождение потока в минимуме СА, полученные в настоящей работе и в [5] (также как и потенциала), возможно, обусловлены ошибками определения плотности космических лучей в одном из подходов. Доказать такой вывод можно при сравнении результатов, базирующихся на измерениях на сети станций, с результатами прямых измерений в 24 минимуме СА и после публикации данных AMS-02 до 2020 г. Еще одна возможность — это использовать прямые измерения на баллонах стратосферного зондирования

Полученный результат может быть использован для долгосрочных исследований в области солнечно-земная физика.

Работа выполнена с использованием оборудования УНУ "Сеть СКЛ".

СПИСОК ЛИТЕРАТУРЫ

- Gleeson L.J., Axford W.I. // Astropart J. 1968. V. 154. P. 1011.
- Caballero-Lopez R.A., Moraal H. // J. Geophys. Res. 2012. V. 112. Art. No. A12103.
- Usoskin I.G., Alanko-Huotari K., Kovaltsov G.A., Mursula K. // J. Geophys. Res. 2005. V. 110. Art. No. A12108.
- Usoskin I.G., Bazilevskaya G.A., Kovaltsov I.G. // J. Geophys. Res.2011. V. 116. Art. No. A02104.
- Usoskin I.G., Gil A., Kovaltsov G.A. et al. // J. Geophys. Res. 2017. V. 122. No. 4. P. 3875.
- Mishev A., Usoskin I., Kovaltsov G. // J. Geophys. Res. 2013. V. 118. P. 2783.
- Yanke V.G., Belov A.V., Gushchina R.T., Zirakashvili V.N. // J. Phys. Conf. Ser. 2019. V. 1181. Art. No. 012007.
- Vainio R., Desorgher L., Heynderickx D. et al. // Space Sci. Rev. 2009. V. 147. P. 187.
- Vos E.E., Potgieter M.S. // Astrophys. J. 2015. V. 815. No. 2. P. 119.
- 10. *Gaisser T.K.* Cosmic rays and particle physics. Cambridge: Cambridge University Press, 2016.

Heliospheric modulation of cosmic rays at neutron monitoring era

P. G. Kobelev^{a, *}, L. A. Trefilova^a, V. N. Zirakashvili^a, A. V. Belov^a, R. T. Guschina^a, V. G. Yanke^a

^aPushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation of the Russian Academy of Sciences, Moscow, 108840 Russia

*e-mail: kosmos061986@yandex.ru

We reconstructed the heliospheric modulation potential of galactic cosmic rays for the era of neutron monitoring. It is based on the usage of a modern model of the interstellar spectrum of galactic cosmic rays and the spectrum of variations of cosmic rays density. The cosmic ray variations spectrum was obtained as a result of the global spectrographic method processing of world network detectors data and calibrating according to the data of direct measurements of the particle spectrum on spacecraft and balloons.