УДК 537.868.3:537.874.72

РАДИОПОГЛОЩАЮЩИЕ ХАРАКТЕРИСТИКИ КОМПОЗИТОВ НА ОСНОВЕ МИКРОДИСПЕРСНОГО УГЛЕРОДНОГО ВОЛОКНА

© 2021 г. С. А. Вызулин¹, В. Ю. Бузько², Д. А. Каликинцева^{1, *}, А. И. Горячко², Е. Л. Мирошниченко¹, А. В. Винокуров¹

¹Федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации, Краснодар, Россия

²Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет", Краснодар, Россия

> **E-mail: delson*17@ymail.com Поступила в редакцию 19.04.2021 г. После доработки 12.05.2021 г. Принята к публикации 28.05.2021 г.

Исследованы радиопоглощающие характеристики композитов на основе микродисперсного углеродного волокна и полимерной матрицы. Получены зависимости удельной электропроводимости и диэлектрической проницаемости от концентрации углеродного волокна. Определены концентрации углеродного волокна, при которых радиопоглощающие свойства исследуемого материала максимальны.

DOI: 10.31857/S0367676521090337

введение

На основе композитных радиопоглощающих материалов (КРМ) возможно создание электромагнитных экранов, которые могут заменить массивные металлические экранирующие конструкции [1]. Применение КРМ для экранирования технических средств позволяет снизить утечки электромагнитного излучения через технологические отверстия в конструкциях корпуса устройства. На способность поглощать энергию радиоволн влияет состав наполнителя. Ралиопоглошающие материалы на основе магнетиков проявляют радиопоглощающие свойства в СВЧ диапазоне [2]. Однако добавление в состав КРМ электропроводящего компонента позволяет обеспечить как радиопоглощающие, так и радиоэкранирующие свойства материала [3]. Цель работы – изучить влияние концентрации электропроводящего наполнителя на РПХ композита на основе углеродного волокна.

ОБРАЗЦЫ

Исследованы образцы материалов, состоящие из углеродного волокна (УВ), равномерно распределенного в полимерной матрице. УВ имело вид порошка. Оно было получено из промышленно выпускаемого материала путем перемалывания в керамической ступке. Для повышения дисперсности полученный порошок просеивался через сито из нержавеющей стали с размером ячеек 50 мкм. Характерный вид микрофотографии порошка, полученной с помощью микроскопа "JEOL JSM – 7500F", представлен на рис. 1*а*. По микрофотографии определены средние значения длины и диаметра УВ, которые составляли около 20 и 4 мкм, соответственно. Аспектное соотношение – отношение средних длин углеродных волокон к их средним диаметрам – для использованного УВ имело величину порядка 5.

В качестве матрицы в композитах использован парафин, который нагревался до $T = 90^{\circ}$ С и перешивался с УВ до получения однородного состава.

Рис. 1. Микрофотография микродисперсного УВ.

Рис. 2. Концентрационные зависимости логарифма удельной электрической проводимости $\lg \sigma(a)$, коэффициента отражения в короткозамкнутой линии $K_{\text{отр}}$ и частоты согласования $f_m(\delta)$.

Низкое аспектное соотношение способствует равномерному распределению частиц УВ в композите.

Концентрация УВ (*C*) по массе в композитах контролировалась и менялась от 5 до 70% с шагом 5%. Изготавливались образцы двух типов — в виде цилиндров (диаметр $\emptyset = 5$ мм и высота 10 мм) и в виде шайб (внутренний $\emptyset = 7$ мм, внешний $\emptyset = 16$ мм, толщина — 10 мм). Образцы первого типа использовались при исследовании свойств синтезированных материалов по постоянному току, а второго — по переменному току (в СВЧ диапазоне).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для опытной оценки радиопоглощающих свойств исследованы свойства композитных материалов по постоянному и переменному току. В первом случае измерялась удельная электропроводность. Во втором — параметры рассеяния электромагнитной волны (ЭМВ) в линии передачи с образцом. Проводимость композитов по постоянному току (σ) измерялась двухзондовым методом измерителем сопротивлений "UT-601" (схема 1). Параметры рассеяния ЭМВ в линии передачи с композитным материалом исследовались с помощью векторного анализатора цепей "Deepace KC901V" на частотах 0.03—7 ГГц. Измерения производились для двух режимов:

1) определение комплексного коэффициента отражения (S_{11}) в короткозамкнутой линии (схема 2). Установлено, что спектр отраженного сигнала представляет собой кривую с явно выраженным минимумом. В точке экстремума определяются значение частоты согласования (f_m), и значение коэффициента отражения (K_{orp}). Величина параметра K_{orp} характеризует радиопоглощающие свойства вставки. Действительно, для использованной схемы эксперимента K_{orp} определяется в основном

энергией отраженных волн (энергия падающей ЭМВ поддерживалась постоянной). Затухание ЭМВ в образце приводит к уменьшению энергии волны, отраженной от границы вставка—металл короткозамыкателя. Минимум K_{orp} соответствует максимальному поглощению энергии;

2) измерение *S*-параметров в согласовано-нагруженной линии (схема 3). По алгоритму Николсона—Росса—Вейра [4], используя экспериментально измеренные параметры матрицы рассеяния (модуля и фазы S_{11} и S_{21}), рассчитывали $\varepsilon = \varepsilon' + i\varepsilon''$, где ε' и ε'' — реальная и мнимая части комплексной диэлектрической проницаемости ε . При расчете учитывалось, что для композитов на основе углеродного волокна $\mu = 1$ [5].

Радиопоглощающие свойства изотропных материалов можно характеризовать величиной улельного поглощения. Измерить непосредственно удельный коэффициент затухания не представляется возможным, т.к. на практике мы, как правило, имеем дело с радиопоглощающими покрытиями (образцами конечных размеров). В этом случае коэффициент поглощения зависит (см. например [6]), как от электрических параметров (ε и μ), так и от размеров образца. В силу этого обстоятельства для каждой из схем эксперимента радиопоглощающие свойства композита будем характеризовать своим параметром. Способность КРМ поглощать энергию ЭМВ для схемы 1 будем характеризовать величиной σ; для схемы 2 – параметром Котр; для схемы 3 – тангенсом угла диэлектрических потерь $tg\delta = \varepsilon''/\epsilon'$.

РЕЗУЛЬТАТЫ

Зависимость $\sigma(C)$ представлена на рис. 2*a*. На графике наблюдается две точки перегиба: при $C \approx 40$ и 55%. Увеличение концентрации УВ в ком-

Рис. 3. Концентрационные зависимости диэлектрической проницаемости на частотах 1 (*1*), 2 (*2*) и 3 (*3*) ГГц, и тангенса угла диэлектрических потерь на частотах 1 (*4*), 2 (*5*) и 3 (*6*) ГГц.

позите от 5 до 40% приводит к увеличению электрической проводимости композита по постоянному току в 10 раз, от 40 до 55% — в 10⁴ раз, а от 55 до 70% – в 30 раз. Качественное подобие наблюдаемых зависимостей $\sigma(C)$ и концентрационной зависимости электропроводности для смеси углеродных нанотрубок в воде [7] указывает на сходство механизма проводимости в двухфазных системах с электропроводящими наполнителями. Можно предположить, что в композите УВ/парафин при $C \approx 40-55\%$ происходит переход от системы распределенных частиц к системе связанных частиц. Под системой распределенных частиц понимается двухфазная система, в которой частицы наполнителя не соприкасаются между собой, а в системе связанных частиц - соприкасаются. Ранее авторами была обнаружена подобная концентрационная зависимость электропроводимости композита на основе магнитного материала ЭКОМ-П и графита [3].

На рис. 26 представлены зависимости K_{orp} от концентрации УВ на частоте согласования. Зависимость не монотонная: сначала наблюдается рост величины $|K_{orp}|$, а затем уменьшение. Полученные результаты согласуются с результатами работ [8–11]. Максимальное значение $|K_{orp}| \approx 17$ дБ наблюдалось для композитов с $C \approx 50\%$. Для композитов с 40 < C < 55% величина $|K_{orp}| \ge 10$ дБ. Диапазон C, при которых величина $|K_{orp}|$ максимальна совпадает с диапазоном, в котором наблюдается скачок σ (переход от системы распределенных частиц к системе связанных частиц). Наблюдаемая корреляция может служить обоснованием упрощенной оценки радиопоглощающих свойств композитных материалов по электропроводности. Уменьшение $|K_{orp}|$ при C > 50% обусловлено увели-

чением $K_{\text{отр}}$ от границы воздух — образец. В силу этого обстоятельства $|K_{\text{отр}}|$ может характеризовать радиопоглощающие свойства только при не очень высоких *C* проводящего наполнителя.

На рис. 2*в* представлены концентрационные зависимости частоты согласования f_m . Видно, что увеличение концентрации УВ в композите приводит к снижению частоты согласования от 3.55 при C = 5% до 0.88 ГГц при C = 70%.

Зависимости модуля комплексного числа є и tgδ от концентрации УВ в композите на частотах 1, 2 и 3 ГГц представлены на рис. 3. Рост концентрации УВ приводит к увеличению не только є, но и tgδ. При C = 40-55% величина є є [12, 18], а tgδ є [0.15, 0.3]. Увеличение C с 5 до 70% приводит к увеличению є с 2.6 до 49.5 и увеличению tgδ с 0.005 до 1.5. Известно [6], что частота согласования для линии передачи с диэлектрической вставкой определяется выражением: $f_m = c^2/(4d\sqrt{\epsilon\mu})$. С учетом этого соотношения, зависимость частота согласования может быть объяснена увеличением диэлектрической проницаемости композита с ростом концентрации УВ.

ЗАКЛЮЧЕНИЕ

Исследованы радиопоглощающие характеристики (РПХ) композитов из микродисперного углеродного волокна с аспектным соотношением около 5. Результаты, полученные разными способами, согласуются между собой – увеличение концентрации УВ приводит к увеличению электрической проводимости, диэлектрической проницаемости, диэлектрических потерь и снижению частоты согласования. Установлено, что максимальные радиопоглощающие свойства образцов композитных материалов на основе УВ/парафин на частотах 1–3 ГГц проявляются при C = 40-55%. В указанном диапазоне частот образцы характеризуются максимальными значениями |К_{отр}|, а также наблюдается быстрое увеличение электропроводимости композитов. Образцы на основе электропроводящего наполнителя с максимальными радиопоглощающими свойствами могут быть определены с использованием концентрационных зависимостей электропроводности композитов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Olyslager F., Laermans E., Zutter D. et al. // IEEE Trans. Electromagn. Compat. 1999. V. 41. No. 3. P. 202.
- 2. Каликинцева Д.А., Бузько В.Ю., Вызулин С.А. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 1. С. 112.
- Каликинцева Д.А., Бузько В.Ю., Вызулин С.А. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 9. С. 1304; Kalikintseva D.A., Buz'ko V.Y., Vyzulin S.A. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 9. P. 1110.

1325

- 4. *Chen L.F., Ong C.K., Neo C.P. et al.* Microwave electronics measurement and materials characterization. John Wiley & Sons Ltd., 2004.
- Zhao N., Zou T., Shi C. et al. // Mater. Sci. Eng. B. 2006. No. 127. P. 207.
- 6. *Duan Y., Guan H.* Microwave absorbing materials. Singapore: Pan Stanford Publishing, 2017.
- Вызулин Е.С., Вызулина В.И. // Матер. XII Всеросс. НПК "Мат. методы и инф.-тех. средства". Краснодар: ун-т МВД России, 2016. С. 58.
- Jian X., Chen X., Zhou Z. et al. // Phys. Chem. Chem. Phys. 2015. No. 17. P. 3024.
- Yu H., Wang T., Wen B. et al. // J. Mater. Chem. 2012. No. 22. Art. No. 21679.
- Liu Z., Bai G., Huang Y. et al. // J. Phys. Chem. C. 2007. No. 111. Art. No. 13696.
- 11. *Liu L., Zhou K., He P., Chen T. //* Mater. Lett. 2013. No. 110. P. 76.

Microwave absorbing characteristics of carbon fiber powder-based composites

S. A. Vyzulin^{*a*}, V. Y. Buz'ko^{*b*}, D. A. Kalikintseva^{*a*}, *, A. I. Goryachko^{*b*}, E. L. Miroshnichenko^{*a*}, A. V. Vinokurov^{*a*}

> ^aKrasnodar Higher Military School, Krasnodar, 350035 Russia ^bKuban State University, Krasnodar, 350040 Russia *e-mail: delson 17@ymail.com

The microwave absorbing characteristics of carbon fiber (CF) and polymer matrix-based composites were investigated. The concentration dependences of the electrical conductivity and permittivity of the CF/paraffin composite were studied. The concentration of CF at which the microwave absorbing properties of the composite reach a maximum value is determined.