УДК 535.42

ИНДЕКС ПОЛЯРИЗАЦИОННОЙ СИНГУЛЯРНОСТИ ПУЧКОВ ПУАНКАРЕ

© 2022 г. В. В. Котляр^{1, *}, А. А. Ковалёв¹, С. С. Стафеев¹, В. Д. Зайцев¹

¹Институт систем обработки изображений Российской академии наук филиал Федерального государственного учреждения "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук, Самара, Россия

> **E-mail: kotlyar@ipsiras.ru* Поступила в редакцию 01.06.2022 г. После доработки 15.06.2022 г. Принята к публикации 22.06.2022 г.

Теоретически и численно исследована острая фокусировка лазерных пучков Пуанкаре. С помощью параметров Стокса найден индекс поляризационной сингулярности таких пучков, он оказался равен топологическому заряду оптических вихрей, участвующих в формировании пучка Пуанкаре. С помощью формализма Ричардса—Вольфа найдены аналитические выражения для проекций вектора напряженности электрического поля вблизи острого фокуса данных пучков.

DOI: 10.31857/S0367676522100118

ВВЕДЕНИЕ

Вихревые лазерные пучки [1] активно исследуются в настоящее время, что связано с их широким применением в оптических телекоммуникациях [2], манипуляции частицами [3, 4], квантовой информатике [5, 6], сенсорике [7] и медицине [8]. Вихревые пучки или оптические вихри характеризуются двумя основными величинами: орбитальным угловым моментом (ОУМ) [9] и топологическим зарядом (ТЗ) [10]. Вихревые пучки, как правило, являются параксиальными лазерными пучками с линейной поляризацией, амплитуда которых описывается скалярной функцией. В настоящее время также активно изучаются лазерные пучки с неоднородной поляризацией, например, с радиальной или азимутальной [11]. Такие пучки называются цилиндрическими векторными пучками. В сечении таких пучков потоки локальных векторов поляризации (линейных или эллиптических) имеют точки поляризационной сингулярности: V-точки и C-точки. В этих точках не определено направление вектора линейной поляризации или направления осей эллипса поляризации. Такие точки поляризационной сингулярности описываются индексами сингулярности Стокса или Пуанкаре-Хопфа [12-14]. Оказывается, что ТЗ скалярных оптических вихрей и индексы поляризационной сингулярности можно рассчитывать одинаковым образом с помощью определения топологического заряда, данного М. Берри [10].

В данной работе исследуется широкий класс векторных лазерных пучков – пучков Пуанкаре [15, 16], в которые как частные случаи входят как однородно поляризованные пучки с линейной и круговой поляризацией, так и цилиндрические векторные пучки с радиальной и азимутальной поляризацией, и пучки с неоднородной эллиптической поляризацией. По аналогии с ТЗ будет рассчитан индекс поляризационной сингулярности пучков Пуанкаре. С помощью формализма Ричардса-Вольфа [17] будут получены аналитические выражения для распределения проекций вектора напряженности электрического поля вблизи острого фокуса пучков Пуанкаре. И будет приведено выражение для распределения интенсивности в плоскости фокуса. Теоретические предсказания, следующие из полученных выражений, будут подтверждены с помощью компьютерного моделирования.

ВЕКТОР СТОКСА И ПОЛЯРИЗАЦИОННАЯ СФЕРА ПУАНКАРЕ

Световые пучки, состояние поляризации которых описывается единичными векторами на сфере Пуанкаре имеют вектор Джонса вида [15, 16]:

$$E_P(\varphi) = \frac{1}{\sqrt{2}} \begin{pmatrix} ae^{-in\varphi} + be^{in\varphi} \\ iae^{-in\varphi} - ibe^{in\varphi} \end{pmatrix},$$
 (1)

где $a = \cos(\theta/2)e^{-i\psi/2}$, $b = \sin(\theta/2)e^{i\psi/2}$, $a^2 + b^2 = 1$, а θ и ϕ – полярный и азимутальные углы на сфере. Параметры Стокса [18]:

$$S_{1} = \frac{|E_{x}|^{2} - |E_{y}|^{2}}{|E_{x}|^{2} + |E_{y}|^{2}}, \quad S_{2} = \frac{2 \operatorname{Re}(E_{x}^{*}E_{y})}{|E_{x}|^{2} + |E_{y}|^{2}},$$

$$S_{3} = \frac{2 \operatorname{Im}(E_{x}^{*}E_{y})}{|E_{x}|^{2} + |E_{y}|^{2}},$$
(2)

где Re и Im — знаки реальной и мнимой части числа. Вектор Стокса, как видно из (2), имеет единичную длину $S_1^2 + S_2^2 + S_3^2 = 1$. Для пучка Пуанкаре (1) в начальной плоскости вектор Стокса будет иметь координаты:

$$S_{1} = 2|ab|\cos(2n\varphi - \arg a + \arg b),$$

$$S_{2} = 2|ab|\sin(2n\varphi - \arg a + \arg b),$$

$$S_{3} = |a|^{2} - |b|^{2}.$$
(3)

Из (3) следует, что круговая поляризация у пучков Пуанкаре будет, если $S_3 = |a|^2 - |b|^2 = \cos \theta = \pm 1$ или

$$S_3 = \begin{cases} 1, & |a| = 1, & |b| = 0, \\ -1, & |a| = 0, & |b| = 1. \end{cases}$$
(4)

Круговая поляризация у пучков Пуанкаре (1) будет только при двух углах при $heta=0, heta=\pi$ или в лвух точках на сфере Пуанкаре (на "северном и южном" полюсах"). Угол θ отсчитывается от вертикальной оси сверху вниз. Линейная поляризация у пучка (1) будет при $S_3 = |a|^2 - |b|^2 = \cos \theta = 0$, то есть при $\theta = \pi/2$ или на "экваторе" сферы Пуанкаре. Угол наклона вектора линейной поляризации в разных точках "экватора" будет определяться углом ψ . Азимутальный угол ψ откладывается в плоскости (x, y) и увеличивается от положительного направления оси х к оси у. Поэтому вектор Джонса для линейной поляризации (n = 0) будет иметь вид (cos ψ , sin ψ). Пучки с разным направлением вектора линейной поляризации будут располагаться в горизонтальной плоскости сферы Пуанкаре (в плоскости "экватора", $\theta = \pi/2$). В частности, горизонтальная линейная поляризация будет при $\psi = 0$, а вертикальная линейная поляризация при $\psi = \pi/2$. Таким образом, каждой точке сферы Пуанкаре можно сопоставить определенное поляризационное состояние пучков Пуанкаре (1).

ТОПОЛОГИЧЕСКИЙ ЗАРЯД ОПТИЧЕСКИХ ВИХРЕЙ

В современной оптике широкое применение нашли вихревые лазерные пучки [1], которые имеют точки фазовых сингулярностей, и у которых поток энергии распространяется по спирали. Такие вихревые пучки характеризуются двумя основными параметрами: орбитальным угловым

моментом (ОУМ) и топологическим зарядом (ТЗ). Топологический заряд обычно определяется как целое число скачков фазы на 2π скалярного светового пол при обходе по замкнутому контуру вокруг точки фазовой сингулярности (точки изолированного нуля интенсивности). Если таких точек сингулярности в сечении лазерного пучка несколько, то ТЗ равен алгебраической сумме ТЗ для каждой точки сингулярности. Недостатком такого определения ТЗ является то, что на практике затруднительно найти все точки фазовой сингулярности в сечении пучка, так как некоторые из них могут располагаться в области малых значений интенсивности (на периферии пучка). В данной работе мы будем пользоваться более конструктивным определение ТЗ, которое выражается формулой М. Берри [10]

$$TC = \frac{1}{2\pi} \lim_{r \to \infty} \operatorname{Im} \int_{0}^{2\pi} d\varphi \frac{\partial E(r, \varphi) / \partial \varphi}{E(r, \varphi)}.$$
 (5)

В (5) $E(r, \varphi)$ – комплексная амплитуда светового поля, (r, φ) – полярные координаты в сечении пучка, lim – знак предела при стремлении радиальной координаты к бесконечности, Im – мнимая часть пучка. Формула (5) вычисляет T3 по окружности бесконечного радиуса в одном из сечений пучка. Поэтому формула (5) автоматически учитывает все точки фазовых дислокаций, которые есть в пучке. Топологический заряд [19], как и ОУМ, сохраняются при распространении пучка в свободном пространстве. Правда T3 в начальной плоскости может отличаться от T3 при распространении пучка, так как в поле T3 должен быть всегда целым, а в начальной плоскости T3 может быть и дробным.

В данной работе мы применим формулу Берри (5) для вычисления индекса поляризационной сингулярности пучков Пуанкаре.

ИНДЕКС ПОЛЯРИЗАЦИОННОЙ СИНГУЛЯРНОСТИ

Для характеризации векторных световых полей с поляризационной сингулярностью вместо топологического заряда используют индексы поляризационной сингулярности. Это связанные между собой индекс Стокса и индекс Пуанкаре-Хопфа. Наиболее подробно исследовал оба эти индекса И. Фройнд в работах [12-14]. Точки поляризационной сингулярности неоднородно поляризованных световых полей имеются такие: V-точки и С-точки. Они определяют топологию потоков локальных векторов поляризации в сечении пучка. V-точки – это точки сингулярности (неопределенности) направления вектора локальной линейной поляризации. В этой точке у светового поля интенсивность равна нулю. С-точки – это точки, в которых не определено направление большой оси локального эллипса поляризации. То есть это точки, в которых поляризация круговая. Если в поле есть линии неопределенности направления линейной поляризации – это V-линии (или L-линии). А линии круговой поляризации называются С-линиями. Индексы сингулярности для V- и С-точек, а также для L- и С-линий определяются с помощью параметров Стокса и комплексных полей Стокса [12–14]. С помощью (3) можно сформировать комплексное поле Стокса, которое будет иметь вид:

$$S_c = S_1 + iS_2 =$$

= 2|ab|exp(2in\varphi - i arg a + i arg b). (6)

Подставим комплексную амплитуду (6) в формулу Берри (5) и получим, что индекс Стокса σ равен удвоенному индексу Пуанкаре—Хопфа η и для поля (1) равен:

$$\sigma = 2\eta = \begin{cases} 2n, \ |a| > 0, \ |b| > 0, \\ 0, \ |a| = 0, \ \text{или} \ |b| = 0. \end{cases}$$
(7)

Из (7) следует, что индекс Пуанкаре-Хопфа поля (1) равен топологическому заряду n, а само поле имеет неоднородную линейную поляризацию, если модули a и b оба отличны от нуля. И поле имеет круговую поляризацию и нет сингулярности ($\eta = 0$), если либо *a*, либо *b* равны нулю. Из (7) следует, что в сечении пучков Пуанкаре в центре на оптической оси имеется точка поляризационной сингулярности с индексом равным *n*. Это означает, что поток локальных векторов с линейной поляризации при обходе по замкнутому контуру вокруг оптической оси совершает *п* полных оборотов на угол 2π . Из (7) следует, что у пучков Пуанкаре (1) не может быть С-точек, так как у векторных полей с С-точками индекс должен быть равен $\eta = n/2$. В разделе моделирования будут приведены распределения векторов поляризации в сечении пучков Пуанкаре при разных значениях параметров a, b, n.

ОСТРАЯ ФОКУСИРОВКА ПУЧКОВ ПУАНКАРЕ

Все 6 проекций электромагнитного поля (1) вблизи острого фокуса можно найти с помощью формализма Ричардса—Вольфа [17]. В этом разделе мы приведем результаты расчета распределения интенсивности и проекций векторов Стокса в фокусе для начального светового поля (1). Расчет производился с помощью общих формул Ричардса—Вольфа [17], которые описывают свет в области фокуса:

$$\vec{U}(\rho, \psi, z) = -\frac{if}{\lambda} \int_{0}^{\alpha} \int_{0}^{2\pi} B(\theta, \phi) T(\theta) \vec{P}(\theta, \phi) \times$$
(8)

 $\times \exp\{ik[\rho\sin\theta\cos(\varphi-\psi)+z\cos\theta]\}\sin\theta d\theta d\varphi,$

где $\bar{U}(\rho, \psi, z)$ — напряженность электрического или магнитного поля, $B(\theta, \phi)$ — электрическое

или магнитное поле на входе широкоапертурной оптической системы в координатах выходного зрачка (θ – полярный угол, φ – азимутальный), $T(\theta) = (\cos\theta)^{1/2} - \phi$ ункция аподизации линзы, $f - \phi$ окусное расстояние, $k = 2\pi/\lambda$ – волновое число, λ – длина волны, α – максимальный полярный угол, определяемый числовой апертурой линзы ($NA = \sin\alpha$), $\vec{P}(\theta, \varphi)$ – матрица поляризации. Интеграл (8) позволяет вычислять распределение компонент электромагнитного поля в координатах выходного зрачка. Матрица поляризации $\vec{P}(\theta, \varphi)$ для напряженности электрического и магнитного полей имеет вид [20]:

$$\vec{P}(\theta, \phi) = \begin{bmatrix} 1 + \cos^2 \phi(\cos \theta - 1) \\ \sin \phi \cos \phi(\cos \theta - 1) \\ -\sin \theta \cos \phi \end{bmatrix} a(\theta, \phi) + \\ + \begin{bmatrix} \sin \phi \cos \phi(\cos \theta - 1) \\ 1 + \sin^2 \phi(\cos \theta - 1) \\ -\sin \theta \sin \phi \end{bmatrix} b(\theta, \phi),$$
(9)

где $a(\theta, \phi), b(\theta, \phi) - \phi$ ункции поляризации для *x*-, *y*- и *z*-компонент падающего поля. Для начального поля (1) функции поляризации будут иметь вид

$$E(\theta, \varphi) = \begin{pmatrix} a(\theta, \varphi) \\ b(\theta, \varphi) \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} ae^{-in\varphi} + be^{in\varphi} \\ iae^{-in\varphi} - ibe^{in\varphi} \end{pmatrix}$$
(10)

для напряженности электрического поля. Подставляя (10) в (8) и (9), получим распределения проекций вектора напряженности электрического поля вблизи острого фокуса $B(\theta, \phi) = A(\theta)$ – амплитуда в выходном зрачке, например, гауссовая функция от угла θ):

$$E_{x}(r, \varphi, z) = \frac{i^{n-1}}{\sqrt{2}} \times \\ \times \left[\left(ae^{-in\varphi} + be^{in\varphi} \right) I_{0,n} + \left(ae^{-i(n-2)\varphi} + be^{i(n-2)\varphi} \right) I_{2,n-2} \right], \\ E_{y}(r, \varphi, z) = \frac{i^{n}}{\sqrt{2}} \times$$
(11)

$$\times \left[\left(ae^{-in\varphi} - be^{in\varphi} \right) I_{0,n} - \left(ae^{-i(n-2)\varphi} - be^{i(n-2)\varphi} \right) I_{2,n-2} \right], \\ = \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{1}{$$

$$E_{z}(r, \varphi, z) = \sqrt{2}i^{n} \left(ae^{-i(n-1)\varphi} + be^{i(n-1)\varphi} \right) I_{1,n-1}.$$

В (11) функции $I_{\nu,\mu}$ зависят только от радиальной переменной *r* и расстояния *z* от фокуса и равны выражению:

$$I_{\nu,\mu} = \left(\frac{\pi f}{\lambda}\right) \int_{0}^{\theta_{0}} \sin^{\nu+1}\left(\frac{\theta}{2}\right) \cos^{3-\nu}\left(\frac{\theta}{2}\right) \times \\ \times \cos^{1/2}(\theta) A(\theta) e^{ikz\cos\theta} J_{\mu}(x) d\theta,$$
(12)

где k — волновое число света, λ — длина волны света, f — фокусное расстояние идеальной сферической линзы, формирующей фокус, z — оптическая ось, при z = 0 — плоскость фокуса, $x = kr \sin \theta$,

 $J_{\mu}(x) - функция Бесселя первого рода <math>\mu$ -го порядка, $NA = \sin\theta_0 - числовая апертура апланатиче$ $ской оптической системы, <math>A(\theta) - любая действи$ тельная функция, описывающая амплитуду входного поля, обладающего осевой симметрией(плоская волна, гауссов пучок, пучок Бесселя– $Гаусса). У интегралов <math>I_{\nu,\mu}$ (12) первый индекс $\nu = 0, 1, 2$ описывает тип интеграла, а второй индекс $\mu = 0, 1, 2, ..., m$ равен порядку функции Бесселя.

Чтобы проверить правильность полученных выражений для проекций вектора напряженности электрического поля вблизи фокуса (11) для пучков Пуанкаре (1) положим в (11) n = 0, $\theta = \pi/2$ и $\psi = 0$. Тогда в начальной плоскости получим линейную поляризацию вдоль горизонтальной оси x, а вблизи фокуса получим выражения для проекций электрического поля, точно совпадающие с аналогичными выражениями, полученными в [17]. Из (11) при $a = b = 2^{-1/2}$ можно получить компоненты электрического вектора в фокусе для цилиндрического векторного поля целого порядка n, которые точно совпадают с полученными ранее в [11, 21].

Найдем распределение интенсивности в остром фокусе (z = 0) для пучков Пуанкаре:

$$I(r, \varphi) = I_x + I_y + I_z = |E_x|^2 + |E_y|^2 + |E_z|^2 =$$

= $I_{0,n}^2 + I_{2,n-2}^2 + 2I_{1,n-1}^2 +$ (13)
+ $2\sin\theta\cos(2(n-1)\varphi + \psi)(I_{0,n}I_{2,n-2} + 2I_{1,n-1}^2).$

В (13) входят все три параметра, которые характеризуют поляризационное состояние пучка Пуанкаре (1): n, θ , ψ . Варьируя эти параметры можно управлять формой фокусного пятна. Из (13) видно, что в общем случае распределение интенсивности в фокусе (фокусное пятно) для пучков Пуанкаре (1) имеет осевую симметрию, так как при смене угла φ на φ + π интенсивность (13) не меняется. В (13) косинус будет достигать максимума на углах, удовлетворяющих уравнению

$$2(n-1)\varphi + \psi = 2\pi p, \quad p = 0, 1, 2, \dots$$
(14)

то есть при обходе вокруг оптической оси в плоскости фокуса по окружности некоторого радиуса интенсивность будет иметь 2(n - 1) локальных максимумов.

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

На рис. 1 показаны распределения потоков локальных векторов линейной поляризации при $\theta = \pi/2$. В этом случае пучки Пуанкаре сводятся к цилиндрическим пучкам порядка *n*. На рис. 1 показаны поля векторов поляризации для пучков второго, n = 2 (*a*, *e*) и третьего, n = 3 (*б*, *e*) порядков. В центре пучка находится точка поляризационной сингулярности (V-точка), в которой не определено направление вектора линейной поля-

Рис. 1. Распределение локальных векторов поляризации в сечении пучков Пуанкаре в начальной плоскости ($\theta = \pi/2$): n = 2, $\psi = 0$ (a); n = 3, $\psi = 0$ (b); n = 2, $\psi = \pi/2$ (e); n = 3, $\psi = \pi/2$ (e).

ризации. Индекс сингулярности Пуанкаре-Хопфа для этих полей равен их номеру (7). В этом можно убедиться, определив сколько полных оборотов делают вектора линейной поляризации при обходе по замкнутому контуру вокруг центра пучка. На рис. 1*a* и 1*в* вектора линейной поляризации делают 2 полных оборота, а на рис. 1*б* и 1*е* – три полных оборота (четыре оборота на угол $3\pi/2$ каждый). Также из рис. 1 видно, что при $\psi = \pi/2$ поле векторов поляризации поворачивается на $\pi/2$ при n = 2 (рис. 1*a* и 1*в*) или на $\pi/4$ при n = 3(рис. 1*б* и 1*г*).

На рис. 2 показаны распределения суммарной интенсивности $I(r, \varphi) = I_x + I_y + I_z$ (13) в плоскости фокуса для начального поля (1) при следующих параметрах: длина волны 633 нм, числовая апертура идеальной сферической линзы NA == 0.95. Параметры пучка: $\theta = \pi/2$, $\psi = 0$, n = 2(рис. 2*a*), n = 3 (рис. 2*b*). Из рис. 2 видно, что и полная интенсивность имеет 2(n - 1) локальных максимума: 2(2 - 1) = 2 (рис. 2*a*) и 2(3 - 1) = 4(рис. 2*b*). Это подтверждает правильность полученного выражения (13).

На рис. 3 показаны распределения суммарной интенсивности для пучка (1) с параметрами $\theta = \pi/2$, $\psi = \pi/2$ и n = 2 (*a*), n = 3 (*б*). Из сравнения рис. 2 и 3 видно, что форма фокусных пятен сохранилась (два и четыре локальных максимума интенсивности), но картина повернулась на $\pi/2$ (*a*) и $\pi/4$ (*б*). В центре (на оптической оси) интенсивность равна нулю, как и предсказывают

Рис. 2. Распределение суммарной интенсивности в фокусе для пучка (1) с параметрами $\theta = \pi/2$, $\psi = 0$ и n = 2 (*a*), 3 (*b*).

Рис. 3. Распределение суммарной интенсивности в фокусе для пучка (1) с параметрами $\theta = \pi/2$, $\psi = \pi/2$ и n = 2 (*a*), 3 (*b*).

выражения (11) и (13). Таким образом можно утверждать, что номер *n* (топологический заряд) пучка Пуанкаре равен индексу поляризационной сингулярности Пуакаре—Хопфа и определяет число локальных максимумов в остром фокусе пучка Пуанкаре, число которых равно 2(n - 1). Выбор параметра $\psi = \pi/2$ вместо $\psi = 0$ приводит к повороту фокуссного пятна на угол $\pi/(2(n - 1))$.

ЗАКЛЮЧЕНИЕ

Показано, что индекс поляризационной сингулярности пучков Пуанкаре всегда целый и равен параметру *n*, одному из трех параметров, определяющих поляризационное состояние семейства пучков Пуанкаре. Это целое число *n* можно также интерпретировать как топологический заряд оптического вихря exp(*in* ϕ), который участвует в формировании пучков Пуанкаре:

$$E_{P}(\varphi) = \frac{1}{\sqrt{2}} \begin{pmatrix} ae^{-in\varphi} + be^{in\varphi} \\ iae^{-in\varphi} - ibe^{in\varphi} \end{pmatrix} =$$

$$= \frac{ae^{-in\varphi}}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix} + \frac{be^{in\varphi}}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}.$$
(15)

Выражение (15) показывает, как можно на практике сформировать пучки Пуанкаре. Для этого надо лазерный гауссов пучок с линейной поляризацией разделить на два пучка, каждый из которых должен пройти спиральную фазовую пластинку с пропускание $\exp(\pm in\varphi)$, которая сформирует оптический вихрь с топологическим зарядом $\pm n$, и четвертьволновую пластинку, которая преобразует линейную поляризацию (1, 0) в

круговую $(1, \pm i)$. Далее с помощью зеркал и делительного кубика оба пучка нужно совместить, и получится пучок (15). Параметры *a* и *b* можно непрерывно менять, изменяя амплитуду и фазу одного из пучков с помощью нейтральных амплитудных фильтров и световых клиньев.

Работа выполнена при поддержке Российского научного фонда (проект № 22-12-00137) (теория), а также Министерства науки и высшего образования РФ в рамках выполнения работ по теме государственного задания ФНИЦ "Кристаллография и фотоника" РАН (моделирование).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Kotlyar V.V., Kovalev A.A., Porfirev A.P.* Vortex laser beams. Boca Raton: CRC Press, 2018.
- Wang J., Yang J., Fazal I.M. et al. // Nature Photonics. 2012. V. 6. P. 488.
- Padgett M., Bowman R. // Nature Photonics. 2011. V. 5. P. 343.
- Yang Y.J., Ren Y.X., Chen M.Z. et al. // Adv. Photon. 2021. V. 3. Art. No. 034001.
- Nikolas A., Veissier L., Giner L. et al. // Nature Photonics. 2014. V. 8. P. 234.
- 6. Otte E., Rosales-Guzman C., Ndagano B. et al. // Light Sci. Appl. 2018. V. 7. Art. No. 18009.

- Lavery M.P., Speirits F.C., Barnett S.M. et al. // Science. 2013. V. 341. P 537.
- Gianani I., Suprano A., Giordani T. et al. // Adv. Photon. 2020. V. 2. Art. No. 36003.
- Allen L., Beijersbergen M.W., Spreeuw R.J.C. et al. // Phys. Rev. A. 1992. V. 11. Art. No. 8185.
- 10. Berry M.V. // J. Optics A. 2004. V. 6. P. 259.
- 11. Zhan Q. // Adv. Opt. Photon. 2009. V. 1. P. 1.
- 12. Freund I. // Opt. Lett. 2001. V. 26. P. 1996.
- 13. Freund I. // Opt. Commun. 2002. V. 201. P. 251.
- 14. Freund I., Mokhun A.I., Soskin M.S. et al. // Opt. Lett. 2002. V. 27. P. 545.
- Beckley A.M., Brown T.G., Alonso M.A. // Opt. Express. 2010. V. 18. Art. No. 10777.
- Chen S., Zhou X., Liu Y. et al. // Opt. Lett. 2014. V. 39. P. 5274.
- 17. *Richards B., Wolf E. //* Proc. Royal Soc. A. 1959. V. 253. P. 358.
- 18. Борн М., Вольф. Э. Основы оптики. М.: Наука, 1973.
- Kovalev A.A., Kotlyar V.V., Nalimov A.G. // Photonics. 2021. V. 8. P. 445.
- Pereira S.F., Van de Nes A.S. // Opt. Commun. 2004. V. 234. P. 119.
- 21. *Kotlyar V.V., Kovalev A.A., Stafeev S.S. et al.* // Opt. Laser Techn. 2022. V. 145. Art. No. 107479.
- 22. Kotlyar V.V., Kovalev A.A., Zaitsev V.D. // Photonics. 2022. V. 9. P. 298.

Index of the polarization singularity of Poincare beams

V. V. Kotlyar^{a, *}, A. A. Kovalev^a, S. S. Stafeev^a, V. D. Zaitsev^a

^a Image Processing Systems Institute of the Russian Academy of Sciences – branch of the Federal State Institution "Federal Research Center "Crystallography and Photonics" of the Russian Academy of Sciences, Samara, Russia *e-mail: kotlyar@ipsiras.ru

Poincare laser beams and their sharp focusing were studied theoretically and numerically. Using the Stokes parameters, the index of the polarization singularity of such beams was found; it turned out to be equal to the topological charge of the optical vortices involved in the formation of the Poincare beam. Using the Richards-Wolf formalism, analytical expressions are found for the projections of the electric field strength vector near the sharp focus of these beams.