УДК 538.953

ВЛИЯНИЕ МАЛЫХ ДОБАВОК ГЕЛИЯ НА ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА АЛКАНОВ И ИНЕРТНЫХ ГАЗОВ

© 2022 г. В. Н. Андбаева^{1, *}, М. Н. Хотиенкова¹

¹Федеральное государственное бюджетное учреждение науки Институт теплофизики Уральского отделения Российской академии наук, Екатеринбург, Россия *E-mail: andbaeva@mail.ru

> Поступила в редакцию 20.09.2021 г. После доработки 11.10.2021 г. Принята к публикации 22.10.2021 г.

Исследовано влияние гелия на теплофизические свойства алканов и инертных газов. Представлены новые данные по капиллярной постоянной растворов *н*-бутан—гелий и изобутан—гелий. Показано, что гелий может выступать как поверхностно-активное или инактивное вещество. Предложены уравнения, описывающие барические и концентрационные зависимости капиллярной постоянной и поверхностного натяжения.

DOI: 10.31857/S0367676522020041

введение

Поверхностное натяжение является важнейшей термодинамической характеристикой границы раздела жидкой и газовой фаз, которая наиболее доступна для измерения. На сегодняшний день поверхностное натяжение чистых веществ изучено достаточно хорошо [1]. Однако в природе и различных технологических процессах наиболее часто приходится иметь дело с растворами. Небольшое количество раствоенного вещества может приводить к существенным изменениям поверхностного натяжения (как уменьшать его значение, так и увеличивать) [2, 3].

В работе исследуется влияние гелия на капиллярную постоянную a^2 и поверхностное натяжение о алканов (пропан (C₃H₈), нормальный бутан (*n*-C₄H₁₀), изобутан (*i*-C₄H₁₀)) и инертных газов (ксенон (Хе), аргон (Ar)). Растворимость гелия (Не) при давлениях ниже критического давления растворителя не превышает 1–3%, поэтому гелий можно назвать одним из малорастворимых в жидкости газов. В работе приводятся новые данные по капиллярной постоянной растворов *н*-бутан–гелий и изобутан–гелий. Данные по a^2 и о, необходимые для анализа и построения уравнений, взяты из ранних работ [3–5].

Статья состоит из введения, двух разделов и заключения. Во втором разделе описана методика проведения опытов. В третьем разделе приводятся экспериментальные результаты и обсуждения.

ЭКСПЕРИМЕНТ

Измерения капиллярной постоянной растворов *н*-бутан—гелий и изобутан—гелий выполнены дифференциальным вариантом метода капиллярного поднятия. На рис. 1 показана схема экспериментальной установки.

Измерительная ячейка содержала сборку стеклянных капилляров, прокалиброванных ртутью. Ячейка со сборкой капилляров помещалась в стеклянную колбу. Внутренние радиусы капилляров равны: $r_1 = 0.6393$ мм, $r_2 = 0.2297$ мм, $r_3 = 0.09607$ мм. По всей длине капилляра отклонения внутреннего радиуса от его среднего значения $\Delta r/r$ не превышают 0.001. Давление измерялось пружинным манометром. Неопределенность измерения давления u(p) = 0.006 МПа. Температуру измеряли платиновым термометром на 100 Ом. Неопределенность определения температуры u(T) = 0.02 К. Термостатирование производилось прокачкой полиметилсилоксановой жидкости (ПМС-20) от термостата Julabo SL 12. Опыты проводились с высокочистыми газами. Паспортная чистота изобутана — 99.8%, н-бутана — 99.999%, гелия - 99.995%.

Эксперимент начинался с конденсации растворителя (изобутана/*н*-бутана) в ячейку. По окончании конденсации в ячейке устанавливалась необ-

ходимая температура и проводились измерения a^2 растворителя. Далее в ячейку подавался гелий, устанавливалось давление, большее давления на-

Рис. 1. Схема экспериментальной установки.

сыщения растворителя *p*_s. Процесс растворения гелия ускорялся перемешиванием жидкости.

В опытах измерялась разность высот поднятия жидкости h_{ij} в капиллярах *i* и *j*. Неопределенность определения высот составляла $u(h_{ij}) = 0.03$ мм. Капиллярная постоянная рассчитывалась в предположении полной смачиваемости жидкостью стенок капилляров по уравнению

$$a^{2} = h_{ij} / (b_{i}^{-1} - b_{j}^{-1}), \qquad (1)$$

Здесь b_i и b_j — радиусы кривизны менисков в капиллярах *i* и *j*, которые определялись через внутренние радиусы капилляров. Погрешность определения капиллярной постоянной составляет 0.3% при температуре 108 К и возрастает до 2% при приближении к критической точке растворителя.

Ввиду отсутствия экспериментальных данных и уравнений состояний растворов *н*-бутан—гелий и изобутан—гелий возникают трудности с определением ортобарических плотностей и поверхностного натяжения указанных растворов.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Капиллярная постоянная растворов н-бутан—гелий и изобутан—гелий

Капиллярная постоянная растворов *н*-бутангелий и изобутан-гелий измерена на трех изотермах 318.15, 348.15 и 378.15 К при давлениях от давления насыщения растворителя до 4 МПа.

Рисунок 2*а* иллюстрирует барическую зависимость капиллярной постоянной указанных растворов. Видно, что увеличение количества гелия в растворе приводит к увеличению капиллярной постоянной растворов *н*-бутан—гелий и изобутан—гелий.

Барическая зависимость капиллярной постоянной

В исследованном диапазоне параметров состояния зависимость капиллярной постоянной от давления близка к линейной и в пределах погрешности эксперимента описывается уравнением вида:

$$a^{2}(p,T) = a_{0}^{2} + A_{p}(p - p_{s}).$$
(1)

Здесь $A_p = (\partial a^2 / \partial p)_T$, p_s – давление насыщенных паров растворителя. Капиллярная постоянная чистого растворителя a_0^2 выбрана в виде:

$$a_0^2 = a_*^2 \varepsilon^n \left(1 + a_1 \varepsilon + a_2 \varepsilon^{12} \right), \tag{2}$$

где $\varepsilon = 1 - T/T_c$, T_c — критическая температура растворителя. Коэффициенты a_*^2 , *n*, a_1 и a_2 найдены методом регрессионного анализа. Погрешность аппроксимации не превышает неопределенность экспериментальных данных. Параметры уравнения (2), вместе со значениями критических температур представлены в табл. 1. Значения давления насыщенных паров для ксенона и аргона взяты из работы [6], для *н*-бутана и изобутана — [7], для пропана из работы [8].

Параметр, отвечающий за наклон капиллярной постоянной, аппроксимирован в виде:

$$\left(\partial a^2/\partial p\right)_T = A + B\varepsilon + C\varepsilon^2 + D\varepsilon^E.$$
 (3)

Значения коэффициентов, входящих в уравнение (3), представлены в табл. 2.

На рис. 26 представлена температурная зависимость производной $(\partial a^2/\partial p)_T$ рассматриваемых растворов. Исследуемые растворы имеют каче-

Рис. 2. Барическая зависимость капиллярной постоянной по изотермам (*a*); температурная зависимость производной $\left(\frac{\partial a^2}{\partial p}\right)_T$ (*b*): 1 - H-бутан-гелий, 2 -изобутан-гелий, 3 -пропан-гелий, 4 -ксенон-гелий, 5 -аргон-гелий, 1, 1' - T = 318.15 K; 2, 2' - 348.15 K; 3, 3' - 378.15 K.

ственно разные барические зависимости капиллярной постоянной. Как показывают расчеты, знак и значение производной $A_p = (\partial a^2 / \partial p)_r$ как функции температуры зависит от природы растворителя. При растворении гелия в аргоне значение производной A_p отрицательно и наклон изотерм *a*² возрастает при приближении к критической точке аргона [5]. Качественно иной характер наблюдается в системе ксенон-гелий, где $A_n > 0$ [4], и это значение увеличивается при приближении к критической точке ксенона. В системе пропан-гелий производная А, принимает положительные значения и уменьшается до нуля от тройной точки растворителя до $T \approx 340$ K [3]. При T > 340 К производная A_n меняет знак и становится отрицательной. Аналогично системе пропан-гелий, знак производной меняется в системе изобутан-гелий. При T < 348 К значение производной положительно и принимает отрицательные значения при T > 348 К. В исследованном диапазоне температур 318-378 К производная $\left(\frac{\partial a^2}{\partial p}\right)_T$ системы *н*-бутан—гелий положительна и возрастает при приближении к критической точке *н*-бутана. Мы полагаем, что при T < 318 К производная сменит знак и станет отрицательной.

Растворы пропан—гелий, *н*-бутан—гелий и изобутан—гелий характеризуются более сильным межмолекулярным взаимодействием, чем растворы гелия в аргоне и ксеноне. Это приводит к различию критических кривых вблизи критической точки растворителя и барической зависимости капиллярной постоянной [9]. Согласно данным работы [9], производная $(dp/dT)_c$ на критической линии раствора ксенон—гелий положительна [10], тогда как для раствора аргон—гелий она отрицательна. Проводя аналогию с этими данными, можно пред-

Вещество	<i>T_c</i> , K	a_*^2 , MM ²	п	a_1	<i>a</i> ₂
Пропан	369.89 [8]	13.584	0.910	$-3.42 \cdot 10^{-3}$	$4.0202\cdot10^{-1}$
Аргон	150.687 [6]	4.028	0.908	$6.8\cdot 10^{-4}$	$-2.1321 \cdot 10^3$
Изобутан	407.81 [7]	13.100	0.937	$-1.219 \cdot 10^{-2}$	$8.1625\cdot 10^3$
н-бутан	425.125 [7]	13.176	0.920	$5.099\cdot 10^{-2}$	$-1.819897 \cdot 10^{5}$
Ксенон	289.76 [6]	2.731	0.913	$1.062\cdot 10^{-2}$	$-1.197\cdot 10^2$

Таблица 1. Значения коэффициентов уравнения (2)

Вещество	A	В	С	D	Ε
Пропан	$-3.12 \cdot 10^{-3}$	$-5.646 \cdot 10^{-2}$	—	—	—
Аргон	$-5.11 \cdot 10^{-2}$	$-2.6681 \cdot 10^{-1}$	$-4.7219 \cdot 10^{-1}$	$-9.6451 \cdot 10^{-11}$	—7
Изобутан	$-4.563 \cdot 10^{-2}$	$4.3897\cdot 10^{-1}$	$-7.9828 \cdot 10^{-1}$	_	_
<i>н</i> -бутан	$2.99\cdot 10^{-2}$	$-4.37 \cdot 10^{-3}$	$-3.223\cdot10^{-1}$	_	_
Ксенон	—	—	—	$1.8 \cdot 10^{-3}$	$-9.2846 \cdot 10^{-1}$

Таблица 2. Значения коэффициентов уравнения (3)

положить, что для растворов гелия в пропане, н-бутане и изобутане будет менять знак не только производная $(\partial a^2/\partial p)_T$, но и производная $(dp/dT)_c$ на критической линии.

Барическая зависимость поверхностного натяжения

На рис. 3 показаны зависимости безразмерного поверхностного натяжения σ/σ_0 от давления $(p - p_s)$ растворов пропан—гелий [3] и аргон—гелий [5]. Во всем исследованном интервале температур, от тройной точки до критической, поверхностное натяжение аргона уменьшается с увеличением давления, в отличие от пропана, где первоначальный рост σ , сменяется его слабым уменьшением при температурах близких к T_c пропана.

Рис. 3. Зависимость приведенного поверхностного натяжения от давления. 1-6 – раствор аргон–гелий, 7-12 – раствор пропан–гелий. 1 - T = 108; 2 - 118; 3 - 128; 4 - 132; 5 - 136; 6 - 140; 7 - 120; 8 - 180; 9 - 210; 10 - 270; 11 - 340; 12 - 350 K.

Поверхностное натяжение чистых аргона и пропана σ_0 аппроксимировано нами в виде:

$$\sigma_0 = \sigma_* \varepsilon^{\mu} \left(1 + \sigma_1 \varepsilon + \sigma_2 \varepsilon^6 \right). \tag{3}$$

Здесь коэффициенты σ_* , μ , σ_1 и σ_2 найдены с помощью регрессионного анализа, погрешность аппроксимации не превышает неопределенность экспериментальных данных: $\sigma_* = 3.9106 \cdot 10^1$ мH/м, $\mu = 1.264$, $\sigma_1 = -8.414 \cdot 10^{-2}$, $\sigma_2 = -7.27845$ (для аргона); $\sigma_* = 5.8839 \cdot 10^1$ мH/м, $\mu = 1.271$, $\sigma_1 =$ $= -1.7543 \cdot 10^{-1}$, $\sigma_2 = 3.2165 \cdot 10^{-1}$ (для пропана).

ЗАКЛЮЧЕНИЕ

Впервые получены данные по капиллярной постоянной растворов изобутан—гелий и *н*-бутан—гелий при 318 < T < 378 К и давлениях от давления насыщения растворителя до 4 МПа. Получены аппроксимационные уравнения для капиллярной постоянной и поверхностного натяжения. Погрешность аппроксимации не превышает неопределенность экспериментальных данных.

Растворимость гелия в жидких углеводородах очень мала, увеличение его содержания в растворе качественно по-разному влияет на капиллярную постоянную и поверхностное натяжение растворов при низких и высоких температурах. В зависимости от температуры и типа растворителя увеличение концентрации гелия в двухфазной системе может приводить как к уменьшению, так и к увеличению капиллярной постоянной и поверхностного натяжения.

СПИСОК ЛИТЕРАТУРЫ

- Байдаков В.Г. Межфазная граница простых классических и квантовых жидкостей. Екатеринбург: УИФ "Наука", 1994.
- 2. *Andbaeva V.N., Baidakov V.G.* // Fuel. 2021. V. 287. Art. No. 119546.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 86 № 2 2022

- Baidakov V.G., Khotienkova M.N. // Int. J. Refrig. 2019. V. 98. P. 261.
- Baidakov V.G., Kaverin A.M., Andbaeva V.N. et al. // J. Chem. Eng. Data. 2011. V. 56. P. 4123.
- Каверин А.М., Андбаева В.Н., Байдаков В.Г. // ЖФХ. 2006. Т. 80. № 3. С. 495; Kaverin А.М., Andbaeva V.N., Baidakov V.G. // Russ. J. Phys. Chem. 2006. V. 80. No. 3. P. 413.
- 6. Baidakov V.G. // Sov. Tech. Rev. B. 1994. V. 5. No. 4. P. 1.
- Bücker D., Wagner W. // J. Phys. Chem. Ref. Data. 2006. V. 35. No. 2. P. 929.
- Lemmon E.W., McLinden M.O., Wagner W. // J. Chem. Eng. Data. 2009. V. 54. P. 3141.
- 9. Streett W.B. // Trans. Faraday Soc. 1969. V. 65. P. 696.
- de Swaan Arons J., Diepen G.A. // J. Chem. Phys. 1966. V. 44. P. 2322.

Influence of small additives of helium on thermophysical properties of alkanes and inert gases

V. N. Andbaeva^{*a*, *}, M. N. Khotienkova^{*a*}

^a The Institute of Thermal Physics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 620016 Russia *e-mail: andbaeva@mail.ru

We investigated the influence of helium on the thermophysical properties of alkanes and inert gases. New data on the capillary constant of *n*-butane—helium and isobutane—helium solutions are presented. It has been shown that helium can act as a surface-active or inactive. Equations that describe the pressure and concentration dependences of the capillary constant and surface tension are proposed.