УЛК 539.173.84:621.039

ИСКАЖЕНИЯ РЕГИСТРАЦИИ НА ИМПУЛЬСНОМ ЛУЭ ЗАПАЗДЫВАЮЩИХ НЕЙТРОНОВ ОТ ²³⁸U-ФОТОДЕЛЕНИЯ СЦИНТИЛЛЯЦИОННЫМ СПЕКТРОМЕТРОМ В РЬ-ЗАЩИТЕ

© 2022 г. Л. З. Джилавян^{1, *}, А. М. Лапик¹, Л. Н. Латышева¹, В. Н. Пономарев¹, А. В. Русаков¹, Н. М. Соболевский¹

¹ Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук, Москва, Россия

*E-mail: dzhil@inr.ru

Поступила в редакцию 15.11.2021 г. После доработки 06.12.2021 г. Принята к публикации 22.12.2021 г.

Рассмотрены искажения потоков и энергетических спектров быстрых нейтронов при регистрации на импульсном ускорителе электронов для образуемых при 238 U-фотоделении запаздывающих нейтронов с помощью стильбенового сцинтилляционного спектрометра, размещенного в Pb-защите. Рассмотрены зависимости этих искажений от энергии нейтронов и толщины стенок Pb-защиты, выделены вклады процессов в стенах зала облучений.

DOI: 10.31857/S0367676522040093

ВВЕДЕНИЕ

Из ядер-осколков от деления ядер-актиноидов испускаются и "мгновенные" нейтроны (МН, при временах относительно акта деления $\lesssim 10^{-13}$ с, см., например, [1]), и запаздывающие нейтроны (3H, после β -распадов осколков с известными к настоящему времени периодами полураспада 0.2 с $\lesssim T_{1/2} \lesssim 56$ с, см., например, [2]). При этом число $3H \lesssim 10^{-2}$ от числа MH.

Кроме того, из ядер-осколков могут испускаться фотоны со сравнительно большими энергиями, проникающая способность которых, хотя и уступает характерной для быстрых нейтронов, но все же весьма значительна. В свою очередь среди таких фотонов из ядер-осколков можно аналогично выделить практически мгновенные фотоны и запаздывающие фотоны, составляющие часть фона фотонов при регистрации МН и ЗН соответственно. Могут образовываться и иные фоновые фотоны как от самих ядерных реакций под действием падающих частиц, но отличных от реакций деления, так и от распадов различных активированных ядер, образуемых в таких реакциях. Кроме того, свой вклад в фоновые фотоны могут вносить и ядерные реакции под действием вторичных частиц (прежде всего, вторичных нейтронов, вызывающих реакции их неупругого рассеяния и радиационных захватов).

В основном данные о ЗН получены из экспериментов под действием падающих нейтронов. Однако есть исследования ЗН и под действием падающих фотонов (см. наши работы [3-5], и соответствующие ссылки в них). Важные для работ [3-5] сечения реакции ²³⁸U-фотоделения при соответствующих энергиях падающих фотонов приведены, например, в [6]. Представляется, что эксперименты типа [3-5] перспективнее для преодоления методических ограничений снизу в интересуемых $T_{1/2}$ для 3H, несмотря на то что на импульсных ускорителях электронов во время импульса пучка весьма велик дополнительный фон практически мгновенных фотонов от торможения электронов (особенно с энергиями фотонов $E_{\nu} \sim 0.511 \text{ МэВ, и в рентгеновской области). С дру$ гой стороны, в [4, 5] показано, что фоном МН и фотонейтронов (от (γ, n) -реакций) при измерениях ЗН в [3–5] можно было пренебречь.

В [3-5] для регистрации ЗН использовался сцинтилляционный спектрометр быстрых нейтронов (ССБН) на основе монокристалла стильбена, располагаемый в практически закрытой со всех сторон Рb-защите с толщиной стенок t. Задача настоящей работы — рассмотреть для нейтронов различных начальных энергий при ряде значений t искажения в регистрируемых потоках и спектрах ЗН из-за взаимодействия ЗН с атомными ядрами в такой Pb-защите.

ОСОБЕННОСТИ ЭКСПЕРИМЕНТАЛЬНОГО ОБОРУДОВАНИЯ

Экспериментальные исследования ЗН в [3–5] проводились в ИЯИ РАН на импульсном линейном ускорителе электронов ЛУЭ-8-5 [7], расположенном вместе со своей системой транспортировки пучка электронов в закрытом зале, и были направлены на поиск короткоживущих компонент ЗН с малыми $T_{1/2}$ (вплоть до ~1 мс) при 238 U-фотоделении. Для [3–5] соответственно параметры пучка электронов в этих исследованиях: кинетическая энергия ускоренных электронов $E_e \cong 10$ МэВ; длительность импульсов пучка $\tau \approx 3$ мкс; частота повторений этих импульсов v = (50; 60; 300) с $^{-1}$; средний ток пучка $I_{\rm cp} \approx (0.06; 0.1; 0.016)$ мкА (при этом $\approx (7.5 \cdot 10^9; 10^{10}; 3.3 \cdot 10^8)$ электрон/импульс).

В [3-5] пучок электронов из ЛУЭ-8-5 проходил часть системы транспортировки пучка и выпускался из электронопровода через титановую фольгу толщиной 50 мкм на располагаемую на электрически изолированной подставке мишень из металлического урана, имеющую естественный изотопный состав и толщину 2.2 см (что составляет $\approx 6.9 X_0$, где $X_0 \approx 0.32$ см — радиационная длина металлического урана [8, 9]). При этом содержание ²³⁸U составляет ≅99.27% [10]. Пробег электронов с $E_e \cong 10 \text{ МэВ}$ в металлическом уране $pprox X_0$ для него [11]. В такой мишени образуются тормозные ү-кванты [9], которые в основном и вызывают акты деления 238U (согласно, например, [12] для указанных толщины мишени и энергии падающих на нее электронов можно пренебречь вкладом реакции электроядерного деления).

В [3–5] образующиеся при 238 U-фотоделении 3H регистрировались сцинтилляционным спектрометром быстрых нейтронов (ССБН) на основе монокристалла стильбена (толщина 50 мм, диаметр 50 мм), который "просматривается" фотоэлектронным умножителем (ФЭУ).

Большая загрузка ССБН во время импульса пучка может приводить к существенным искажениям регистрации искомых ЗН, включая даже "ослепление" ФЭУ спектрометра (когда усиление ФЭУ резко падает), появляющееся при пучке и продолжающееся некоторое время после него (см. об этом, например, в нашей работе [13]). Для ослабления влияния большой импульсной загрузки ССБН в [13] (а затем и в [5]) был использован управляемый делитель для питания ФЭУ.

Для подавления влияния относительно большого фотонного фона на регистрацию ЗН уже за пределами упомянутых в предыдущем абзаце временных интервалов и при пучке, и после него в работах [3—5] был использован метод дискриминации фотонов от быстрых нейтронов, основанный на различиях формы импульсов сцинтилля-

ции от них (см., в [3, 4] более подробно о применении этого метода нами).

Кроме того, в [3—5] для ослабления фотонного фона (особенно от рентгеновских фотонов) кристалл стильбена и ФЭУ размещались внутри практически закрытой со всех сторон свинцовой пассивной защиты с толщиной всех стен t. Выяснение роли такой защиты в возможных искажениях регистрации потоков и энергетических спектров быстрых нейтронов с различными кинетическими энергиями E_n при разных значениях толщины t и является, как уже было указано, задачей настоящей работы.

ОПИСАНИЕ ТРАНСПОРТА НЕЙТРОНОВ ПРИ РЕШЕНИИ ЗАЛАЧИ

Для нахождения искажений потоков и энергетических спектров быстрых нейтронов, образуемых при исследованиях 3H от фотоделения ²³⁸U [3-5] на ЛУЭ-8-5, при размещении стильбенового монокристалла и ФЭУ из состава нашего ССБН в зале ускорителя с применением свинцовой пассивной защиты в настоящей работе были проведены модельные расчеты по использующим метод статистических испытаний программам SHIELD и LOENT [14—16]. На сайте транспортной программы SHIELD [15] доступно краткое описание программы LOENT (подробное же описание этой программы см. в [16]). Программа LOENT может работать как самостоятельно, так и совместно с программой SHIELD [14, 15], с которой у них имеется общий геометрический модуль и ряд общих подпрограмм.

Поскольку цель моделирования — выявление существенных искажений потоков и энергетических спектров ЗН и получение указаний для оптимизации расположения оборудования, то в расчетах был выбран упрощенный вариант экспериментальной установки, отражающий все основные черты расположения детекторов в будущих измерениях. Такое упрощение позволяет легче варьировать геометрические размеры и физические характеристики материалов объектов. При проведении более точных, но в десятки раз более обширных расчетов предполагается использовать конфигурацию оборудования, аккуратнее отражающую реальность. Тем не менее, предполагается, что такой упрощенный учет состава и расположения оборудования пригоден для выявления существенных искажений в регистрации потоков и спектров 3Н.

Искомое рассмотрение проводится в расчетах для зала ускорителя, для которого предполагается, что его внутренняя часть заполнена воздушной смесью с полной плотностью $1.205 \cdot 10^{-3} \, \text{г} \cdot \text{см}^{-3}$ (используемый в проведенных расчетах элементный состав воздушной смеси см. в табл. 1, где для каждого элемента: Z и A — атомные номер и вес; ρ —

Таблица 1. Элементный состав использованной в расчетах воздушной смеси с полной плотностью $1.205 \cdot 10^{-3} \; \text{г} \cdot \text{см}^{-3}$

Элемент	Z	A	$\rho \cdot 10^3$, $\Gamma \cdot \text{cm}^{-3}$		
Азот	7	14.0067	0.879		
Кислород	8	15.9994	0.326		

Таблица 2. Элементный состав использованного в расчетах тяжелого бетона с полной плотностью $3.6 \, \text{г} \cdot \text{cm}^{-3}$

Элемент	Z	A	$\rho, \Gamma \cdot cm^{-3}$
Водород	7	14.0067	0.040917
Кислород	8	15.9994	0.76775
Магний	12	24.3120	0.0037361
Алюминий	13	26.9815	0.013101
Кремний	14	28.0880	0.31726
Кальций	20	40.0800	0.13926
Железо	26	55.8470	2.3180

парциальная плотность). Внутри этот зал представляет собой куб с размером ребра 10.8 м.

При описании геометрических условий, примененных в этом учете, используется прямоугольная система координат, в которой плоскость "xy" является горизонтальной и совпадает с плоскостью пола зала облучений. При этом центр этой системы координат совпадает с центром квадрата пола зала, оси "x" и "y" параллельны сторонам квадрата пола зала, а ось "z" — вертикаль.

Зал облучений окружен "глухим кожухом" из стен, пола и потолка (в основных расчетах с заполнением из тяжелого бетона, имеющего полную плотность $3.6 \, \text{г} \cdot \text{см}^{-3}$ и толщину $60 \, \text{см}$ по всем осям, см. использованный при проведенном рассмотрении элементный состав этого бетона в табл. $2 \, \text{с}$ характеристиками Z, A и ρ , аналогичными приведенным выше для табл. 1).

На оси "z" указанной системы координат находится центр вытянутого по координате "y" параллелепипеда полости, заполненный вышеуказанной воздушной смесью. У этого параллелепипеда плоскости граней, перпендикулярных осям "x", "y", "z" и попарно параллельны плоскостям "yz", "xz", "xy" соответственно. Этот параллелепипед имеет размеры: по оси "x" от -7.5 до +7.5 см; по оси "y" от -27.5 до +27.5 см; по оси "z" от +115 до +130 см. Такие размеры этой заполненной воздушной смесью полости заведомо достаточны для размещения в ней кристалла стильбена и Φ ЭУ.

Параллелепипед такой воздушной полости окружен практически закрытой со всех сторон защитой из свинца с плотностью $\rho = 11.34 \ r \cdot cm^{-3}$

и с толщиной стенок t по всем осям вышеуказанной прямоугольной системы координат. Величина t принимает различные значения t=(0;2;5;10;15) см. При этом умозрительно выделяется в этой воздушной полости цилиндр, у которого границы повторяют границы кристалла стильбена в ССБН (толщина 50 мм и диаметр 50 мм), ось вращения — параллельна оси "y", а координаты центра: $x_{\rm ц}=0$ см; $y_{\rm ц}=-22.5$ см, $z_{\rm ц}=+122.5$ см. Взаимодействия нейтронов в стильбене и функция отклика такого сцинтилляционного детектора могут быть рассчитаны с помощью специальных программ.

В проведенных расчетах используется изотропный точечный источник нейтронов, испускающий монохроматические нейтроны с разными начальными кинетическими энергиями $E_{n \text{ нач}}$. При этом для такого источника нейтронов выбраны следующие координаты: $x_{\rm u} = +5$ см; $y_{\rm u} = -27.5$ см, $z_{\rm u} = +150$ см.

В проведенных расчетах вычисляются потоки нейтронов, пересекающих границы рассматриваемых слоев (внутрь некоторого слоя или в противоположном направлении). В эти слои входят: 1внешний "кожух" зала облучений (стены, пол и потолок (все с толщиной 60 см)); 2 - зал облучений; 3 — Рb-защита; 4 — полость внутри Рb-защиты без входящей в нее полости под стильбен; 5 – полость под стильбен. Кроме того, вычисляется поток нейтронов, покидающих наружу область 1. В расчетах моделируется перенос первичных нейтронов из источника с различными начальными кинетическими энергиями. Для выяснения роли столкновений быстрых нейтронов с атомными ядрами веществ, заполняющих упомянутые выше слои проводились отдельные расчеты с измененными заполнениями этих слоев, а именно, использовались замены свинца и/или бетона на вышеуказанную воздушную смесь.

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ

В работе представлены результаты проведенных расчетов транспорта монохроматических нейтронов при 30 вариантах наборов параметров для:

- трех значений кинетических энергий нейтронов из источника $E_{n \text{ нач}} = (0.5; 1.0; 1.5) \text{ MэB}$, характерных для спектров ЗН (см., например, [3, 4]);
- пяти значений толщины t = (0; 2; 5; 10; 15) см стенок Pb-защиты вокруг полостей, заполненных вышеуказанной воздушной смесью с полной плотностью $1.205 \cdot 10^{-3} \, \text{г} \cdot \text{см}^{-3}$ (см. табл. 1) и предназначенных для монокристалла стильбена и ФЭУ.
- двух типов заполнения внешнего "кожуха" зала облучений: указанные воздушная смесь либо тяжелый бетон.

						77 TIC 1							
		$(\Delta N_n)_i$											
		Стены-бетон						Стены-воздух					
			P	' b		Воздух вместо Рb	вместо Рь				Воздух вместо Рb		
i	ΔE_n , МэВ	t = 2 cm	t = 5 cm	t = 10 cm	t = 15 cm	любая из этих <i>t</i>	t = 2 cm	t = 5 cm	t = 10 cm	t = 15 cm	любая из этих <i>t</i>		
1	0.0-0.1	255	459	1047	1805	180	70	308	959	1581	0		
2	0.1-0.2	89	94	142	236	89	9	37	108	273	0		
3	0.2-0.3	80	65	86	408	69	3	14	51	387	0		
4	0.3-0.4	210	220	674	3180	230	100	126	644	3187	83		
5	0.4-0.5	30129	34276	39291	42386	27984	29845	33821	39409	41 863	27882		
\sum_{i}	$\sum_{i} (\Delta N_n)_i$	30763	35114	41 240	48015	28552	30027	34306	41 171	47 291	27965		

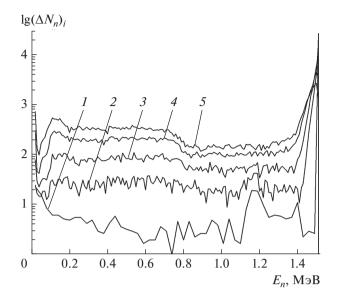
Таблица 3. Спектры нейтронов, попадающих в цилиндрическую полость для стильбена, при: $E_{n \text{ мин}} = 0.01 \text{ M} \Rightarrow \text{B}$; $\Delta E_n = 0.1 \text{ M} \Rightarrow \text{B}$; испускании из источника 10^7 нейтронов с $E_{n \text{ нач}} = 0.5 \text{ M} \Rightarrow \text{B}$

В расчетах каждый раз (из их полного числа 30) моделируется перенос $N_{nu}=10^7$ начальных (первичных) быстрых нейтронов из источника в следующих зонах (отсчитывая от периферии):

- Зона 1. Внешний "кожух" для куба зала облучений.
- Зона 2. Зал облучений (без зон 3–5), заполненный воздушной смесью.
 - Зона 3. Свинцовая пассивная защита.
- Зона 4. Заполненный указанной воздушной смесью параллелепипед полости для стильбенового детектора и ФЭУ, но без цилиндра зоны 5 для размещения стильбенового детектора.
- Зона 5. Цилиндр, заполненный указанной воздушной смесью, являющийся умозрительно выделенной частью зоны 4. Этот цилиндр соответствует месту для монокристалла стильбена. Потоки и энергетические спектры нейтронов, проходящих через него при различных условиях, основной результат данной работы.

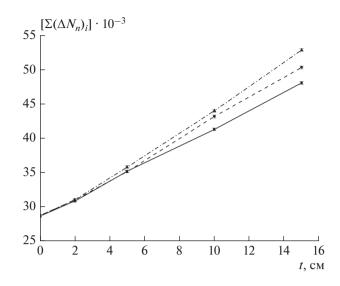
В проведенных расчетах с учетом выбранных типичных значений $E_{n \text{ нач}}$ разыгрываются ядерные реакции под действием нейтронов: упругого рассеяния; неупругого рассеяния; захвата нейтронов (когда в выходных каналах реакций нет нейтронов). При этом вычисляются изменения и направления движения нейтрона, и его кинетической энергии E_n .

В расчетах программа перестает "отслеживать" транспорт нейтрона, когда:


- нейтрон претерпевает реакцию захвата;
- $E_n \le E_{n \text{ MUH}} = 0.01 \text{ M} \ni \text{B};$

• нейтрон выходит из "кожуха" зала облучений (то есть из зоны 1) наружу.

В программе в каждом из указанных 30 вариантов рассчитываются и выводятся суммарные количества $(N_n)_{j\to k}$ для нейтронов, вышедших из зоны j в зону k (для зон, имеющих общую границу). Кроме того, рассчитываются и выводятся количества нейтронов N_n выходящих из внешнего "кожуха" зала облучений (то есть из зоны 1) наружу. При этом у найденных $(N_n)_{j\to k}$ и N_n выход ошибки — статистические.


Были рассчитаны гистограммы $(\Delta N_n)_i$ при $E_{n \text{ мин}} = 0.01 \text{ МэВ}$ для нейтронов, попадающих в зону 5 по их кинетической энергии E_n с шагом $\Delta E_n = 0.1 \text{ МэВ}$ (полученные со статистическими ошибками данные для таких гистограмм $(\Delta N_n)_i$ при $E_{n \text{ нач}} = (0.5; 1.0; 1.5) \text{ МэВ}$ приведены в табл. 3; 4; 5). Кроме того, аналогично были получены данные для такого типа гистограмм $(\Delta N_n)_i$ по E_n при $E_{n \text{ мин}} = 0.01 \text{ МэВ}$ и шаге $\Delta E_n = 0.01 \text{ МэВ}$. В качестве примера на рис. 1 приведены зависимости $(\Delta N_n)_i$ при $E_{n \text{ мин}} = 0.01 \text{ МэВ}$ для нейтронов, попадающих в зону 5, по их кинетической энергии E_n для $E_{n \text{ нач}} = 1.5 \text{ МэВ}$ и t = (0; 2; 5; 10; 15) см. На рис. 2 приведены зависимости $\sum_i (\Delta N_n)_i$ от t (при t = (0; 2; 5; 10; 15) см) для $E_{n \text{ нач}} = (0.5; 1.0; 1.5) \text{ МэВ}$.

Прежде чем переходить к анализу основных результатов, связанных с использованием свинцовой защиты, укажем некоторые полезные следствия наших расчетов, относящиеся к бетонным стенам, полу и потолку зала облучений (зона 1) и заполняющей этот зал воздушной смеси:

Рис. 1. Зависимости $(\Delta N_n)_i$ при $E_{n \text{ мин}} = 0.01$ МэВ и $E_{n \text{ нач}} = 1.5$ МэВ для нейтронов, попадающих в зону 5 (вместо стильбена), от их кинетической энергии E_n . I-t=0 см; 2-t=2 см; 3-t=5 см; 4-t=10 см; 5-t=15 см.

- Когда зона 1 заполнена вышеуказанным тяжелым бетоном, для выбранных значений начальных энергий нейтронов из источника $E_{n_{\rm Haq}}$ расчетные отношения ($N_{n_{\rm Bbxog}}/N_{n_{\rm Hag}}$) $\lesssim 10^{-5}$. То есть защита, обеспечиваемая таким внешним "кожухом" зала облучений весьма эффективна.
- С другой стороны, в проводимом здесь изучении, видимо, следует рассматривать в качестве базовых (идеализированных) случаи, когда зона 1 (при ее толщине 60 см) и зона 3 заполнены вышеуказанной воздушной смесью. Расчеты дают при этом числа $N_n \approx 27700$ для нейтронов с $E_n = E_{n \text{ нач}}$. В этих случаях, согласно используемой модели, нейтроны испытывают только относительно редкие столкновения с легкими ядрами азота или кислорода, сопровождающиеся, как уже указывалось, и изменениями направления движения нейтрона и уменьшением его кинетической энергии E_n . Поэтому с учетом того, что расстояние между источником нейтронов и центром цилиндрической полости, предназначенной для размещения стильбенового детектора (зона 5) составляет только ≅28.4 см, можно считать, что отношение числа нейтронов с $E_n = E_{n \text{ нач}}$ к числу нейтронов $N_{n \text{ и}}$, испущенных из источника, примерно равно телесному углу 0.28 · 10^{-2} , "стягиваемому" из точечного источника нейтронов зоной 5 и измеряемому в долях полного телесного угла 4π. При этом во всех случаях добавок в $\sum_{i} (\Delta N_n)_i$ от нейтронов всех энергий $E_n <$ $< E_{n \, \text{нач}}$ составляет только $\lesssim 0.8\%$. Отметим: в отличие от предыдущего пункта здесь $(N_{n_{\text{выхол}}}/N_{n_{\text{в}}}) \gtrsim$ $\geq 99.8\%$.

Рис. 2. Зависимости $\sum_i (\Delta N_n)_i$ от толщины свинца t для E_n _{нач} = (0.5; 1.0; 1.5) МэВ (квадраты, кружки и треугольники, соединяемые отрезками сплошных, штриховых и штрихпунктирных прямых линий соответственно).

- Для случаев, когда зона 1 заполнена вышеуказанным тяжелым бетоном, а зона 3 (при ее толщине 2 см) заполнена вышеуказанной воздушной смесью расчеты с точностью их ошибок дают числа нейтронов с $E_n = E_{n \text{ нач}}$, совпадающие с имеющимися в предыдущем пункте. Хотя здесь добавок в $\sum_i (\Delta N_n)_i$ от нейтронов всех энергий $E_n < E_{n \text{ нач}}$ больше, чем в предыдущем пункте, но он составляет $\lesssim 3\%$, т.е. тоже довольно мал.
- Для основных же случаев, когда зона 1 заполнена вышеуказанным тяжелым бетоном, а зона 3 (при ее толщине t = (2; 5; 10; 15) см) заполнена свинцом, расчеты дают числа нейтронов N_n с $E_n = E_{n \,\,{ ext{
 m Haq}}}$ и добавки к $\sum_i (\Delta N_n)_i$ от нейтронов с $E_n < E_{n + a y}$ (последние здесь существенно больше, чем во втором и третьем пунктах последнего списка). Так, для $E_{n \text{ нач}} = 1.00 \text{ МэВ эти две величины}$ попарно составляют (18744 и 12168); (10463 и 24589); (4024 и 39084); (1424 и 48859) для значений t=(2;5;10;15) см соответственно, тогда как пик около $E_{n \text{ макс}}=E_{n \text{ нач}}=1.00 \text{ МэВ немного}$ "съезжает" вниз и у него появляется заметная ширина. Из совокупности полученных результатов расчетов, приведенных в табл. 3; 4; 5, а также для t == (0; 2; 5; 10; 15) см на рис. 1 для $E_{n \text{ нач}}$ = 1.50 МэВ и рис. 2 для $\sum_i (\Delta N_n)_i$ и $E_{n \text{ нач}} = (0.50; 1.00; 1.50)$ МэВ следует, что введение свинцовой защиты для сцинтилляционного спектрометра быстрых нейтронов, используемого в наших исследованиях запаздывающих нейтронов от реакций фотоделения ядер-актиноидов, приводит к серьезным иска-

Таблица 4. Спектры нейтронов, попадающих в цилиндрическую полость для стильбена, при: $E_{n \text{ мин}} = 0.01 \text{ M} \Rightarrow \text{B}$; испускании из источника 10^7 нейтронов с $E_{n \text{ нач}} = 1 \text{ M} \Rightarrow \text{B}$

		$(\Delta N_n)_i$										
			C	гены-бет	ОН		Стены-воздух					
			F	P b		Воздух вместо Рb	Рь				Воздух вместо Рb	
i	ΔE_n , МэВ	t = 2 cM	t = 5 cM	t = 10 cm	t = 15 cm	любая из этих <i>t</i>	t = 2 cM	t = 5 cM	t = 10 cm	t = 15 cm	любая из этих <i>t</i>	
1	0.0-0.1	182	400	1140	2475	138	66	277	1140	2531	0	
2	0.1-0.2	299	866	2449	4251	81	224	845	2345	4283	0	
3	0.2-0.3	163	411	1133	2073	41	101	376	1055	2007	0	
4	0.3-0.4	149	357	1030	1848	48	75	356	995	1908	0	
5	0.4-0.5	155	399	1104	1911	52	123	351	1074	1936	0	
6	0.5-0.6	153	398	1042	2052	35	118	363	1062	1869	1	
7	0.6-0.7	148	428	1107	1930	62	100	392	1044	1928	1	
8	0.7-0.8	344	545	1046	1884	250	201	420	1001	1824	66	
9	0.8-0.9	186	463	1989	4571	134	136	408	1948	4500	65	
10	0.9-1.0	29 133	30785	31068	27 288	27773	29028	30893	30748	27 243	27773	
2	$\sum_{i} (\Delta N_n)_i$	30912					30172	34681	42412	50029	27906	

Таблица 5. Спектры нейтронов, попадающих в цилиндрическую полость для стильбена, при: $E_{n_{\text{мин}}} = 0.01 \text{ M} \Rightarrow \text{B}$; испускании из источника 10^7 нейтронов с $E_{n_{\text{Hav}}} = 1.5 \text{ M} \Rightarrow \text{B}$

		$(\Delta N_n)_i$										
			C	гены-бет	ОН		Стены-воздух					
			F	P b		Воздух вместо Рb	Pb				Воздух вместо Рb	
i	ΔE_n , МэВ	t = 2 cM	t = 5 cm	t = 10 cm	t = 15 cm	любая из этих <i>t</i>	t = 2 cM	t = 5 cM	t = 10 cm	t = 15 cm	любая из этих <i>t</i>	
1	0.0-0.1	167	363	1143	2721	131	57	285	1089	2590	0	
2	0.1 - 0.2	304	968	2598	4621	51	238	947	2553	4540	0	
3	0.2 - 0.3	243	774	2062	3474	54	228	803	2054	3560	0	
4	0.3 - 0.4	255	817	1939	3249	39	212	780	1995	3286	0	
5	0.4 - 0.5	311	912	2210	3549	41	242	828	2162	3554	0	
6	0.5-0.6	296	873	2164	3540	26	256	878	2132	3439	0	
7	0.6-0.7	332	942	2128	3255	26	272	845	2148	3345	0	
8	0.7-0.8	260	804	1751	2549	24	257	778	1707	2546	0	
9	0.8 - 0.9	225	540	1034	1450	34	192	496	1040	1485	0	
10	0.9-1.0	184	550	1061	1458	39	161	486	992	1433	0	
11	1.0-1.1	176	503	1003	1500	27	177	491	1030	1419	0	
12	1.1-1.2	326	561	1067	1500	143	213	615	1085	1494	54	
13	1.2-1.3	213	553	1102	1588	75	227	508	1067	1608	47	
14	1.3-1.4	211	567	1470	2305	68	192	572	1503	2320	20	
15	1.4-1.5	27432	25993	21 211	16065	27830	27 160	25592	21 022	16 147	27763	
2	$\sum_{i} (\Delta N_n)_i$	30935	35720	43943	52824	28608	30084	34904	43 579	52766	27884	

жениям в регистрируемых спектрах $(\Delta N_n)_i = f(E_n)_i$ и потоках $\sum_i (\Delta N_n)_i$ этих нейтронов. Уровни этих изменений таковы, что необходим их достаточно точный учет, например, путем введения соответствующей детализированной функции отклика стильбенового детектора быстрых нейтронов, находящегося в определенной свинцовой защите. Естественно предположить, что находить и использовать такие функции проще для меньших толщин Рb-защиты. Так что нужны дальнейшие расчетные и экспериментальные исследования по оптимизации толщины такой защиты.

ЗАКЛЮЧЕНИЕ

Модельным путем исследовано влияние "глухого" свинцового "кожуха" на корректность регистрации потоков и спектров быстрых запаздывающих нейтронов от фотоделения ядер-актиноидов на импульсном линейном ускорителе электронов. Показано, что искажения регистрируемых спектров и особенно потоков существенны, быстро растут с увеличением толщины свинцовой защиты и нуждаются в своей тщательной оптимизации между уменьшением фона и вносимыми искажениями. После оптимизации установки могут быть внесены поправки к функции отклика сцинтилляционного детектора. Дополнительная матрица энергия-амплитуда, может быть точно рассчитана таким путем и использована при получении потоков и энергетических распределений запаздывающих нейтронов.

Таким образом, полученные данные важны для оптимизации защиты детекторов и внесения коррекции в выходы нейтронов и энергетические распределения нейтронов, получаемых в ходе измерений.

СПИСОК ЛИТЕРАТУРЫ

1. *Мухин К.Н.* Экспериментальная ядерная физика. Книга 1. Физика атомного ядра. Ч. II. Ядерные взаимодействия. М.: Энергоатомиздат, 1993. 320 с.

- Пиксайкин В.М., Егоров А.С., Гремячкин Д.Е., Митрофанов К.В. // ВАНТ. Сер. Ядерн. конст. 2019. № 1. С. 184.
- 3. Джилавян Л.З., Лапик А.М., Недорезов В.Г. и др. // ЭЧАЯ. 2019. Т. 50. № 5. С. 745; Dzhilavyan L.Z., Lapik A.M., Nedorezov V.G. et al. // Phys. Part. Nucl. 2019. V. 50. No. 5. P. 626.
- 4. Джилавян Л.З., Лапик А.М., Недорезов В.Г. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. С. 468; Dzhilavyan L.Z., Lapik A.M., Nedorezov V.G. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 3. P. 356.
- 5. Dzhilavyan L.Z., Lapik A.M., Latysheva L.N. et al. // Phys. Atom. Nucl. 2021. V. 84. P. 1610.
- 6. Джилавян Л.З., Недорезов В.Г. // ЯФ. 2013. Т. 76. C. 1529; Dzhilavyan L.Z., Nedorezov V.G. // Phys. Atom. Nucl. 2013. V. 76. P. 1444.
- 7. *Недорезов В.Г., Пономарев В.Н., Солодухов Г.В. //* Изв. РАН. Сер. физ. 2019. Т. 83. № 9. С. 1275; *Nedorezov V.G., Ponomarev V.N., Solodukhov G.V. //* Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 9. P. 1158.
- 8. Rossi B., Greizen K. // Rev. Mod. Phys. 1941. V. 13. P. 240.
- Seltzer S.M., Berger M.J. // Nucl. Instrum. Meth. B. 1985. V. 12. P. 95.
- 10. http://nucleardata.nuclear.lu.se/toi.
- 11. Pages L., Bertel E., Joffre H., Sklavenitis L. Pertes d'energie, parcours et rendement de freinage pour les electrons de 10 keV à 100 MeV dans les elements simples et quelques composes chimiques. Rapport CEA-R-3942. Saclay: Centre d'Etudes Nucléaires de Saclay, 1970.
- 12. *Сорокин П.В.* // В кн.: Труды II сем. "Электромагнитные взаимодействия ядер при малых и средних энергиях". М.: Наука, 1973. С. 348.
- 13. Джилавян Л.З., Лапик А.М., Русаков А.В. // Изв. PAH. Сер. физ. 2019. Т. 83. С. 525; *Dzhilavyan L.Z., Lapik A.M., Rusakov A.V.* // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. P. 474.
- 14. *Dementyev A.V., Sobolevsky N.M.* // Radiat. Meas. 1999. V. 30. P. 533.
- 15. https://www.inr.ru/shield.
- 16. *Латышева Л.Н., Соболевский Н.М.* LOENT программа моделирования переноса нейтронов в сложных геометриях методом Монте-Карло. Препринт ИЯИ РАН № 1200/2008, 2008. 38 с.

Distortions in registration of delayed neutrons from ²³⁸U-photofission at pulsed electron linac by scintillation spectrometer in Pb-shield

L. Z. Dzhilavyan^{a, *}, A. M. Lapik^a, L. N. Latysheva^a, V. N. Ponomarev^a, A. V. Rusakov^a, N. M. Sobolevsky^a

^a Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, 117312 Russia *e-mail: dzhil@inr.ru

Distortions in registration of fluxes and energy spectra of delayed neutrons produced at a pulsed electron linear accelerator from ²³⁸U-photofission, in the case of using for registration a stilbene scintillation spectrometer located in a Pb-shield, are considered. The dependences of these distortions on the neutron energy and wall thickness of such a Pb-shield are found. The contributions of the processes in the walls of the irradiation hall are distinguished.