УДК 537.622.4+537.622.4

МЕХАНИЗМЫ ПОЛЯРИЗАЦИИ НОСИТЕЛЕЙ В ФЕРРОМАГНИТНЫХ ГЕТЕРОСТРУКТУРАХ InGaAs/GaAs/δ-Mn

© 2022 г. С. В. Зайцев*

Федеральное государственное бюджетное учреждение науки Институт физики твердого тела имени Ю.А. Осипьяна Российской академии наук, Черноголовка, Россия

> **E-mail: szaitsev@issp.ac.ru* Поступила в редакцию 15.11.2021 г. После доработки 06.12.2021 г. Принята к публикации 22.12.2021 г.

Установлено, что степень циркулярной поляризации фотолюминесценции квантовых ям In-GaAs/GaAs/ δ - \langle Mn \rangle с ферромагнитным δ -слоем Mn (спейсер GaAs толщиной $d_S = 2-10$ нм) существенно зависит от условий фотовозбуждения, и прежде всего от плотности мощности, что объясняется в рамках динамической модели спин-зависимого захвата электронов из квантовой ямы в δ - \langle Mn \rangle -слой и проявляется как нестационарная поляризация в импульсном режиме. В структурах с узким спейсером $d_S \leq 3$ нм важную роль играет также стационарный механизм поляризации носителей вследствие их обменной связи с δ - \langle Mn \rangle -слоем.

DOI: 10.31857/S0367676522040275

ВВЕДЕНИЕ

Проблема использования полупроводниковых ферромагнитных (ФМ) соединений и структур на их основе заключается в одновременном выполнении целого ряда требований к структуре. Прямое внедрение магнитных ионов Мп в квантовую яму (КЯ) – активную область большинства приборов на основе III-V соединений приводит к гашению фотолюминесценции (ФЛ) при концентрации Mn x_{Mn} > 0.05 ат. % [1], что связано с дефектами, возникающими при низкотемпературном росте легированных атомами Mn слоев (In,Ga)As [1]. Высокотемпературный же рост приводит к распаду твердого раствора и формированию ФМ кластеров MnAs с температурой Кюри ФМ перехода $T_{C} = 315$ К или Mn_xGa_{1 – x} [1], что не позволяет равновесно растить слои GaAs:Mn с $x_{Mn} > 0.1$ ат. %. В работе [2] была предложена гибридная структура ферромагнетик-полупроводник. В настоящее время имеется несколько удачных реализаций подобных ФМ наноструктур на основе GaAs, в которых КЯ отделена от ФМ слоя туннельнопрозрачным узким спейсером 2-10 нм [3-5]. Исследования показали, что степень циркулярной поляризации ФЛ P_C ~ 10-30% в таких ФМ структурах достигается ниже температуры Кюри T_C уже в слабом внешнем магнитном поле $B \sim 0.2$ Тл, а зависимость $P_{C}(B)$ повторяет поведение намагниченности магнитного слоя и показывает гистерезис поляризации [5, 6], тогда как в немагнитных структура $P_C < 1\%$. До настоящего времени общепринятой являлась модель обменного *p*-*d* взаимодействия дырок в КЯ со спинами магнитной примеси (Mn) в близком ФМ слое [1, 3, 4], что должно приводить к существованию стационарной, т.е. не зависящей от времени циркулярной поляризации ФЛ из КЯ. Наши исследования [5, 6] показали динамический характер возникновения поляризации излучения в ФМ структуpax InGaAs/GaAs/ δ -Mn, что указывает на иные механизмы спиновой поляризации носителей. Поэтому исследование механизмов и закономерностей спиновой поляризации и ее динамики в ФМ наноструктурах является важным направлением в современной спинтронике.

В данной работе при низких температурах исследована $P_C(B)$ и ее динамика $P_C(t)$ в квантовых ямах InGaAs/GaAs, отделенных узким спейсером GaAs толщиной $d_S = 2-10$ нм от ФМ дельта- \langle Mn \rangle слоя. Установлено, что в импульсном режиме $P_C(t)$ нестационарна, а в непрерывном режиме $P_C(B)$ существенно зависит от плотности мощности и энергии фотовозбуждения, что в совокупности объясняется спин-зависимым захватом электронов из КЯ на дефекты в δ - \langle Mn \rangle -слое. В структурах с узким спейсером $d_S \leq 3$ нм работает также стационарный механизм поляризации носителей вследствие их обменной связи с δ - \langle Mn \rangle -слоем.

Рис. 1. Спектры ФЛ для структур с КЯ $\ln_x \text{Ga}_{1-x}$ Аs (x = 0.1) и разной шириной спейсера d_S : #5168 ($d_S = 2$ нм), #5169 ($d_S = 5$ нм) и #5170 ($d_S = 10$ нм) (отмечено на рисунке) при фотовозбуждении пикосекундным лазером с $\lambda_L \sim 800$ нм. $P_{exc} = 4$ мВт и T = 5 К (a). Нормированные импульсы свечения линии КЯ для всех структур (δ).

ЭКСПЕРИМЕНТ

Исследованные светодиодные структуры (#5168-5172) с КЯ InGaAs/GaAs/δ-(Мn) были выращены комбинированным методом металлорганической гидридной эпитаксии (МОСГЭ) и лазерного распыления [5, 6]. Схема структуры показана на рис. 1. Буферный слой *n*-GaAs (500 нм) и нижний спейсерный слой i-GaAs (~3 нм), нелегированная квантовая яма $In_xGa_{1-x}As$ (x = 0.1) толщиной 10 нм и верхний спейсерный слой GaAs толщиной *d_S* = 2–10 нм растились эпитаксиально при температуре 550-600°С на ориентированных легированных подложках n-GaAs (001). Затем в том же реакторе при температуре 450°С наносились δ-слой Mn и покровный слой GaAs (40 нм) путем лазерного распыления металлического Мп и нелегированного GaAs, соответственно. Номинальная толщина Q_{Mn} δ-слоя Mn составляла

t, пс

 $Q_{\rm Mn} \sim 0.3$ монослоя (MC), что соответствует высокой поверхностной плотности N_{Mn} ионов Mn (в GaAs 1 MC = $6.3 \cdot 10^{14}$ см⁻² [1]). Ограничение $Q_{\rm Mn} < 1$ MC предотвращает выпадение ФМ кластеров MnAs ($T_C = 315$ K), что подтверждено прямыми измерения магнитного момента образцов [7]. Использование метода лазерного распыления позволяет понизить температуру нанесения марганца до 400°С и таким образом минимизировать диффузию Mn в KЯ. В силу δ-легирования (акцепторный слой δ-(Mn)) КЯ в такой структуре содержит двумерный дырочный газ с плотностью ~10¹¹-10¹² см⁻² [8]. Транспортные свойства таких структур с δ - $\langle Mn \rangle$ на изолирующих подложках *i*-GaAs подробно исследовались ранее [8], где были найдены холловская подвижность дырок µ = 180- $3200 \text{ см}^2/\text{B}$ (при *T* = 5 K) в зависимости от параметров структуры (d_{s} или содержания индия).

Измерения степени циркулярной поляризации $P_{C}(B)$ фотолюминесценции (ФЛ) проводились в магнитном поле B = 0-5 Тл в криостате со сверхпроводящим магнитом в жидком гелии ($T \sim 2$ K) или в проточном гелиевом криостате с регулируемой температурой (минимум $T \sim 5$ K), при этом образец крепился на холодном "пальце" в вакууме. Фотолюминесценция возбуждалась Не-Ne лазером (632.8 нм) и регистрировалась в геометрии Фарадея (магнитное поле направлено перпендикулярно к поверхности образцов) с помощью ССD-камеры на монохроматоре со спектральным разрешением лучше 0.05 мэВ. Циркулярно-поляризованная фотолюминесценция исследовалась стандартным образом с использованием линейного поляризатора и четвертьволновой пластинки. Степень циркулярной поляризации определялась параметром $P_C(B)$ где $I_+(I_-) = (I_+ - I_-)/(I_+ + I_-),$ интенсивности компонент с правой (левой) поляризацией, полученные путем интегрирования части спектра, соответствующей оптическому переходу в КЯ. Измерения ФЛ с разрешением по времени проводились в проточном криостате на установке, оборудованной Ті:Sa пикосекундным лазером с перестраиваемой длиной волны λ_{I} , монохроматором со спектральным разрешением лучше 1 мэВ и стрик-камерой с временным разрешением ~15 пс. Частота повторения лазерных импульсов 76 МГц. Сфокусированное на образце лазерное пятно имело диаметр ~100 мкм.

ЭКСПЕРИМЕНТ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рис. 1*а* показана низкоэнергетическая часть спектров $\Phi \Pi$ (ниже межзонных переходов в барьере GaAs) при низкой температуре T = 5 К для структур с разной шириной спейсера d_S . Спектры отвечают излучательной рекомбинации фотовозбужденных

электронов, релаксировавших в КЯ, и дырок, находящихся в КЯ в силу б-легирования. Полуширина линий ФЛ более 10 мэВ, что свидетельствует о высокой степени беспорядка в КЯ, присущей структурам с магнитными примесями. Нормированные кривые свечения линии КЯ для всех структур при малом уровне импульсного пикосекундного возбуждения $P_{exc} = 2$ мВт показаны на рис. 16. Видно, что в структуре с широким спейсером $d_{S} =$ = 10 нм кривая свечения практически моноэкспоненциальна, что сохраняется при всех P_{exc} , тогда как для структур с узким спейсером $d_S = 2$ и 5 нм импульс имеет быстрый начальный этап с временем τ_1 , монотонно уменьшающимся с уменьшением d_S, аналогично поведению интенсивности ФЛ. Этот факт также свидетельствует о сильной безызлучательной рекомбинации из-за туннельноблизкого δ-слоя Mn. Дальнейший, более медленный спад интенсивности на хвосте импульсов свечения $\Phi \Pi$ с временем τ_2 происходит, по-видимому, с участков КЯ с более высоким квантовым выходом. Естественно, связать такое поведение с неоднородностью центров безызлучательной рекомбинации в плоскости КЯ. Причиной возникновения беспорядка и сильной безызлучательной рекомбинации в изучаемых структурах является специфическая природа δ-слоя Мп. При обсуждении этого результата важно отметить, что детальные рентгеноструктурные исследования показали заметное размытие δ-слоев Mn, при этом размытие тем сильнее, чем больше номинальная толщина δ-слоя [8]. Именно вследствие сильной диффузии Mn в GaAs, выращиваемый δ - \langle Mn \rangle -слой фактически представляет собой ультратонкий слой (~2-3 нм) твердого раствора ФМ полупроводника Ga_{1-x}Mn_xAs с высокой концентрацией марганца x = 2-8 ат. % [8]. Структурные исследования подтвердили также отсутствие Mn в KЯ при ширине спейсера $d_{S} \ge 3$ нм, что подтверждается заметным квантовым выходом исследованных структур в отличие от КЯ с Мп, в которых излучательная рекомбинация полностью подавляется при x > 0.1% (см. обзор [1]). В матрице GaAs атомы Mn, находящиеся в узлах Ga (Mn_{Ga}), выступают не только как локальные магнитные моменты, но также и в качестве акцепторной примеси. Это приводит к появлению в структуре дырок, взаимодействие которых с электронами d-оболочки Mn и является физической причиной возникновения ферромагнетизма в твердом растворе GaMnAs [1]. Кроме того, атомы Мп в матрице GaAs могут занимать не только акцепторные позиции Mn_{Ga}, но также и дефектные, междоузельные позиции Мп₁, где они выступают в качестве глубоких двойных доноров [1]. Именно присутствие близкого к КЯ встроенного δ -слоя Mn с высокой плотностью ионов марганца $N_{\rm Mn} > 10^{14}$ см⁻², характеризующегося также высокой степенью самокомпенсации

Рис. 2. Зависимости $P_C(B)$ в геометрии Фарадея для оптического перехода КЯ в структурах #5168, #5169 и #5170 (x = 0.10) с шириной спейсера $d_S = 2.5$ и 10 нм, соответственно, и в структуре #5172 (x = 0.15) с $d_S =$ = 3 нм (отмечено на рисунке) при фотовозбуждении сw лазером $\lambda_L = 633$ нм (*a*). Для возбуждения ФЛ в структуре #5168 ($d_S = 2$ нм) использован импульсный лазер Nd-YAG с $\lambda_L = 532$ нм. T = 2 К. Зависимости $P_C(B = 0.3 \text{ Tл})$ от P_{exc} при T = 2 K (б).

~0.1-0.3, приводит к возникновению в плоскости КЯ как сильного флуктуирующего кулоновского потенциала для носителей, так и сильного канала их безызлучательной рекомбинации [8].

Магнитополевые зависимости степени циркулярной поляризации $P_C(B)$ оптического перехода в КЯ для всех структур в геометрии Фарадея (магнитное поле направлено по нормали к КЯ) представлены на рис. 2а. Для возбуждения всегда использовался линейно поляризованный лазер для исключения эффектов оптической ориентации. Зависимости Р_С(В) имеют два характерных для ФМ структур участка: участок быстрого роста в малых полях B = 0 - 0.2 Тл и участок значительно

Рис. 3. Динамика циркулярной поляризации $P_C(t)$ в импульсном режиме (*a*) и нормированные импульсы свечения линии КЯ (*б*) для структур #5169 с $d_S = 5$ нм, x = 0.10 ($\lambda_L \sim 819$ нм, B = 250 мТл, T = 6 К) и #5172 с $d_S = 3$ нм, x = 0.15 ($\lambda_L \sim 821$ нм, B = 250 мТл, T = 2 К).

более медленного изменения в высоких полях B >>0.3 Тл. Такая зависимость характерна для структур типа GaAs/δ-(Mn) с осью легкого намагничивания ΦМ δ-(Mn)-слоя в плоскости КЯ, а поле $B_0 \sim 0.3$ Тл соответствует полному выходу намагниченности из плоскости [1, 3-6]. Значение $P_C(B_O = 0.3 \text{ Tл}) \sim 0.05 - 0.2$ (рис. 2*a*) в структурах с δ-слоем Mn существенно выше, чем в контрольных немагнитных структурах ($P_C < 0.01$) [3, 4]. Как уже отмечалось во введении, на начальном этапе исследований считалось, что сильная циркулярная поляризация оптического перехода в структурах InGaAs/GaAs/δ-(Mn) обусловлена спиновой поляризацией дырок в КЯ, возникающей в результате их обменного p-d взаимодействия с ионами Mn в дельта-слое. Эффективность такого обменного взаимодействия определяется степенью перекрытия волновых функций, концентрацией дырок и атомов Mn в δ-слое [3–5]. Зависимость $P_C(B_O)$ от ширины спейсера d_S была также детально изучена и представлена в работе [9]. Как и следовало ожидать для туннельной связи дырок из КЯ с близким ΦМ δ-слоем Mn, увеличение d_S ведет к быстрому падению $P_C(B_0)$. С другой стороны, уменьшение спейсера до $d_S = 2$ нм приводит к существенному уменьшению интенсивности ФЛ из КЯ, что связано с проникновением атомов Мп в КЯ и сильным подавлением излучательной рекомбинации при $d_S < 3$ нм, поэтому в таких структурах для эффективного возбуждения ФЛ приходится использовать импульсные лазеры.

Также наблюдалась зависимость степени циркулярной поляризации $P_{C}(B_{O})$ от P_{exc} в условиях стационарного (сw) фотовозбуждения (рис. 26). Для понимания такого поведения важно отметить, что в экспериментах с импульсным возбуждением [5, 6] были получены данные, указывающие на альтернативный, динамический механизм поляризации, при этом $P_{C}(t)$ нарастает практически линейно со временем в течение импульса свечения КЯ, стартуя с $P_C(t=0) \approx 0$, как это показано для структуры #5169 с $d_S = 5$ нм в слабом поле B == 250 мTл (рис. 3a). Действительно, если спиновая поляризация резидентных дырок в КЯ с высокой плотностью ~10¹¹-10¹² см⁻² обусловлена лишь их статическим обменным взаимодействием с дельта-слоем, то при импульсном фотовозбуждении неполяризованных носителей, как электронов, так и дырок с низкой плотностью $< 10^{10}$ см⁻² (что всегда и реализуется в эксперименте) величина $P_{C}(t)$ не должна зависеть от времени, а равняться своему статичному значению $P_{C}(B)$ при сw фотовозбуждении. Наблюдение в эксперименте $P_C(t =$ $= 0) \approx 0$ в начальный момент после лазерного импульса свидетельствует о том, что резидентные дырки в КЯ в фоновом режиме деполяризованы, что противоречит стационарной модели спиновой поляризации носителей в КЯ посредством обменного взаимодействия с ионами Mn в дельтаслое. Таким образом, в структуре #5169 с $d_s = 5$ нм реализуется альтернативный, динамический механизм поляризации ФЛ, аналогично ранее подробно исследованной структуре #5170 с $d_s = 10$ нм [5, 6]. Теоретически динамический механизм спиновой поляризации носителей в КЯ как следствие спин-зависимого туннельного ухода и рекомбинации фотовозбужденных электронов из КЯ на поляризованных примесных донорных состояниях междоузельного Mn_I в $\Phi M \delta$ - $\langle Mn \rangle$ -слое был детально рассмотрен и обоснован в работе [10]. В то же время эксперимент показывает, что при определенном сочетании условий – наборе параметров структуры можно наблюдать проявление статичного механизма поляризации, как это реализуется в структуре #5172 с более глубокой КЯ (содержание индия x = 0.15) и узким спейсером $d_{S} = 3$ нм. В ней с экспериментальной точностью $P_{C}(t=0) \approx 0.05 \pm 0.01 > 0$ в поле B = 250 мТл и T == 2 K,а линейный рост $P_C(t)$ сменяется ее падением после прохождения максимума импульса $\Phi Л$ (рис. 3δ), т.е. в этой структуре одновременно реализуются оба режима поляризации носителей: статический p-d обмен и динамический спин-зависимый захват на дефекты в $\delta - \langle Mn \rangle$ -слое.

Монотонное уменьшение $P_C(B)$ с ростом P_{exc} (рис. 26) находит объяснение в рамках кинетической модели [6, 10]. Согласно простому феноменологическому варианту этой кинетической модели [6], выражение для поляризации оптического перехода в КЯ в стационарном (cw) случае неполяризованного фотовозбуждения имеет вид $P_{C}(B) = \Delta \gamma / 2(\gamma + 1/\tau + 1/\tau_{S}) - формула (3a) в рабо$ те [6]. Здесь т – время излучательной рекомбинации электронов (~1 нс в КЯ InGaAs/GaAs), τ_S – время спиновой релаксации электронов в КЯ, γ – вероятность их туннелирования из КЯ в δ-(Mn)-слой (темп или обратное время захвата на дефекты в δ -слое), а $\Delta \gamma(B) = \gamma^+ - \gamma^- - разница$ значений темпов захвата для электронов со спином вверх (γ^+) и спином вниз (γ^-). Многие из этих параметров, например $\Delta \gamma(B)$, также могут зависеть от магнитного поля в силу зависимости темпа захвата от спиновой поляризации такого дефекта, как междоузельный марганец Mn₁, который является глубоким двойным донором в δ-(Mn)-слое [10]. Применительно к изучаемым ФМ структурам, в которых с большим запасом выполняется неравенство $\tau \ll \tau_S$ [5, 6], выражение для $P_C(B)$ упрощается к виду:

$$P_C(B) \approx \Delta g/2(\gamma + 1/\tau) = \tau^* \Delta \gamma/2.$$
 (1)

Здесь введено $\tau^* = (\gamma + 1/\tau)^{-1} -$ общее время жизни электронов в КЯ в силу захвата на дефекты в δслое и/или излучательной и безызлучательной рекомбинации в КЯ. Именно это общее время измеряется в исследованиях свечения линии КЯ после импульсного пикосекундного возбуждения (рис. 4а). После подгонки импульсов свечения двухэкспоненциальной кривой с временами τ_1 и τ_2 зависимость "быстрого" времени τ_1 от уровня фотовозбуждения Pexc для начального этапа свечения КЯ приведена на рис. 46. Как осуждалось выше (см. рис. 1), медленный спад ФЛ на хвосте импульсов с временем τ_2 происходит, по-видимому, с участков КЯ с более высоким квантовым выходом, что связано с неоднородностью центров безызлучательной рекомбинации в плоскости КЯ и/или δ-(Mn)-слоя. Из рис. 4 видно, что начиная с $P_{exc} \sim 1$ мВт происходит сокращение времени τ_1 , что сильнее выражено в структуре с более широким спейсером. При максимальной $P_{exc} \sim 15 \text{ мBt в}$ структуре с $d_S = 10$ нм происходит замедление процесса сокращение τ_1 , а в структурах с более узким спейсером $d_S = 2$ и 5 нм даже наблюдается рост τ_1 , что уже связано с перегревом образца при мощном импульсном фотовозбуждения и под-

Рис. 4. Нормированные импульсы свечения КЯ в зависимости от уровня фотовозбуждения P_{exc} (отмечено на рисунке) для структуры #5169 ($d_S = 5$ нм, x = 0.10), $\lambda_L \sim 800$ нм (T = 6 К) (a). Зависимости "быстрого" времени свечения КЯ τ_1 от P_{exc} для структур #5168 ($d_S = 2$ нм), #5169 ($d_S = 5$ нм) и #5170 ($d_S = 10$ нм). $T \sim 2$ К (б).

тверждается также красным сдвигом линии КЯ (не показано). Сопоставляя "быстрое" время τ_1 со временем жизни электронов в KЯ τ^* , на основании упрощенной формулы (1) можно сделать вывод, что именно сокращение τ_1 с ростом P_{exc} и приводит к уменьшению $P_C(B)$, наблюдаемому в эксперименте (рис. 26). Другим вероятным фактором, приводящим к уменьшению $P_{C}(B)$, может быть ослабление спин-зависимого захвата электронов из КЯ в ФМ слой (т.е. уменьшение Ду с ростом P_{exc}) в связи с его насыщением, что требует отдельного исследования. Таким образом, наблюдаемое в эксперименте уменьшение $P_C(B)$ с ростом Pexc связывается в первую очередь с сокращением времени свечения τ (рис. 4б), что находит объяснение в рамках кинетической модели [5, 6, 10].

ЗАЙЦЕВ

ЗАКЛЮЧЕНИЕ

Детально исследована магнитополевая зависимость степени циркулярной поляризации $P_{C}(B)$ ФЛ в квантовых ямах InGaAs/GaAs/ δ - \langle Mn \rangle с ΦМ δ-слоем Mn, отделенным от КЯ спейсером GaAs толщиной $d_s = 2 - 10$ нм. Установлено, что величина $P_{C}(B)$ существенно зависит не только от толщины спейсера *d*_S или глубины КЯ (содержания индия), но и от плотности мощности возбуждения P_{exc} . Монотонное уменьшение $P_C(B)$ с ростом *P_{exc}* связывается с сокращением времени свечения оптического перехода в КЯ, что наблюлается в эксперименте и нахолит объяснение в рамках кинетической модели [5, 10]. Показано, что в структурах с узким спейсером $d_S \leq 3$ нм одновременно работают два режима поляризации носителей: динамический спин-зависимый туннельный захват на дефекты в соседнем δ-слое Мп [10] и статический p-d обмен дырок с этим же δ-(Мп)-слоем [3, 4]

Работа выполнена в рамках темы государственного задания ИФТТ РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Dietl T., Ohno H // Rev. Mod. Phys. 2014. V. 86. P. 187.
- Захарченя Б.П., Коренев В.Л. // УФН. 2005. Т. 175. С. 629; Zakharchenya B.P., Korenev V.L. // Phys. Usp. 2005. V. 48. P. 603.
- Myers R.C., Gossard A.C., Awschalom D.D. // Phys. Rev. B. 2004. V. 69. Art. No. 161305(R).
- 4. Зайцев С.В., Дорохин М.В., Бричкин А.С. и др. // Письма в ЖЭТФ. 2009. Т. 90. С. 730; Zaitsev S.V., Dorokhin M.V., Brichkin A.S. et al. // JETP Lett. 2010. V. 90. P. 658.
- 5. Korenev V.L., Akimov I.A., Zaitsev S.V. et al. // Nature Commun. 2012. V. 3. P. 959.
- Akimov I.A., Korenev V.L., Sapega V.F. et al. // Phys. Stat. Sol. B. 2014. V. 251. P. 1663.
- Dmitriev A.I., Talantsev A.D., Zaitsev S.V. et al. // J. Phys. Conf. Ser. 2012. V. 345. No. 1. Art. No. 012014.
- Панков М.А., Аронзон Б.А., Рыльков В.В. и др. // ЖЭТФ. 2009. Т. 136. № 2. С. 346; Pankov М.А., Aronzon B.A., Rylkov V.V. et al. // JETP. 2009. V. 109. No. 2. P. 293.
- 9. Zaitsev S.V., Kulakovskii V.D., Dorokhin M.V. et al. // Physica E. 2009. V. 41. P. 652.
- 10. Rozhansky I.V., Denisov K.S., Averkiev N.S. et al. // Phys. Rev. B. 2015. V. 92. Art. No. 125428.

The mechanisms of carrier polarization in ferromagnetic InGaAs/GaAs/δ-(Mn) heterostructures

S. V. Zaitsev*

Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, 142432 Russia *e-mail: szaitsev@issp.ac.ru

It was found out that the degree of the circular polarization of photoluminescence of InGaAs/GaAs/ δ - \langle Mn \rangle quantum wells with a ferromagnetic Mn δ -layer (GaAs spacer with the thickness $d_S = 2-10$ nm) depends significantly on photoexcitation conditions and, above all, on power density. This is explained within the dynamic model of spin-dependent electron capture from a quantum well to a δ - \langle Mn \rangle layer and manifests itself as transient polarization in a pulsed mode. In structures with a narrow spacer, $d_S \leq 3$ nm, the stationary mechanism of the polarization of carriers also plays a key role due to their exchange coupling with a δ - \langle Mn \rangle -layer.