УДК 535.3

ОПТИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ ЩЕЛОЧНОЗЕМЕЛЬНЫХ ФТОРИДОВ И CdF₂, АКТИВИРОВАННЫХ ИОНАМИ ХРОМА

© 2022 г. А. В. Егранов^{1, *}, Е. А. Раджабов¹, В. А. Козловский¹

 $^{1}\Phi$ едеральное государственное бюджетное учреждение науки

"Институт геохимии имени А.П. Виноградова" Сибирского отделения Российской академии наук, Иркутск, Россия

**E-mail: alegra@igc.irk.ru* Поступила в редакцию 14.02.2022 г. После доработки 28.02.2022 г. Принята к публикации 23.03.2022 г.

Исследованы оптические спектры кристаллов щелочноземельных фторидов и CdF_2 , активированных ионами хрома, в трехвалентном состоянии. Получены спектры поглощения ионов хрома в двухвалентном состоянии, а также спектры поглощения и свечения связанной $Cr^{2+}-Cr^{3+}$ пары в кристаллах CaF_2 .

DOI: 10.31857/S0367676522070134

введение

Примесь хрома Cr³⁺, вероятно, продолжит играть важную роль в разработке новых материалов для твердотельных лазеров из-за ее благоприятных свойств поглощения и излучения при включении в октраэдрические узлы основного материала. В то же время двухвалентные ионы хрома в тетраэдрическом окружении играют важную роль при создании лазерных сред [1]. Обычно исследования люминесценции этих ионов ограничиваются инфракрасной областью спектра. Эта область используется для получения лазерного излучения [1]. Оптические исследования различных валентных состояний примеси хрома в широкозонных материалах дадут дополнительную информацию по оптическим свойствам этих ионов.

Для связанных обменным взаимодействием пар ионов переходных металлов в кристаллах перовскитов получен ряд замечательных эффектов переход металл—диэлектрик, колоссальное магнитосопротивление и т.д. (например: [2]). Однако спектроскопические исследования в этих кристаллах затруднены. В широкозонных материалах, в частности в кристаллах типа флюорита, с малой концентрацией пар ионов переходных металлов, связанных обменным взаимодействием, оптические исследования могут дать дополнительную информацию о взаимодействии таких пар.

В работе исследовались оптические свойства кристаллов CaF_2 , SrF_2 , BaF_2 и CdF_2 , активированные ионами хрома. Примесь хрома в эти кристаллы входит как в трехвалентном состоянии, так и в двухвалентном. Выращенные кристаллы как пра-

вило имеют зеленную окраску, но иногда кристаллы бесцветны или имеют синий цвет.

ТЕХНИКА ЭКСПЕРИМЕНТА

Кристаллы шелочноземельных фторидов CaF_2 , SrF_2 , BaF_2 и CdF_2 , легированные хромом были выращены методом Бриджмена—Стокбаргера в графитовом тигле из расплава в инертной атмосфере с концентрациями хрома в расплаве от 0.05 до 2 мол. %. В качестве активатора использовался CrF_3 , который предварительно проходил вакуумную сушку. Для предотвращения образования кислородных примесей в шихту добавлялся фтористый кадмий.

Спектры поглощения были получены с использованием спектрофотометра Perkin Elmer Lambda 950 UV-VIS-NIR. Для измерения при низких температурах (6–330 K) использовался криостат Janis Research (CCS-100/204).

Спектры свечения в инфракрасной области спектра регистрировались на спектрометре с монохроматором МДР2 с охлаждаемым фотодиодом INGAAS IG17X3000T9 (Laser Components) (область 800–1700 нм). Сигнал фотодиода на нагрузке 10 Гом регистрировался с использованием пикоамперметра А2-4 (МНИИПИ). Свечение возбуждалось излучением полупроводникового лазера 405 нм.

Спектры свечения и возбуждения в спектральном диапазоне 200–900 нм измерялись на люминесцентном спектрометре LS-55 производства компании Perkin Elmer с ФЭУ R928.

Рис. 1. Спектры поглощения (*1*) при 300 К, возбуждения (*2*) при 300 К, свечения при 80 (*3*) и при 300 К (*4*) кристаллов CdF₂-Cr.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Сr³⁺ ионы

Спектры поглощения кристаллов со структурой флюорита CaF₂, SrF₂, BaF₂ и CdF₂, активированные ионами хрома и имеющие зеленную окраску во многом похожи на изученные ранее оптические спектры Cr³⁺ ионов в этих кристаллах в работах [3, 4]. Следовательно, зеленая окраска однозначно связана с трехвалентным состоянием хрома в этих кристаллах. Положение полос поглощения слабо меняется в исследуемых фторидах. Кристаллы со структурой флюорита CaF₂, SrF_2 , BaF_2 и CdF₂, активированные ионами хрома, по-видимому, показывают спектры поглощения, аналогичные спектрам поглощения большинства кристаллов, характеризующихся слабыми кристаллическими полями, в которых ионы Cr³⁺ расположены в октаэдрическом окружении [3, 4].

Тетраэдрическая координация очень необычна для ионов Cr^{3+} , она никогда не встречается в неорганических соединениях и может образовываться только в молекулярных комплексах, где ионы Cr^{3+} могут находиться в искаженной тетраэдрической координации [5].

Несмотря на то, что свечение Cr^{3+} ионов в этих матрицах неэффективно по сравнению со многими матрицами имеющие естественное октаэдрическое окружение, тем не менее, удалось снять спектры возбуждения для Cr^{3+} ионов в BaF_2 и CdF_2 кристаллах.

Рис. 2. Спектры поглощения кристаллов при 300 К при содержании хрома в расплаве 2 (*I*), 1 (*2*), 0.5 (*3*), 0.3 мол. % (*4*) (*a*); линейная зависимость между полосами поглощения в ИК и УФ областях спектра при разной концентрации хрома в расплаве (концентрация указана цифрами около точек на кривой) (*б*).

В спектрах возбуждения в кристаллах CdF_2 наблюдаются некоторые особенности, не проявляющиеся в спектрах поглощения. В спектрах возбуждения в диапазоне 400–500 нм в кристаллах CdF_2 наблюдаются две полосы возбуждения, тогда как в спектрах поглощения только одна. Причина этого пока не ясна. Спектры поглощения и возбуждения для кристаллов BaF_2 совпадают. Спектры свечения Cr^{3+} ионов в кристаллах BaF_2 и CdF_2 во многом похожи на изученные ранее [3, 4].

Сг²⁺ ионы

В некоторых случаях удается получить кристаллы CaF₂, активированные примесью хрома, в которых наблюдается только две основные полосы поглощения, расположенные в инфракрасной (около 1 эВ) и ультрафиолетовой (около 6.2 эВ) областях спектра (рис. 2). В инфракрасной области наблюдается полоса поглощения с плохо разрешенной структурой с максимумом 1.09 эВ, в ультрафиолетовой области спектра наблюдаются две частично разрешенных полосы поглощения с максимумами около 6.2 и 6.45 эВ. Линейная зависимость между ИК и УФ полосами поглощения при увеличении концентрации хрома указывает на принадлежность этих полос одному примесному центру (рис. 2в). Предварительно можно говорить о двухвалентном состоянии хрома.

Оптические свойства ионов хрома в двухвалентном состоянии в этих кристаллах практически не исследовались, хотя и имеются многочис-

Рис. 3. Спектры поглощения кристаллов CaF₂–Cr 2% при 6.7 К, содержащих одновременно ионы хрома в разных валентностях.

ленные данные электронного парамагнитного резонанса (например, [6]). Единственные опубликованные данные по этому вопросу — это ис-следование поглощения Cr^{2+} в CdF_2 [7, 8]. В этой работе Cr²⁺ ионы были получены при аддитивном окрашивании кристаллов, содержащих трехвалентные ионы. Наблюдалась полоса поглошения в инфракрасной области спектра (около 1.15 эВ), близкая по положению и форме той, что наблюдается в наших кристаллах CaF₂. Принадлежность инфракрасной полосы поглощения в CdF₂ лвухвалентным ионам хрома была полтверждена результатами ЭПР исследований [9]. Двухвалентные ионы хрома в этой работе [9] также получены при аддитивном окрашивании. Следовательно, можно полагать, что наблюдаемые спектры поглощения в кристаллах CaF₂ связаны с поглощением Cr^{2+} ионов.

По-видимому, одиночные ионы двухвалентных ионов хрома имеют только две основные полосы поглощения – одна находится в ИК-области спектра (около 1 эВ), а вторая в УФ области спектра (около 6.2 эВ). Обе полосы поглощения не элементарны и имеют структуру. Такое поглощение приводит к тому, что кристалл прозрачен в видимой области спектра и не имеет окраску. Первая полоса поглощения связана с переходами внутри 5D состояния расщепленного за счет кристаллического поля ${}^{5}T_{2g}(5D) \rightarrow {}^{5}E_{g}(5D)$. В дипольном приближении переходы запрещены, и частично разрешаются для одинаковой мультиплетности (т.е. без переворота спина). Ближайшим таким переходом является переход с 3d4(5D) состояния на 3d3(4F)4s(5F) состояние имеющие такую же мультиплетность. Этот переход связан со второй полосой поглощения около 6.2 эВ и по энергии он

близок к подобному переходу в свободном ионе двухвалентного хрома. Следовательно, для двухвалентных ионов хрома следует ожидать только двух полос поглощения, связанных с приведенными переходами и в других кристаллах.

В тоже время ожидать поглощения около 200 нм от трехвалентных ионов хрома не приходится. Переход на 4*s* уровень, имеющий такую же мультиплетность, что и основной в свободном ионе имеет значительную энергию (около 12 эВ).

*Cr*²⁺*—Cr*³⁺ пары ионов

Совсем иная картина наблюдается, когда в кристалле присутствуют одновременно ионы хрома в разных валентных состояниях (в двухвалентном и трехвалентном состояниях). О том, что ионы хрома одновременно присутствуют в разных валентностях, можно судить по поглощению в видимой области, приводящей к зеленой окраске кристалла, что соответствует Cr³⁺ ионам, а также по поглощению в районе 200 нм, что соответствует, как было сказано раннее ионам в двухвалентном состоянии. В спектрах поглощения в этом случае наблюдается ряд узких линий (рис. 3), что указывает на тот факт, что переходы запрещенные раннее по мультиплетности становятся разрешенными. Наблюдаемые переходы, сравнивая их с переходами в свободном ионе, обусловлены, по-видимому, ионами хрома в двухвалентном состоянии. Трехвалентные ионы только стимулируют переходы двухвалентных ионов, и поглощение этих ионов практически не меняется. Во многих случаях появление таких узких линий поглощения связано с обменным взаимодействием между ближайшими примесными ионами, имеющими разную или одинаковую валентность. В случае ионов разной валентности обычно реализуется косвенный обмен электронами между ионами через ближайшие ионы фторов (в данном случае между Cr²⁺-Cr³⁺ парой ионов через ближайшие ионы фтора), и происходит ферромагнитное выстраивание этих ионов [2]. Механизм такого обмена был предложен Зенером [10], и он же определил его как двойной обмен. При двойном обмене происходит реальный обмен электронами. Однако нельзя и исключить реализацию в данном случае механизма суперобмена с ферромагнитным выстраиванием спинов ионов хрома и виртуальным обменом электронами. Суперобмен может реализовываться вследствие того, что искажение решетки в ближайшем окружении сильно различаются для ионов хрома в разных валентностях, а двойной обмен легче реализуется для ионов в одинаковом окружении [11]. Так для трехвалентных ионов хрома реализуется октаэдрическая симметрия [3, 4], вместо кубической, характерной для кристалла, а для ионов в двухвалентном состоянии имеет место

Рис. 4. Спектры свечения (2) и возбуждения (1) кристаллов CaF_2 —Сг при комнатной температуре. (1) Возбуждение свечения 560 нм, (2) свечение при возбуждении 370 нм.

искажение вследствие эффекта Янна—Теллера. Однако, какой бы из механизмов не был реализован, он будет приводить к разрешению ранее запрещенных переходов.

Двойной обмен между этой парой ионов ранее наблюдался в кристаллах $KZnF_3$ [12]. В этой работе наблюдали ряд узких линий, связанный с $Cr^{2+}-Cr^{3+}$ парой. Обычно взаимодействие ограничивается разрешением переходов только низколежащих возбужденных состояний. В нашем случае разрешенными по мультиплетности становятся, по-видимому, все переходы внутри d4 оболочки для Cr^{2+} ионов (теоретически это не запрещено).

Возбуждение в эти узкие полосы приводит к свечению в зеленой области (рис. 4). Наблюдается интенсивная двойная полоса свечения с максимумами при 544 и 553 нм при 300 К и ряд более слабых линий свечения. Основная полоса возбуждения имеет максимум при 377 нм. Эта же полоса наиболее интенсивна и в спектрах поглощения. Полосы возбуждения совпадают со спектрами узких линий в спектрах поглощения на рис. 3. Раннее зеленое свечение в кристаллах CaF₂-Cr было обнаружено в работе [13]. В этой же работе наблюдали желтое свечение в кристаллах CdF₂-Cr. Однако в наших кристаллах мы не смогли обнаружить подобное свечение, возможно из-за того, что ионы хрома присутствуют или только в трехвалентном состоянии или не создаются связанные Cr²⁺-Cr³⁺ пары.

Ближайшими низкоэнергетическими возбужденными состояниями Cr^{2+} иона в связанной $Cr^{2+}-Cr^{3+}$ паре являются ${}^{3}P_{2}$ и ${}^{3}H$ состояния с проекциями общего спина 5/2, 3/2 и 1/2, переход с которых на основное состояния разрешен по мультиплетности и переходы с этих состояний, по-видимому, ответственны за зеленое свечение.

Связанная $Cr^{2+}-Cr^{3+}$ пара ионов является изоэлектронной паре $Mn^{3+}-Mn^{4+}$ дефектов, для которой в перовскитах обнаружен ряд замечательных эффектов (см., например [14]). В связи с этим интересно и полезно более тщательно исследовать и проанализировать оптические характеристики кристаллов щелочноземельных фторидов, имеющие в составе связанные $Cr^{2+}-Cr^{3+}$ пары, тем более что для перовскитов такие оптические исследования затруднены, так как ионы марганца составляют основу состава перовскита $La_{1-x}Ca_xMnO_4$.

ЗАКЛЮЧЕНИЕ

Исследован ряд кристаллов со структурой флюорита, активированных ионами хрома, находящимися в двухвалентном и трехвалентном состоянии. Для Cr³⁺ ионов получены спектры возбуждения и свечения в кристаллах BaF₂ и CdF₂. В кристаллах CaF₂-Cr получены спектры поглощения ионов хрома в двухвалентном состоянии. В спектрах, как и ожидалось для ионов в кубическом окружении, наблюдается две основные полосы поглощения в инфракрасной и ультрафиолетовой областях спектра. В кристаллах CaF_2-Cr , в которых одновременно содержатся двухвалентные и трехвалентные ионы хрома исследованы оптические характеристики Cr²⁺-Cr³⁺ пар, для которых становятся разрешенными ранее запрещенные переходы.

Работа выполнена за счет проекта № 0284-2021-0004 "Материалы и технологии для разработки радиационных детекторов, люминофоров и оптических стекол" с использованием научного оборудования ЦКП "Изотопно-геохимических исследований" ИГХ СО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Boulon G. // Opt. Mater. 2012. V. 34. No. 3. P. 499.
- Goodenough J.B. // Aust. J. Phys. 1999. V. 52. No. 2. P. 155.
- Payne S.A., Chase L.L., Krupke W.F. // J. Chem. Phys. 1987. V. 86. No. 6. P. 3455.
- Payne S.A., Chase L.L., Krupke W.F. // J. Lumin. 1988. V. 40. P. 305.
- Beale A.M., Grandjean D., Kornatowski J. et al. // J. Phys. Chem. B. 2006. V. 110. No. 2. P. 716.
- Oliete P.B., Bates C.A., Dunn J.L. // J. Phys. Cond. Matter. 1999. V. 11. No. 12. P. 2579.

- Hauschild B., Höhne M., Ulrici W. // Phys. Stat. Sol. B. 1973. V. 58. No. 1. P. 201.
- Ulrici W. // Phys. Stat. Sol. B. 1977. V. 84. No. 2. Art. No. K155.
- Jabłonski R., Domańska M., Krukowska-Fulde B., Niemyski T. // Mater. Res. Bull. 1973. V. 8. No. 6. P. 749.
- 10. Zener C. // Phys. Rev. 1951. V. 82. No. 3. P. 403.
- Еремин М.В., Никитин С.И., Силкин Н.И. и др. // ЖЭТФ. 1998. Т. 114. № 4(10). С. 1421; Eremin M.V., Nikitin S.I., Silkin N.I. et al. // JETP. 1998. V. 87. No. 4. P. 771.
- Еремин М.В., Никитин С.И., Силкин Н.И. и др. // Письма в ЖЭТФ. 1995. Т. 61. № 7. С. 599; Eremin M.V., Nikitin S.I., Silkin N.I. et al. // JETP Lett. 1995. V. 61. No. 7. P. 612.
- 13. *Prater R.L.* Studies of vibronic effects on the electron paramagnetic resonance of orbital triplets: transition metal ions in alkaline earth halides. Master's thesis. Houston, Texas: Rice University, 1977. 295 p.
- 14. Jin S., Tiefel T.H., McCormack M. et al. // Science. 1994. V. 264. No. 5157. P. 413.

Optical properties of alkaline earth fluoride and CdF₂ crystals activated with chromium ions

A. V. Egranov^{a, *}, E. A. Radzhabov^a, V. A. Kozlovsky^a

^a Vinogradov Institute of Geochemistry of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, 664033 Russia *e-mail: alegra@igc.irk.ru

We investigated the optical spectra of crystals of alkaline earth fluorides and CdF_2 doped with chromium ions in the trivalent state. The absorption spectra of chromium ions in the divalent state, as well as the absorption and emission spectra of the $Cr^{2+}-Cr^{3+}$ pair in CaF_2 crystals, were also obtained.