УДК 539.144.3

СПЕКТРЫ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ НЕЙТРОН-ИЗБЫТОЧНЫХ ИЗОТОПОВ НИКЕЛЯ

© 2022 г. С. В. Сидоров^{1, 2, 3}, Д. С. Жуляева¹, Т. Ю. Третьякова^{1, 2, 3, *}

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова", Москва, Россия

 $^2\Phi$ едеральное государственное бюджетное образовательное учреждение высшего образования

"Московский государственный университет имени М.В. Ломоносова",

Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына, Москва, Россия

³Международная межправительственная организация

"Объединенный институт ядерных исследований", Дубна, Россия

**E-mail: tretyakova@sinp.msu.ru*

Поступила в редакцию 14.03.2022 г. После доработки 08.04.2022 г. Принята к публикации 22.04.2022 г.

Рассмотрены спектры нейтроноизбыточных изотопов ^{70–76}Ni, в которых основная конфигурация определяется заполнением подоболочки $1g_{9/2}$. Проведен анализ зависимости порядка уровней мультиплета основного состояния (GSM) и расщепления мультиплета с сеньорити v = 4 от положения состояния $J = 2^+(v = 2)$. В ряде исследуемых изотопов особенно низкое положение этого состояния приводит к инверсии уровней с одинаковым J^{π} и различным значением сеньорити v.

DOI: 10.31857/S036767652208018X

введение

Изотопы никеля, в первую очередь изотопы с нейтронным избытком, традиционно привлекают к себе особое внимание как с точки зрения теоретической, так и экспериментальной ядерной физики [1]. Изотопы в области ⁶⁸Ni имеют особенности оболочечной структуры и являются примером так называемого острова инверсии, подобно более изученному острову инверсии в области N = 20.

Исследование свойств ядер вблизи дважды магического ⁷⁸Ni имеет важнейшее значение не только с точки зрения изменений оболочечной структуры, но и с точки зрения ядерной астрофизики, поскольку эта область ядер является стартовой площадкой для г-процесса, ответственного за синтез ядер Z > 26. Вероятность синтеза ядер вдоль той или иной цепочки нейтрон-избыточных изотопов напрямую зависит от оболочечных структуры ядер вдали от линии стабильности.

Изучение ⁷⁸Ni, а также детальная спектроскопия окружающих его изотопов входит в программу всех основных экспериментов нового поколения на радиоактивных пучках, таких как RIBF в Японии, FRIB в США, FAIR в Германии. Существенный прогресс за два последних десятилетия достигнут в экспериментальном изучении цепочки нейтрон-избыточных изотопов никеля ^{70–76}Ni [2–10].

Мы рассматриваем спектры возбужденных состояний в нейтрон-избыточных изотопах никеля ^{70–76}Ni в простом феноменологическом подходе. Лля описания части спектра с сеньорити v = 2 используется приближение δ-сил, при этом в качестве оценки расшепления мультиплета основного состояния (ground state multiplet, GSM) использована оценка энергии спаривания, основанная на массах соседних ядер [11]. Состояния с более высоким числом сеньорити рассчитываются с использованием генеалогических коэффициентов. Преимуществом данного подхода является прозрачность и отсутствие подгоночных параметров. Ранее в работах [12, 13] данная методика была использована нами для расчета спектров GSM i = 9/2 в цепочке изотонов N = 50 и для ядер в области ²⁰⁸ Pb, при этом было получено удовлетворительное описание состояний с высокими значениями J в мультиплетах с v = 3 и v = 4.

ν	Полный момент Ј
0	0
1	9/2
2	2, 4, 6, 8
3	$3_2', 5_2', 7_2', 9_2', 11_2', 13_2', 15_2', 17_2', 21_2'$
4	0, 2, 3, 4 ² , 5, 6 ² , 7, 8, 9, 10, 12
5	$1_2', 5_2', 7_2', 9_2', 11_2', 13_2', 15_2', 17_2', 19_2', 25_2'$

Таблица 1. Сложение угловых моментов для j = 9/2

МУЛЬТИПЛЕТ ОСНОВНОГО СОСТОЯНИЯ И МОДЕЛЬ СЕНЬОРИТИ

Как известно, в спектрах возбужденных состояний ряда четно-четных ядер наблюдаются характерные наборы энергетических уровней. обусловленных парным взаимодействием нуклонов на нижайшей подоболочке – мультиплет основного состояния. Для пары тождественных нуклонов в состоянии *j* уровни мультиплета с числом неспаренных нуклонов (или сеньорити v), равным 2, имеют четные значения $J \leq 2j - 1$, характеризуются изоспином пары нуклонов T = 1 и суммарным спином S = 0. В модели сеньорити данный набор является вырожденным и отстоит от уровня с v = 0(J = 0) на энергию спаривания Δ_{NN} . В приближении δ -сил относительный сдвиг состояния с полным моментом Ј определяется соотношением [14]:

$$\frac{\Delta E_J}{\Delta E_0} = (2j+1) \begin{pmatrix} j & j & J \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}^2.$$
(1)

Зная величину энергии спаривания тождественных нуклонов $\Delta E_0 = \Delta_{NN}$, можно найти энергию всех уровней мультиплета E_J из соотношения:

$$E_J = \Delta_{NN} \left(1 - \frac{\Delta E_J}{\Delta E_0} \right). \tag{2}$$

Приведенная выше картина предусматривает описание ядра как систему из замкнутого дважды магического остова (N - 2, Z) и двух валентных (внешних) нуклонов, например, нейтронов. В этом случае величину остаточного взаимодействия двух нейтронов $\Delta_{nn}(N,Z)$ можно оценить как [15]:

$$\Delta_{nn}(N,Z) = (-1)^{N} [S_{nn}(N,Z) - 2S_{n}(N-1,Z)] =$$

= $(-1)^{N} [B(N,Z) - 2B(N-1,Z) + B(N-2,Z)] = {}^{(3)}$
= $(-1)^{N} [S_{n}(N,Z) - S_{n}(N-1,Z)],$

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 86 № 8 2022

где B(N,Z) – энергия связи ядра. В случае протонов индексы *п* меняются на *р* и соотношение строится влоль цепочки изотонов N = const.Данная простейшая оценка построена на экспериментальных значениях энергий связи трех соседних ядер. Вопрос о взаимосвязи энергии спаривания тождественных нуклонов и различных массовых соотношений, так или иначе связанных с четно-нечетным эффектом массовой поверхности, широко освещен в литературе, подробный анализ различных массовых соотношений, в которых для расчета используются данные трех и более ядер, ранее проведен нами в [16]. В настояшей работе для описания спектров нейтрон-избыточных изотопов никеля используется соотношение [17]

$$\Delta_{nn}^{(4)}(N) = \frac{(-1)^{N}}{2} \times$$

$$\times \left[-S_{n}(N+1) + 2S_{n}(N) - S_{n}(N-1) \right],$$
(4)

являющееся усреднением $\Delta_{nn}(N,Z)$ для двух соседних ядер. Расчеты значений $\Delta_{nn}^{(4)}$ проведены на основе последних данных АМЕ2020 [18].

В экспериментальных спектрах четных нейтрон-избыточных изотопов Ni присутствует набор уровней, характерный для спаривания тождественных нуклонов с j = 9/2. Величины $\Delta_{\tau\tau}^{(4)}$ ($\tau = n, p$) соответствуют положению уровня 8⁺ или лежат на 0–250 кэВ выше, причем не только в ⁷⁰Ni, структуру которого можно представить в виде пары нуклонов сверх замкнутого остова, но и в четных изотопах с большим числом валентных нуклонов.

Данная картина соответствует схеме сеньорити, в которой расщепление v = 2 остается постоянным на протяжении всего заполнения оболочки. В табл. 1 приведены возможные состояния *J* ядер с *N* валентными нуклонами на внешней подоболочке j = 9/2, v из которых не спарены. С ростом *j* наборы значений *J* для v > 2 существенно усложняются: например, только часть мультиплета v = 4 включает 13 состояний.

В схеме сеньорити состояния с более высокими значениями v также вырождены, вырождение снимается в результате расчетов, использующих в качестве базиса невырожденный набор уровней v = 2, либо найденный в результате модельных расчетов, либо использующий экспериментальные значения. При этом энергии состояний системы с тремя внешними нуклонами могут быть найдены с использованием соотношения:

$$E(J_3) = \sum_{J_2} \left[(jj) J_2 j J_3 | j^3 J_3 \right]^2 E(J_2),$$
(5)

где $[(jj)J_2jJ_3|j^3J_3]$ – генеалогические коэффициенты, а суммирование включает все значения момента пары нуклонов J_2 с v = 2. Найденные спектры для системы трех нуклонов аналогичным образом могут быть использованы для расчета уровней системы четырех частиц, пяти частиц и т.д. итерационным методом [19]. Далее в своих расчетах мы использовали значения генеалогических коэффициентов Баймана–Ланде [20].

Схема сеньорити была построена Рака и Флауэрсом [21–23] для $j \le 7/2$, для более высоких значений j сеньорити не сохраняется. При переходе к j = 9/2 в случае сеньорити v = 4 появляются пары состояний с $J^{\pi} = 4^+$ и $J^{\pi} = 6^+$, которые частично смешиваются с соответствующими состояниями v = 2. При этом остаются два выделенных состояния с $J^{\pi} = 4^+$ и $J^{\pi} = 6^+$, для которых сеньорити является хорошим квантовым числом для любого двухчастичного взаимодействия [24–27]. Аналитические и численные исследования данного вопроса показали, что в схеме генеалогических коэффициентов эти состояния воспроизводятся с точностью более 99% [28].

РЕЗУЛЬТАТЫ

Модель сеньорити в совокупности с приближением δ -сил спаривания была использована для описания мультиплетов основного состояния в изотопах никеля ^{70–76}Ni, при этом в качестве замкнутого остова выступает магическое ядро ⁶⁸Ni. Ядра в данной области масс и с таким нейтронным избытком принято описывать в рамках многочастичной оболочечной модели для учета смешивания конфигураций, однако основной вклад вносят состояния $1g_{9/2}$.

Поэтому представляет определенный интерес рассмотрение цепочки нейтрон-избыточных изотопов никеля в приближении одночастичной оболочечной модели, в которой происходит последовательное заполнение нейтронами внешней подоболочки $1g_{9/2}$.

Ранее в работе [29] мы уже описывали структуру мультиплета v = 2 в приближении δ -сил для изотопов ^{70, 76}Ni, в которых имеется два нуклона и две дырки на уровне $lg_{9/2}$ соответственно. Там же показали, что уровни 6⁺ и 8⁺ удовлетворительно воспроизводятся в приближении δ -сил спаривания, при этом завышены энергии уровней 4⁺ на 250–300 кэВ и энергии уровней 2⁺ на ~1 МэВ. Следует отметить, что в разложении остаточного взаимодействия по полиномам Лежандра

$$\upsilon(r_{12}) = \sum_{l} f_{l}(r_{1}, r_{2}) P_{l}(\cos \Theta_{12})$$
(6)

в пределе δ -сил наибольшие значения f_l соответствуют большим значениям l:

$$f_{l} = \delta(r_{1} - r_{2}) \frac{2l+1}{4\pi r_{1}^{2}}.$$
(7)

Члены с малыми значениями *l* являются дальнодействующими мультипольными силами, ответственными за коллективные эффекты [30]. Это подтверждается тем фактом, что в экспериментальных спектрах энергия первого состояния 2^+ часто соответствует половине энергии спаривания (энергетическая щель БКШ $\Delta_{\tau} = \Delta_{\tau\tau}/2$) при том, что в приближении δ -сил $E^*(2^+)/\Delta_{\tau}^{(4)} = 0.75$. В области средних и легких ядер положение 2^+ воссоздается за счет учета смешивания конфигураций, большую роль также играет фитирование значений матричных элементов к экспериментальным спектрам.

Сеньорити v = 4

Согласно модели сеньорити, спектр ядра ⁷²Ni с четырьмя нейтронами на $1g_{9/2}$ должен содержать набор уровней v = 2 (наблюдавшийся в ⁷⁰Ni), дополненный уровнями v = 4. По аналогии с ⁷⁰Ni, расчет в приближении δ-сил приводит к завышенному значению энергии состояния 2⁺ (см. 1-ый спектр на рис. 1*a*). Соответственно, это приводит к смещению состояний 4⁺₂ и 6⁺₂, наблюдавшихся в эксперименте (3-й спектр). Однако, если рассчитать уровни $J^{\pi} = 4^+, 6^+, 8^+$ на основе δ-взаимодействия, а уровень $J^{\pi} = 2^+$ взять, например, из экспериментальных данных, происходит смещение 4⁺₂, 6⁺₂ вниз по энергии (2-й спектр). Более того, данное смещение настолько велико, что эти уровни оказываются ниже по энергии, чем 4⁺₁, 6⁺₁ в приближении δ-сил спаривания. Иными словами, уровни v = 4 (отмеченные для всех расчетов

Рис. 1. Спектры v = 2,4 для ⁷²Ni (*a*) и ⁷⁴Ni (*б*). Сверху указана основная конфигурация валентных нуклонов. Черным помечены уровни, которые мы идентифицировали в процессе расчетов как v = 2. Точками показана величина $\Delta_{nn}^{(4)}$. Экспериментальные данные взяты из [32].

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 86 № 8 2022

1107

Рис. 2. Спектры сеньорити v = 4 в зависимости от энергии состояния 2^+ в спектре v = 2.

цветными линиями на рис. 1*a*) лежат ниже уровней v = 2, что отвечает аномальному порядку уровней с точки зрения модели сеньорити.

Для того, чтобы объективнее оценить, какие экспериментальные уровни $(4_1^+$ или $4_2^+, 6_1^+$ или $6_2^+)$ обладают природой v = 2 и v = 4, мы провели расчеты с всеми возможными комбинациями экспериментальных уровней $4_i^+, 4_i^+$ в спектре ⁷²Ni в качестве состояний v = 2. На рис. 1*а* в качестве примера 4-ым и 5-ым спектром приводятся расчеты, в которых за $\nu = 2$ брались уровни $4_1^+, 6_1^+$ и $4_2^+, 6_1^+$ соответственно. Из сопоставления с экспериментом можно заключить, что именно состояние 4⁺ характеризуется сеньорити v = 2. И действительно, экспериментальные данные по распадам возбужденных состояний ⁷²Ni подтверждают этот факт. В то же время остается неясным, какое из состояний 6_{12}^+ относится к набору уровней v = 2, поскольку оба расчета в целом воспроизводят положение этих уровней в экспериментальном спектре. Отдельно отметим, что от выбранного способа описания спектра v = 2 в GSM может сильно зависеть расшепление его части v = 4.

На рис. 1*б* показаны аналогичные расчеты для ядра ⁷⁴Ni (4 дырки на $lg_{9/2}$). Наши расчеты подтверждают такой же результат для уровней $4^+_{1,2}$: нижайшее состояние 4^+_1 – это состояние v = 4. Что касается состояний $J^{\pi} = 6^+$, то в спектре ⁷⁴Ni еще труднее определить их порядок в силу их близости по энергии.

Как видно из расчетов для v = 4, полное расщепление GSM весьма чувствительно к положению 2⁺. Изменение расщепления мультиплета и его структуры в зависимости от соотношения энергии спаривания и энергии $2^+ v = 2$ показано на схеме рис. 2. Наиболее сильно положение 2⁺ влияет на 4^+ и 6^+ в спектре v = 4. Вторая пара 4^+ , 6^+ с v = 4 не зависит от уровней v = 2 и не меняет своего положения, как и 8⁺, что свидетельствует о том, что для этих уровней сеньорити является хорошим квантовым числом. Из состояний с нечетными моментами наименее чувствительным к положению 2⁺ состояние 3⁺. Соотношение между энергией спаривания и энергией 2⁺ влияет также на полное расщепление мультиплета и расщепление между 12⁺ и 10⁺. Что касается структуры мультиплета, то видно, что в случае δ -сил для j = 9/2соотношение $E^*(2^+)/\Delta_{\tau\tau} \approx 0.75$, порядок уровней сохраняется и все состояния v = 4 лежат выше энергии спаривания. В случае изотопов никеля это соотношение меньше 0.4 (0.39 для ⁷²Ni и 0.36 для ⁷⁴Ni) и в области спектра v = 2 находятся уже как уровень 4^+ , так и состояние 6^+ с v = 4 (см. рис. 2).

Сеньорити v = 3

Нечетный изотоп ⁷¹Ni имеет три нуклона на подоболочке $lg_{9/2}$. Спектр этого ядра содержит единственное состояние v = 1 – основное состояние ядра, а также набор уровней v = 3, энергии

Puc. 3. Спектры $v = 3 \text{ для}^{71, 73, 75}$ Ni. Экспериментальные данные взяты из [8, 10, 32]. Обозначения см. на рис. 1.

которых можно рассчитать в рамках модели сеньорити на основе энергий уровней для системы из двух нуклонов на i = 9/2. Так же, как это было сделано в четных изотопах, энергии мультиплета v = 2 были найдены в приближении δ -сил спаривания. Поскольку в приближении δ-сил положение состояния 2⁺ не отвечает экспериментальному значению, оно было взято из экспериментального спектра возбужденных состояний соседнего изотопа ⁷⁰Ni. Сопоставимость подобных расчетов с экспериментальными данными может служить критерием достоверности модели сеньорити вне зависимости от используемого приближения для остаточного взаимодействия (такой подход используется, например, в работах [24, 31]). Результаты расчетов представлены на рис. 3. Многие состояния лежат в области, в которой отсутствуют экспериментальные данные, однако можно выде-

лить хорошее совпадение состояния $J^{\pi} = 7/2^+$ с экспериментом.

Аналогичные расчеты с использованием экспериментальных уровней 2⁺ от ⁷²Ni и ⁷⁴Ni были сделаны для изотопов ⁷³Ni (хотя для системы из пяти нуклонов должны быть состояние v = 1, 3, 5, мы ограничились расчетом состояний v = 1, 3) и ⁷⁵Ni (три дырки на 1g_{9/2}) соответственно. Таким образом, на рис. 3 можно наблюдать соответствие уровней $J^{\pi} = 5/2^+, 13/2^+$ для ядра ⁷⁵Ni. Данные нечетные изотопы лежат на границе существования ядер и на данный момент экспериментальные данные по их возбужденным состояниям только накапливаются, также стоит обратить внимание и на большие ошибки величин Δ_{nn} для ^{73, 75}Ni, что может существенно отражаться на результатах.

1109

ЗАКЛЮЧЕНИЕ

Парные корреляции нуклонов оказывают существенное влияние на структуру атомных ядер. Структура мультиплета возбужденных состояний как одного из проявлений спаривания зависит от ряда факторов, таких как форма остаточного нуклон-нуклонного взаимодействия, одночастичная структура ядра и его деформация. Тем не менее, даже упрощенная модель, не принимающая во внимание смешивание конфигураций и дальнодействующую часть взаимодействия нуклонов, позволяет получить наглядное представление о структуре низколежащих возбужденных состояний ядер с выделенной валентной подоболочкой.

В настоящей работе было использовано приближение δ-сил спаривания для описания положения возбужденных уровней с сеньорити v = 2 в изотопах ⁷⁰⁻⁷⁶Ni с заполняемой подоболочкой j = 9/2. Показано, что расщепление GSM-мультиплета в исследуемых изотопах может быть описано на основе массовых соотношений, при этом в четных ядрах с ошибкой не более 0.1 МэВ воспроизводятся состояния $J^{\pi} = 6^+, 8^+ (v = 2)$ и с ошибкой не более 0.5 МэВ воспроизводится состояние $J^{\pi} = 4^+ (v = 2)$. Приближение δ -взаимодействия не позволяет корректно описывать положение состояния 2⁺ в силу того, что для состояний с более низким моментом значительную роль играет смешивание конфигураций и коллективные моды, связанные с дальнодействующей частью взаимодействия нуклонов.

Корректный учет $J^{\pi} = 2^+(v = 2)$ приводит к ряду интересных эффектов. Яркая зависимость расщепления спектра v = 4 от положения этого уровня приводит к смещению состояния 12^+ на 300-500 кэВ вверх по энергии в различных изотопах с четырьмя нуклонами/дырками на j = 9/2. Два состояния $J^{\pi} = 4^+, 6^+(v = 4)$, напротив, сдвигаются вниз, причем этот сдвиг тем больше, чем ниже уровень $J^{\pi} = 2^+(v = 2)$. Особенно яркое проявление такой зависимости наблюдается в изотопах ^{72, 74}Ni, где особенно низкое положение 2_1^+ приводит к инверсии уровней 4^+ с различным числом сеньорити. Для квази-вырожденных состояний 6^+ порядок уровней менее очерилен и

стояний 6⁺ порядок уровней менее очевиден и, вероятно, сеньорити в данном случае не является хорошим квантовым числом.

СПИСОК ЛИТЕРАТУРЫ

- Carlson J., Carpenter M., Casten R. et al. // Prog. Part. Nucl. Phys. 2017. V. 94. P. 68.
- Grawe H., Górska M., Lipoglavšek M. et al. // Prog. Part. Nucl. Phys. 1997. V. 38. P. 15.
- Grzywacz R., Béraud R., Borcea C. et al. // Phys. Rev. Lett. 1998. V. 81. P. 766.
- Sawicka M., Grzywacz R., Matea I. et al. // Phys. Rev. C. 2003. V. 68. Art. No. 044304.

- Chiara C.J., Walters W.B., Stefanescu I. et al. // Phys. Rev. C. 2011. V. 84. Art. No. 037304.
- Morales A.I., Benzoni G., Watanabe H. et al. // Phys. Rev. C. 2016. V. 93. Art. No. 034328.
- Morales A.I., Benzoni G., Watanabe H. et al. // Phys. Lett. B. 2018. V. 781. P. 706.
- Go S., Grzywacz R., Mazzocchi C. et al. // Phys. Rev. C. 2020. V. 102. Art. No. 044331.
- Gottardo A., de Angelis G., Doornenbal P. et al. // Phys. Rev. C. 2020. V. 102. Art. No. 014323.
- Escrig S., Morales A.I., Nishimuraa S. et al. // Phys. Rev. C. 2021. V. 103. Art. No. 064328.
- 11. Имашева Л. Т., Ишханов Б.С., Степанов М.Е. и др. // Изв. РАН. Сер. физ. 2015. Т. 79. № 4. С. 564; Imasheva L.T., Ishkhanov B.S., Stepanov M.E. et al. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 4. P. 521.
- Степанов М.Е., Имашева Л.Т., Ишханов Б.С. и др. // Изв. РАН. Сер. физ. 2018. Т. 82. № 6. С. 697; Stepanov M.E., Imasheva L.T., Ishkhanov B.S. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 6. P. 697.
- Stepanov M., Imasheva L., Ishkhanov B. et al. // EPJ Web Conf. 2018. V. 177. Art. No. 03004.
- 14. De Shalit A. // Phys. Rev. 1953. V. 91. P. 6.
- 15. *Preston M.A.* Physics of the nucleus. Mass.: Addison-Wesley Reading, 1962.
- 16. *Ishkhanov B.S., Sidorov S.V., Tretyakova T.Yu. et al.* // Chin. Phys. C. 2017. V. 41. Art. No. 094101.
- 17. *Бор О., Моттельсон Б.* Структура атомного ядра. Т. 1. М.: Мир, 1971.
- Wang M., Huang W.J., Kondev F.G. et al. // Chin. Phys. C. 2021. V. 45. Art. No. 030003.
- 19. *De-Shalit A., Talmi I.* Nuclear shell theory. New York: Acad. Press, 1963.
- 20. Bayman B., Lande A. // Nucl. Phys. 1966. V. 77. P. 1.
- 21. Racah G. // Phys. Rev. 1942. V. 61. P. 186.
- 22. Racah G. // Phys. Rev. 1943. V. 63. P. 367.
- 23. *Flowers B.H.* // Proc. Royal. Soc. A. 1952. V. 212. P. 248.
- 24. *Escuderos A., Zamick L. //* Phys. Rev. C. 2006. V. 73. Art. No. 044302.
- 25. Zamick L. // Phys. Rev. C. 2007. V. 75. Art. No. 064305.
- 26. Van Isaker P., Heinze S. // Phys. Rev. Lett. 2008. V. 100. Art. No. 052501.
- 27. Van Isaker P., Heinze S. // Ann. Phys. 2014. V. 349. P. 73.
- 28. Qi C. // Phys. Rev. C. 2011. V. 83. Art. No. 014307.
- 29. Жуляева Д.С., Сидоров С.В., Третьякова Т.Ю. // Учен. зап. физ. фак-та МГУ. 2021. № 3. С. 2130402.
- 30. Лэйн Э.М. Теория ядра. М.: Атомиздат, 1967.
- Van Isacker P. // Int. J. Mod. Phys. E. 2011. V. 20. P. 191.
- 32. https://www.nndc.bnl.gov/ensdf/.

Spectra of excited states of neutron-rich nickel isotopes

S. V. Sidorov^{a, b, c}, D. S. Zhulyaeva^a, T. Yu. Tretyakova^{a, b, c, *}

^a Lomonosov Moscow State University, Moscow, Russia ^b Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia ^c Joint Institute for Nuclear Research, Dubna, Russia *e-mail: tretyakova@sinp.msu.ru

We consider the spectra of neutron-rich isotopes $^{70-76}$ Ni in which the main configuration is determined by the filling of the subshell $lg_{9/2}$. An analysis is made of the dependence of the order of the levels of the ground state multiplet (GSM) and the splitting of the c senority multiplet v = 4 on the position of the state J = 2(v = 2). In several isotopes under study, a particularly low position of this state leads to level inversion with the same J^{π} and different senority v.