УДК 539.142

ИССЛЕДОВАНИЕ ЭНЕРГИЙ И ЭЛЕКТРОМАГНИТНЫХ ХАРАКТЕРИСТИК СОСТОЯНИЙ ОТРИЦАТЕЛЬНОЙ ЧЕТНОСТИ ЯДРА ¹⁵⁶Gd

© 2022 г. П. Н. Усманов^{1,} *, А. И. Вдовин², А. Н. Нишонов¹

¹Наманганский инженерно-технологический институт, Наманган, Узбекистан ²Международная межправительственная организация "Объединенный институт ядерных исследований", Лаборатория теоретической физики имени Н.Н. Боголюбова, Дубна, Россия

> *E-mail: usmanov1956.56@mail.ru Поступила в редакцию 14.03.2022 г. После доработки 08.04.2022 г. Принята к публикации 22.04.2022 г.

В рамках феноменологической модели, учитывающей кориолисово взаимодействие состояний ротационных полос, исследуются свойств состояний отрицательной четности ядра. Рассматривается смешивание состояний октупольных полос на основаниях с 156 Gd. Рассматривается смешивание состояний октупольных полос на основаниях с $K^{\pi} = 0^{-}$, 1⁻. Для вычисления энергий, волновых функций и вероятностей *E*1-переходов получены аналитические выражения. Вычисленные значения энергий и отношений вероятностей *E*1-переходов хорошо согласуются с экспериментом.

DOI: 10.31857/S0367676522080257

введение

По совокупности экспериментальных данных

можно предположить, что в ядре ¹⁵⁶Gd обнаружены все или почти все уровни до энергии возбуждения 2 МэВ. Соответствующие экспериментальные данные оценены и систематизированы в работе [1]. Экспериментально известны развитые ротационные полосы с положительной четностью. В работах [2-5] нами проведены теоретические исследования состояний положительной четности этого ядра и обсуждены эффекты неадиабатичности. проявляющиеся в энергиях и электромагнитных характеристиках состояний полос. В спектре ¹⁵⁶Gd выделены четыре ротационные полосы отрицательной четности с квантовыми числами оснований $K^{\pi} = 0^{-}, 1^{-}$ и 2^{-} . Нижайшая из указанных четырех полос – полоса с основанием $K^{\pi} = 1^{-}$ и энергией $E_x = 1.2425$ МэВ. Эта полоса прослежена до спина $I^{\pi} = 25^{-}$, в ней нарушена последовательность уровней с четными и нечетными спинами. Неадиабатичность видна также и в отношениях вероятностей Е1-переходов с уровней этой полосы на уровни основной полосы. В полосе с $K^{\pi} = 0^{-}$ и энергией основания 1.3665 МэВ известны три уровня с $I^{\pi} = 1^{-}, 3^{-}, 5^{-}$. Две другие полосы построены на основаниях с

 $K^{\pi} = 2^{-}$ и энергиями 1.7805 МэВ и 1.9342 МэВ, в них известны по три уровня: $I^{\pi} = 2^{-}, 3^{-}, 4^{-}$.

В работе [6] рассматривалось смешивание полос с $K^{\pi} = 0^{-}$, 1^{-} , 2^{-} , 3^{-} и численным методом определены энергии, волновые функции состояний. Описаны энергии полосы $K^{\pi} = 1^{-}$ до спина $I^{\pi} = 13^{-}$ и изучены отношения вероятностей дипольных переходов. Экспериментально не были известны приведенные вероятности *E*1-переходов из октупольных состояний на уровни основной полосы. Головная энергия $K^{\pi} = 1^{-}$ полосы более близка расположена к $K^{\pi} = 0^{-}$ полосе, чем $K^{\pi} = 2^{-}$. Поэтому в неадиабатичностях проявляющихся в состояниях $K^{\pi} = 1^{-}$ полосе, основную роль играет $K^{\pi} = 0^{-}$ полоса.

В настоящей работе для изучения свойств состояний отрицательной четности ядра ¹⁵⁶Gd предложена простая феноменологическая модель, которая учитывает смешивание состояний полос с $K^{\pi} = 0^{-}$ и 1⁻. Получены аналитические выражения для расчета энергий и волновых функций ротационных уровней. Исследуются неадиабатические эффекты, проявляющиеся в энергиях и вероятностях *E*1-переходов из октупольно-колебательных полос. Модель хорошо описывает экспериментальные значения энергий. Нарушение четно-нечетной последовательности уровней в ротационной полосе с $K^{\pi} = 1^{-}$ и неадиабатичность в вероятностях *E*1-переходов объясняются смешиванием состояний октупольных полос $K^{\pi} = 0^{-}$ и 1⁻.

МОДЕЛЬ ЯДРА

Для изучения свойств низколежащих коллективных состояний в деформированных ядрах, гамильтониан ядра выбираем в следующем виде [7]

$$H = H_{rot}(I^{2}) + H_{KK'}(I),$$
(1)

где

$$H_{KK'}(I) = \omega_K \delta_{KK'} - \omega_{rot}(I)(j_X)_{KK'} \chi(I, K) \delta_{KK'\pm 1},$$

$$\chi(I, 0) = \frac{1}{2} \Big[1 - (-1)^I \Big]^{1/2}, \quad \chi(I, 1) = \Big[1 - \frac{2}{I(I+1)} \Big]^{1/2},$$

$$\chi(I, 2) = \Big[1 - \frac{6}{I(I+1)} \Big]^{1/2}.$$

Здесь ω_{K} – энергия оснований ротационных полос, $\omega_{rot}(I)$ – угловая частота вращения остова, j_{x} – проекция внутреннего углового момента на ось *x*.

Волновую функцию ищем в виде:

$$|IMK\rangle = \sqrt{\frac{2I+1}{16\pi^2}} \sum_{K'} \frac{\Psi_{K'K}^{I}}{\sqrt{1+\delta_{K',0}}} \times (3) \times \left\{ D_{M,K'}^{I}(\Theta)b_{K'}^{+} + (-1)^{I+K'} D_{M,-K'}^{I}(\Theta)b_{-K'}^{+} \right\} |0\rangle,$$

где $\psi_{K'K}^{I}$ — коэффициент смешивания ротационных полос; $D_{MK'}^{I}$ — функция Вигнера; $b_{K^-}^{+}$ — однофононные состояния, служащие основаниями полос отрицательной четности: $b_{\lambda=3K}^{+} |0\rangle = b_{K'}^{+} |0\rangle$ с

 $K^{\pi} = 0^{-}, 1^{-}, 2^{-} \text{ M } 3^{-}.$

Решая уравнение Шрёдингера

$$(H_{K\nu}(I) - \varepsilon_{\nu}(I))\psi_{K\nu}^{I} = 0$$
(4)

определяем собственные значения энергии и волновые функции состояний отрицательной четности. Полная энергия состояния определяется формулой

$$E_{\rm v}(I) = E_{rot}(I) + \varepsilon_{\rm v}(I). \tag{5}$$

Энергию вращающегося остова $E_{rot}(I)$ определяем, используя параметризацию Харриса

$$E_{rot}(I) = \frac{1}{2} \mathfrak{Z}_0 \omega_{rot}^2(I) + \frac{3}{4} \mathfrak{Z}_1 \omega_{rot}^4(I),$$
(6)

$$\sqrt{I(I+1)} = \mathfrak{Z}_0 \omega_{rot}^2(I) + \mathfrak{Z}_1 \omega_{rot}^3(I), \qquad (7)$$

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 86

где \mathfrak{T}_0 и \mathfrak{T}_1 — инерционные параметры вращающегося остова, которые определяются по наилучшему согласию энергий уровней основной полосы с экспериментом. Далее, используя найденные значения параметров \mathfrak{T}_0 и \mathfrak{T}_1 , находим частоту вращения остова $\omega_{rot}(I)$, решив кубическое уравнение (7). Действительное решение этого уравнения имеет вид:

$$\omega_{rot}(I) = \left\{ \frac{\sqrt{I(I+1)}}{2\mathfrak{I}_1} + \left[\left(\frac{\mathfrak{I}_0}{3\mathfrak{I}_1} \right)^3 + \frac{I(I+1)}{4\mathfrak{I}_1^2} \right]^{1/2} \right\}^{1/3} + \left\{ \frac{\sqrt{I(I+1)}}{2\mathfrak{I}_1} - \left[\left(\frac{\mathfrak{I}_0}{3\mathfrak{I}_1} \right)^3 + \frac{I(I+1)}{4\mathfrak{I}_1^2} \right]^{1/2} \right\}^{1/3}.$$
(8)

ЧИСЛЕННЫЕ РАСЧЕТЫ

Расчеты проводились для изотопа ¹⁵⁶Gd. Спектр возбужденных уровней этого ядра получен в реакции $(n, n' \gamma)$ [8]. Из двух полос с отрицательной четностью основание нижней полосы с $K^{\pi} = 1^{-}$ и энергией 1.2425 МэВ хорошо совпадает с рассчитанным в [9] коллективным октупольным состоянием. Будем рассматривать кориолисово смешивание состояний только известных из эксперимента полос с $K^{\pi} = 0^{-}$ и 1^{-} , что значительно упрощает теоретические расчеты. В этом случае для собственных значений энергии $\varepsilon(I)$ в уравнении (5) имеем следующую формулу:

$$\varepsilon(I)_{0.1} = \frac{\omega_0 + \omega_1}{2} \pm \sqrt{\frac{(\omega_0 - \omega_1)^2 + 4\omega_{rot}^2(I)(j_x)_{0.1}^2}{4}}.$$
 (9)

При вычислении $E_{rot}(I)$ для инерционных параметров использовались значения $\mathfrak{S}_0 = 42.739$ \hbar^2/M эВ и $\mathfrak{S}_1 = 131.59 \ \hbar^4/M$ эВ³, отличающиеся от значений, найденных по энергиям уровней основной полосы [2]. Наилучшее согласие вычисленных значений энергий с экспериментом получено при значениях $\omega_0 = 1.33$ МэВ, $\omega_1 = 1.235$ МэВ и $(j_x)_{0.1} = 2.142$.

Рассчитанные энергии уровней представлены на рис. 1, где также приведены данные экспериментов. Кроме того, здесь же показаны состояния основной полосы ($K^{\pi} = 0_1^+$). Отметим, что в вычислениях энергий уровней основной полосы не учитывалось смешивание уровней основной полосы с другими полосами, т.е. на рисунке приведены адиабатические значения энергий состояний основной полосы. Как видно из рисунка, предложенная нами модель хорошо описывает экспериментальные энергии.

2022

Nº 8

Рис. 1. Сравнение теоретических и экспериментальных значений энергий состояний основной полосы и полос отрицательной четности с $K^{\pi} = 0^{-}$ и 1^{-} .

Рис. 2. Спиновая зависимость внутренней энергии $\varepsilon_K(I)$.

На рис. 2 приведены зависимости внутренней

энергии $\varepsilon(I)$ состояний полос с $K^{\pi} = 1^{-}$ и $K^{\pi} = 0^{-}$ от спина *I*. Из рисунка видно, что внутренняя энергия $\varepsilon(I)$ состояний с четными спинами полосы $K^{\pi} = 1^{-}$ является постоянной, т.е. не зависит от спина. Причина этого в том, что в нашей схеме они не смешиваются с состояниями полос с $K^{\pi} \ge 2^{-}$. С ростом углового момента увеличивается кориолисова взаимодействия между полосами, поэтому энергии нечетных состояний $K^{\pi} = 1^{-}$ и

 $K^{\pi} = 0^{-}$ полос сильнее отталкиваются друг от друга.

В адиабатическом приближении приведенные вероятности *E*2 переходов внутри ротационной полосы имеют следующий вид:

$$B(E2; IK \to (I-2)K) = \frac{5}{16\pi} e^2 Q_0^2 \left[C_{IK;20}^{I-2,K} \right]^2.$$
(10)

В табл. 1 представлены сравнения экспериментальных [10, 11] и вычисленных значений приведенных вероятностей $B(E2; Igr \rightarrow (I-2)gr)$ внутриполосных переходов в основной полосе, которые дают хорошие согласия. Отметим, что в вычислениях B(E2) внутренний квадрупольный момент был взять равным $Q_0 = 6.87$ барн [12].

В данной схеме для собственных функций состояний отрицательной четности с учетом взаимодействия Кориолиса имеем следующую формулу:

$$\psi_{K,K'}^{I}(I) = \frac{\Phi_{K,K'}^{I}}{\sqrt{\sum_{\nu=0}^{1} \left[\Phi_{K,\nu}^{I}\right]^{2}}},$$
(11)

где

$$\Phi_{00} = \omega_0 - \varepsilon_1(I), \quad \Phi_{11} = -(\omega_1 - \varepsilon_0(I)),$$

$$\Phi_{01} = \frac{1}{\sqrt{2}}\omega_{rot}(I)(j_x)_{01}, \quad \Phi_{10} = -\frac{1}{\sqrt{2}}\omega_{rot}(I)(j_x)_{01}.$$
 (12)

B (11) K и K' принимают значения 0 и 1.

На рис. 3 представлена структура состояний октупольной $K^{\pi} = 1^{-}$ полосы. Из рисунка видно, что даже при низких значениях спина кориолисово смешивание является заметным и больших значениях спина компоненты $\psi_{11}(I)$ и $\psi_{01}(I)$ имеют весы 60 и 40%, соответственно. Этот эффект должен проявляться в *E*2-переходах внутри октупольных полос и *E*1 переходах из них на состояния основной полосы.

В рамках данной модели для вероятностей *E*1переходов из октупольных состояний на уровни основной полосы имеем:

$$B(E1; IK^{\pi}; (I \pm 1)gr) =$$

$$= \left[m_0 \psi_{0K}^I C_{I0;10}^{(I\pm1)0} - \sqrt{2}m_1 \psi_{1K}^I C_{I1;1-1}^{(I\pm1)0} \right]^2, \qquad (13)$$

где коэффициенты m_0 и m_1 — это матричные элементы перехода между внутренними волновыми функциями оснований основной и октупольных

полос (в данном случае полос в $K^{\pi} = 0^{-}, 1^{-}$), т.е. $m_{K} = \langle gr | M(E1) | K^{-} \rangle.$

Выписав явно выражения для коэффициентов Клебша–Гордана, получим:

$$B(E1; IK^{\pi} \to (I-1)gr) = = \left\{ -m_0 \sqrt{\frac{I}{2I+1}} \psi_{0K}^{I} - m_1 \sqrt{\frac{I+1}{2I+1}} \psi_{1K}^{I} \right\}^2,$$
(14)
$$B(E1; IK^{\pi} \to (I+1)gr) =$$

$$= \left\{ m_0 \sqrt{\frac{I+1}{2I+1}} \psi_{0\mathrm{K}}^I - m_1 \sqrt{\frac{I}{2I+1}} \psi_{1\mathrm{K}}^I \right\}^2.$$
(15)

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 86

Таблица 1. Приведенные вероятности $B(E2; Igr \rightarrow (I-2)gr$ переходов в основной полосе ¹⁵⁶Gd (e²б²)

Ι	Эксп.	Настоящая работа
2	0.92(3) [14]	0.94
4	1.29(2) [14]	1.34
6	1.47(4) [14]	1.48
8	1.57(15) [13, 14]	1.55
10	1.59(9) [13, 14]	1.59
12	—	1.61
14	-	1.63

Отношения вероятностей *E*1-переходов из октупольных состояний на уровни основной полосы имеют вид:

$$R_{IK} = \frac{B(E1; IK \to (I+1)gr)}{B(E1; IK \to (I-1)gr)} = = \left| \frac{\psi_{K,0}^{I}(I)\sqrt{(I+1)} - Z.\psi_{K,1}^{I}(I)\sqrt{I}}{\psi_{K,0}^{I}(I)\sqrt{I} + Z.\psi_{K,1}^{I}(I)\sqrt{(I+1)}} \right|^{2},$$
(16)

где $Z = m_1/m_0$.

2022

Nº 8

В табл. 2 представлены вычисленные значения отношений R_{IK} вероятностей E1 –переходов из состояний $K^{\pi} = 1^{-}$ полосы, которые сравниваются с экспериментальными данными [1, 13–17]. Экспериментальные значения отношений R_{IK}^{3 ксп отличаются от адиабатических значений R_{IK}^{4} в 1.5–2 раза. Кроме того, с ростом спина адиабатические значения увеличиваются, тогда как для

Рис. 3. Структура состояний $K^{\pi} = 1^{-}$ полосы.

Ел-переходов с уров	Ел-переходов с уровней К – 1 -полос на уровни основной полосы							
$I^{\pi}K$	$I_1^+ gr$	I_2^+gr	Эксп.	Теория				
				настоящая работа	правило Алаги			
1-1	2^+gr	0^+gr	1.21(1) [1] 1.16(11) [16] 1.23(13) [9]	1.40	0.5			
			0.81(3) [1] 0.80(12) [15]					
3-1	4 ⁺ gr	2 ⁺ gr	$\begin{array}{c} 0.5 \binom{+\infty}{-0.3} [17] \\ 0.872 (233) [18] \\ 0.746 (50) [19] \end{array}$	1.07	0.75			
5-1	6 ⁺ gr	4^+gr	0.75(7) [1] 0.5(3) [17] 0.746(67) [19]	0.99	0.83			
7-1	8 ⁺ gr	6 ⁺ gr	1.27(3) [1] 0.71(8) [17]	0.96	0.88			
9-1	10^+gr	8 ⁺ gr	0.42 (18) [1] 0.43(12) [17]	0.93	0.90			
11-1	12^+gr	$10^+ gr$	0.63(7) [1]	0.92	0.92			
13-1	14^+gr	12^+gr	_	0.91	0.93			

Таблица 2. Теоретические и эксприментальные значения отношений $R_{IK} = B(E1; I^{\pi}K \rightarrow I_1^+gr)/B(E1; I^{\pi}K \rightarrow I_2^+gr)$ для *E*1-переходов с уровней $K^{\pi} = 1^-$ -полос на уровни основной полосы

Таблица 3. Приведенные вероятности *E*1-переходов из состояний $K^{\pi} = 1^{-}$ полосы на состояния основной полосы (в ед. Вайскопфа W.u.)

	$I_f K_f$	$B(E1; I_i1^- \rightarrow I_igr)$ (W.u.)		
$I_i^{\pi}K_i$		эксп. [1]	$m_0 = 0.15$ $m_1 = 0.0056$	
1 ⁻ 1	$0^+ gr$	0.0018(7)	0.0015	
1 ⁻ 1	2^+gr	0.0025^{+8}_{-18}	0.0020	
3 ⁻ 1	2^+gr	0.00098(21)	0.0034	
3 ⁻ 1	4^+gr	0.000777(16)	0.0037	
2 ⁻ 1	2^+gr	$< 3.2 \cdot 10^{-5}$	$3.1 \cdot 10^{-5}$	
5-1	4^+gr	0.00085^{+15}_{-69}	0.0042	
4 ⁻ 1	4^+gr	$< 4.0 \cdot 10^{-5}$	$3.1 \cdot 10^{-5}$	
5 ⁻ 1	6^+gr	0.00064_{-52}^{+10}	0.0042	
7 ⁻ 1	6^+gr	—	0.0047	
7 ⁻ 1	8^+gr	_	0.0045	

экспериментальных значений R_{IK} видна обратная тенденция. Наши расчеты такое неадиабатическое поведение R_{IK} воспроизводят.

Вычисленные значения вероятностей *E*1 – переходов из состояний октупольных полос с $K^{\pi} = 1^{-}$ представлены в таблице 3 вместе с имеющимися экспериментальными данными [1]. Отметим, что вероятности *E*1 – переходов и их отношения вычислены при значениях $m_0 = 0.15\sqrt{W.u.}$ и $m_1 = 0.0056\sqrt{W.u.}$

В рамках используемой модели приведенные вероятности *E*2-переходов внутри октупольных ротационных полос имеют следующий вид:

$$B(E2;IK \to I - 2K) = \frac{5}{16\pi} Q_0^2 \frac{3}{2(4I^2 - 1)} \times \left[\Psi_{0K}^I \Psi_{0K}^{I-2} \sqrt{I(I-1)} + \Psi_{1K}^I \Psi_{1K}^{I-2} \sqrt{(I-2)(I+1)} \right]^2.$$
(17)

На рис. 4 представлены вычисленные по формуле (17) значения приведенных вероятностей E2-переходов внутри $K^{\pi} = 0^{-}$ и 1⁻ полосах, которые сравниваются с адиабатическими значениями. Из сравнения видно, что теоретические значения B(E2) вычисленные с учетом кориолисова смешивания состояний отличаются от адиабатических значений. Учет смешивания полос приво-

Рис. 4. Приведенные вероятности *E*2-переходов внутри полос с $K^{\pi} = 1^{-}$ и 0^{-} . ($B^{A}(E2; K = 1)$ – Адиабатические значения для $K^{\pi} = 1^{-}$ полосы; $B^{A}(E2; K = 0)$ – адиабатические значения для $K^{\pi} = 0^{-}$ полосы; B(E2; K = 1) – вычисленные по формуле (17) для $K^{\pi} = 1^{-}$ полосы; B(E2; K = 0) – вычисленные по формуле (17) для $K^{\pi} = 0^{-}$ полосы).

дит к уменьшению $B(E2; I0^- \rightarrow (I-2)0^-)$ и увеличению $B(E2; I1^- \rightarrow (I-2)1^-)$. Это связано с тем, что учет взаимодействия полос приводит к увеличению энергий состояний $K^{\pi} = 0^-$ полосы (т.е. уменьшению эффективного момента инерции) и уменьшению энергий состояний полосы с $K^{\pi} = 1^-$ (т.е. увеличению эффективного момента инерции) (см. рис. 2). Полосы с большими моментами инерции имеют большие квадрупольные моменты Q_0 . Внутриполосные переходы прямо пропорциональны Q_0 [18]. К сожалению, для

данных переходов отсутствуют экспериментальные данные. Поэтому было бы интересно экспериментально исследовать *E*2-переходы внутри октупольных полос.

ЗАКЛЮЧЕНИЕ

Для изучения свойств октупольных состояний ядра ¹⁵⁶Gd предложена простая феноменологическая модель, которая учитывает смешивание состояний полос с $K^{\pi} = 0^{-}$ и 1⁻. Получены аналитические выражения для расчета энергий и волновых функций ротационных уровней. Наши расчеты, проведенные с учетом кориолисова смешивания состояний отрицательной четности полос с $K^{\pi} = 0^{-}$ и 1⁻, удовлетворительно воспроизводят экспериментальные данные. Используемая модель качественно описывает нарушение четно-нечетной последовательности уровней в ротационной полосе $K^{\pi} = 1^{-}$. Показано, что эффект смешивания полос приводит к существенным отклонениям от адиабатичности у вероятностей *E*2-переходов внутри $K^{\pi} = 0^{-}$ и 1⁻ полос и отношений приведенных вероятностей *E*1-переходов $R_{IK} = B(E1; IK \rightarrow (I + 1)gr)/B(E1;$ $IK \rightarrow (I - 1)gr)$ из состояний $K^{\pi} = 0^{-}$ и 1⁻ полос.

Проведенный расчет и анализ известных экспериментальных данных указывает: чтобы улучшить теоретические описание эксперимента, необходимо учитывать смешивание состояний полос с $K^{\pi} \ge 2^{-}$. В ядре ¹⁵⁶Gd экспериментально известны две полосы с $K^{\pi} = 2^{-}$, но не обнаружены состояния с квантовой характеристикой $K^{\pi} = 3^{-}$ и не изучены внутриполосные переходы в октупольных полосах. Поэтому были бы интересны дополнительные экспериментальные и теоретические исследования для классификации высоко лежащих уровней по *K*, где плотность состояний существенно высока.

СПИСОК ЛИТЕРАТУРЫ

- 1. Reich C.W. // Nucl. Data Sheets. 2012. V. 113. P. 2537.
- Usmanov P.N., Yusupov E.K. // IIUM Engin. J. 2021. V. 22. No. 1. P. 167.
- 3. Усманов П.Н., Вдовин А.И., Юсупов Э.К. // Изв. РАН. Сер. физ. 2021. Т. 85. № 10. С. 1423; Usmanov P.N., Vdovin A.I., Yusupov E.K. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 10. P. 1102.
- 4. *Усманов П.Н., Вдовин А.И., Юсупов Э.К.* // Сб. тезисов III Межд. науч. форума "Ядерн. наука и технологии" (Алматы, 2021). С. 67.
- 5. Михайлов И.Н., Усманов П.Н., Бриансон Ш. // ЯФ. 1991. Т. 54. С. 1239.
- Громов К.Я., Усманов П.Н., Холматов А.Х. и др. // Изв. РАН. Сер. физ. 1993. Т. 57. С. 91.
- 7. Михайлов И.Н., Усманов П.Н., Бриансон Ш. // ЯФ. 1995. Т. 58. С. 1371.
- 8. Бондаренко В.А., Григорьев Е.П., Прокофьев П.Т. // Изв. АН СССР. Сер. физ. 1981. С. 2141.
- 9. Григорьев Е.П., Соловьев В.Г. Структура четных деформированных ядер. М.: Наука, 1974.
- Sie S.H., Ward D., Geiger J.S. et al. // Nucl. Phys. 1977. V. A 291. P. 443.
- 11. *Kearns F., Varley G., Dracoulis G.D. et al.* // Nucl. Phys. 1977. V. A 278. P. 109.

- Бегжанов Р.Б., Беленький В.М., Залюбовский И.И. Справочник по ядерной физике. Ташкент: Фан, 1989.
- Backlin A., Hedin G., Fogelberg B. et al. // Nucl. Phys. 1982. V. A 380. P. 189.
- 14. *McMillan D.J., Hamilton J.H., Pinajian J.J. //* Phys. Rev. 1971. V. C 4. P. 542.
- Konijn J., Be Boer F.W.N., Van Poelgeest A. et al. // Nucl. Phys. 1981. V. A352. P. 191.
- McGowan F.K., Milner W.T. // Phys. Rev. 1981. V. C 23. P. 1926.
- 17. McGowan F.K. // Phys. Rev. 1981. V. 24. P. 1803.
- 18. Okhunov A.A., Hasan Abu Kassim, Usmanov Ph.N. // Sains Malays. 2011. V. 40. No. 1. P. 13.

Investigation of the energies and electrical characteristics of the states of negative parity of the ¹⁵⁶Gd nucleus

P. N. Usmanov^{a, *}, A. I. Vdovin^b, A. N. Nishonov^a

^a Namangan Engineering-Technological Institute, Namangan, 160115 Uzbekistan ^b Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna, 141980 Russia *e-mail: usmanov1956.56@mail.ru

Within the framework of a phenomenological model, that considers the Coriolis interaction of the rotational band states, the negative parity states of the ¹⁵⁶Gd nucleus are studied. Mixing of octupole band states built on $K^{\pi} = 0^{-}$, 1⁻ is considered. Analytical expressions for calculation of the energies, wavefunctions and *E*1 transition probabilities are obtained. The calculated values of the energies and probability ratios of *E*1 transitions are in a good agreement with the experiment.