УДК 543.429.3

ПРИМЕНЕНИЕ МЕТОДОВ ЯДЕРНОЙ СПЕКТРОСКОПИИ ДЛЯ АНАЛИТИЧЕСКОГО ОБЕСПЕЧЕНИЯ И КОРРЕКТИРОВКИ ЭКСПЕРИМЕНТА ПО ЖИДКОСТНОЙ ЭКСТРАКЦИИ ТРАНСПЛУТОНИЕВЫХ И РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

© 2022 г. Е. А. Верховская^{1,} *, К. В. Ершов¹, Н. Е. Мишина¹, А. Ю. Николаев¹, Я. О. Плешаков¹

¹Акционерное общество "Радиевый институт имени В. Г. Хлопина", Санкт-Петербург, Россия

**E-mail: verhkatand@gmail.com* Поступила в редакцию 18.04.2022 г. После доработки 13.05.2022 г. Принята к публикации 23.05.2022 г.

Для мониторинга экстракции трансплутониевых элементов использована оценка объемной активности растворов по гамма- и альфа-спектрам. Обсуждаются критерии выбора методики измерений на примере конкретного эксперимента.

DOI: 10.31857/S0367676522090320

введение

В экспериментах, проводимых по схеме описанной в работе [1], итоговым результатом являются распределение концентраций элементов в ступенях экстракторов. Для корректировки эксперимента отбираются соответствующие образцы растворов. Наиболее удобным и оперативным инструментом для определения концентрации ППЭ являются спектрометры ионизирующих излучений. Для анализа концентраций находятся объемные активности растворов, концентрация вычисляется по формуле (1):

$$n = \left| \frac{dN}{dt} \right| \cdot \frac{1}{V} \cdot \frac{T_{1/2}}{\ln 2} \cdot \frac{M}{N_A},\tag{1}$$

где *n* – концентрация ТПЭ в растворе, $\left|\frac{dN}{dt}\right|$ – активность образца, *V* – его объем, *T*_{1/2} – период полураспада ТПЭ, *M* – его молярная масса, *N*_A – число Авогадро. Например, для ²⁴¹Am*T*_{1/2} = 1.365 · · 10¹⁰ с, *M* = 241. Пробы отбирались объемом 5 мл. Тогда для перевода активности в концентрацию для ²⁴¹Am получается следующее соотношение:

$$n = \left| \frac{dN}{dt} \right| \cdot \frac{1}{5 \cdot 10^{-3} \ \pi} \cdot \frac{1.365 \cdot 10^{10} \ c}{0.6931} \times \frac{241 \ r/MOЛЬ}{6.022 \cdot 10^{23} \ MOЛЬ^{-1}} = 1.576 \cdot 10^{-9} \ r/\pi.$$

ВЫБОР ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ И ОПИСАНИЕ МЕТОДИКИ ИЗМЕРЕНИЙ

При распаде ²⁴¹Ат можно наблюдать несколько альфа-, гамма- и рентгеновские линий (рис. 1). Процесс альфа-распада²⁴¹Ат можно записать в следующем виде:

$$^{241}_{95}\text{Am} \rightarrow ^{237}_{93}\text{Np} + ^{4}_{2}\text{He}(\sim 5.5 \text{ M} \Rightarrow \text{B}).$$

Основные альфа-линии имеют следующие энергии:

- 5485 кэB 84.8%;
- 5442 кэB 13.1%;
- 5388 кэB 1.66%.

Линии, наблюдаемые на гамма-спектрометрах при распаде ²⁴¹Am относятся к спектру нептуния. Часть из них — это излучение, обусловленное гамма-переходами между уровнями ядра ²³⁷Np, часть это рентгеновские переходы между внутренними электронными оболочками атома нептуния. Наиболее интенсивные из них:

 – 13.9 кэВ – рентген, интенсивность – 35% в пересчете на число альфа-распадов);

- 26.3 кэВ гамма, 2.27%;
- 59.6 кэВ гамма, 35.9%.

Значения энергий и интенсивности приведены по базе данных Брукхевенской национальной лаборатории [2], в других базах данных значения могут несколько отличаться.

Рис. 1. Частичная схема распада ²⁴¹Am [2].

На рис. 2–4 приведены спектры ²⁴¹Am на альфа-спектрометре с PIPS-детектором, сцинтилляционном гамма-спектрометре NaI(Tl) с колодцем и полупроводниковом спектрометре.

Измерения на альфа-спектрометре требуют сложной пробоподготовки: нанесение образца на подложку с добавлением спирта, сушки и отжига, что неудобно для оперативного контроля. Кроме того, альфа-спектры обладают сложной формой

Рис. 2. Спектр ²⁴¹Ат снятый на альфа-спектрометре с PIPS-детектором.

линий (асимметрией) из-за сильного рассеяния даже в очень тонких образцах, что усложняет анализ спектра. Если в образце содержатся другие альфа-излучатели (например, Pu) с близкими по энергии альфа-линиями, то для количественного анализа нужна априорная информация о составе образца (например, качественный изотопный состав примеси).

При подготовке эксперимента важно было не только определиться с методикой для данного эксперимента, но и понять, как действовать в дальнейших экспериментах по экстракции, особенно с короткоживущими изотопами.

В распоряжение имелись две возможности для измерения гамма-спектров: гамма-спектрометр с полупроводниковым детектором (ППД), который обладает высоким разрешением, но низкой

Рис. 3. Гамма-спектр ²⁴¹Am, полученный сцинтилляционным методом.

Рис. 4. Гамма-спектр ²⁴¹Am, полученный полупроводниковым методом на детекторе из сверхчистого германия.

эффективностью регистрации в необходимом диапазоне энергий рентгеновского и гамма-излучения (10-100 кэВ) и сцинтилляционный спектрометр с большим кристаллом и колодцем, обладающий высокой эффективностью и низким энергетическим разрешением, а также альфаспектрометр. Так как эксперимент проводился на модельных растворах и не предполагал наличия других гамма-излучателей, кроме ²⁴¹Am, то не предполагалось, что в гамма-спектрах понадобится разделять близко лежащие линии от различных элементов (изотопов), поэтому для регистрации был предложен сцинтилляционный метод, как для мониторинга в течение эксперимента, так и для окончательного расчета концентраций. Использование альфа-спектрометра не рассматривалось изза длительной пробоподготовки.

Сравним спектры на рис. 2 и 3. Как видно из рисунков, время экспозиции для сцинтиллятора составило около 15 мин (904 с), а для ППД — около 50 мин (2894 с). При этом амплитуда пика, соответствующего для ППД — 299 имп., для сцинтиллятора — 7000 имп. Поэтому выбор был сделан в пользу сцинтиллятора, т.к. его эффективность в данной области почти на 2 порядка превосходит ППД.

Активность растворов определялась по спектру гамма-излучения в диапазоне энергий от 10 до 65 кэВ. Для измерений метрологическим отделом

Радиевого института был изготовлен эталон в виде пробирки Эппендорфа с раствором ²⁴¹Am активностью 1750 Бк. Вычисление активности производилось при помощи встроенных возможностей программы управления спектрометром ASW. Расчет проводился двумя способами: В первом случае, спектральная линия измеряемого образца, соответствующая энергии 59.6 кэВ, аппроксимировалась функцией Гаусса (встроенная функция ASW) и ее площадь сравнивалась с площадью эталона, во втором – использовалась встроенная в ASW функция "Расчет", которая определяет активность по предварительно сохраненному калибровочному спектру. Результаты функция "Расчет" корректны только, когда параметры работы спектрометра (высокое напряжение, усиление) были идентичны при наборе спектров изучаемого образца и эталона.

РАСЧЕТЫ

Кроме измерений были проведены расчеты в программе PHiTS [3], как с целью проанализировать эксперимент, так и с целью настройки программы на простом эксперименте с последующим использованием предварительных расчетов в программе для эксперимента более сложного. Были рассчитаны и сравнивались с экспериментом количество событий в фотопиках в секунду, проанализирована геометрия поглощения гамма-

Nº	Образец	Интен. имп./Тэ	Площ. [имп.]	Ампл. [имп.]	Среднее [каналы]	ПШПВ [каналы]	Актив. "Расчет", Бк	Актив. "Гаусс", Бк
1	Эталон 1747 Бк		45465	6498	41.8	6.52	1750	_
2	Образец-1		88616	12539	41.8	6.58	3500	3405
3	Образец-2	1403	105393	14892	41.9	6.59	4190	4050
4	Образец-3	203	14296	2008	41.7	6.63	553	549
5	Образец-4	647	49241	6994	41.8	6.56	1920	1892
6	Образец-5	640	48636	6859	41.8	6.61	1900	1869
7	Образец-6	635	47044	6690	41.8	6.55	1870	1807
8	Образец-7	658	49700	6995	41.9	6.62	1940	1910
9	Образец-8	680	49970	7246	41.9	6.42	2010	1920
10	Образец-9	692	50810	7182	41.9	6.59	2030	1952
11	Образец-10	672	49026	7007	41.9	6.52	1950	1884
12	Образец-11	795	54333	7930	41.9	6.38	2210	2088
13	Образец-12	373	22744	3433	42.0	6.17	959	873
14	Образец-13	192	10776	1601	41.9	6.27	444	403
15	Образец-14	88	3987	575	41.9	6.45	164	153

Таблица 1. Сравнение определения активности образцов растворов ²⁴¹Am по гамма-линии 59.6 кэВ по методам "расчет" и "гаусс"

квантов в детекторах, рассчитаны спектры поглощения в детекторах.

ЗАКЛЮЧЕНИЕ

Из табл. 1 видно, что положение линии 59.6 кэВ и полуширина на половине высоты воспроизводятся во всех измерениях со значениями 41.9 \pm 0.2 и 6.5 \pm 0.2%, а разница в активностях измеренных двумя разными методами в среднем составляет 4%. Все значения активности, полученные методом "Расчет", несколько выше значений, полученные методом "Гаусс". К сожалению, из-за того, что алгоритм работы кода программы не известен, сложно определить преимущество того или другого метода.

При измерении концентрации радиоактивных веществ в растворе с простыми спектрами (спектры, состоящие из одной линии, или из нескольких удаленных друг от друга линий) преимущество у сцинтилляционного детектора с колодцем. Его эффективность регистрации выше в 100 раз, чем у имеющегося в лаборатории HPGE-детектора, следовательно, в 100 раз меньше время экспозиции, что особенно важно при проведении эксперимента с короткоживущими элементами.

Монте-Карло расчеты эксперимента в пакете PHiTs не противоречат полученным экспериментальным данным и хорошо известным свойствам детекторов, однако предположение о существенном самопоглощении мягкого гамма-излучения в азотнокислом растворе не подтверждают ни расчеты, ни эксперимент. По оценкам расчета (который совпадает с экспериментальными данными) самопоглощение излучения в растворе не превышает 3–4%.

СПИСОК ЛИТЕРАТУРЫ

- 1. Zilberman B.Ya., Goletskiy N.D., Puzikov E.A. et al. // Solv. Ext. Ion Exch. 2019. V. 37. No. 6. P. 435.
- 2. Database NuDat2.8. National Nuclear Data Center. Brookhaven National Laboratory.
- 3. *Sato T., Iwamoto Y., Hashimoto S. et al.* // J. Nucl. Sci. Technol. 2018. V. 55. P. 684.
- 4. Аксельрод Л.А., Белов С.Е., Диденко Г.П. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 8. С. 1094; Axelrod L.A., Belov S.E., Didenko G.P. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 8. P. 902.
- Бабичев А.П., Бабушкина Н.А., Братковский А.М. и др. Физические величины: справочник. М: Энергоатомиздат, 1991. 1232 с.
- 6. *Choppin R.G., Liljenzin J.-O., Rydberg J.* // J. Nucl. Sci. Technol. 2002. P. 62.
- 7. Горюнов А.Г., Дядик В.Ф., Ливенцов С.Н., Чурсин Ю.А. Математическое моделирование технологических процессов водно-экстракционной переработки ядерного топлива: Томск: Изд-во Томск. политех. ун-та, 2011. 237 с.

Application of nuclear spectroscopy methods for analytical support and correction of the experiment on liquid extraction of transplutonium and rear earth elements

E. A. Verkhovskaya^{a, *}, K. V. Ershov^a, N. E. Mishina^a, A. Yu. Nikolaev^a, Ya. O. Pleshakov^a ^aKhlopin Radium Institute, Saint-Petersburg, 194021 Russia *e-mail: verhkatand@gmail.com

To monitor the extraction of transplutonium elements, an assessment of the volumetric activity of solutions by gamma and alpha spectra is used. We described the criteria for choosing a measurement technique using a specific experiment as an example.