УДК 551.594

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ГЛОБАЛЬНОГО ИОНОСФЕРНОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ, СОЗДАВАЕМОГО ГРОЗАМИ

© 2023 г. В. В. Денисенко^{1, 2, *}, М. Дж. Райкрофт³, Р. Дж. Харрисон⁴

¹Институт вычислительного моделирования Сибирского отделения Российской академии наук – обособленное подразделение Федерального государственного бюджетного научного учреждения Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук", Красноярск, Россия

²Калининградский филиал Федерального государственного бюджетного учреждения науки "Институт земного магнетизма ионосферы и распространения радиоволн имени Н.В. Пушкова Российской академии наук", Калининград, Россия ³Цезарь консалтинг, Кембридж, Великобритания

⁴Университет Рэдинга, Факультет метеорологии, Рэдинг, Великобритания

**E-mail: denisen@icm.krasn.ru* Поступила в редакцию 29.08.2022 г. После доработки 16.09.2022 г. Принята к публикации 26.09.2022 г.

Данные об атмосферном электрическом поле хорошей погоды, полученные во время круиза VII миссии Карнеги, представлены в виде диаграммы в координатах универсальное время и месяцы, чтобы показать как суточные, так и сезонные вариации. Максимум поля наблюдается в момент времени около 18 UT в январе. Для этого момента времени создана модель ионосферной части глобальной электрической цепи, связанной с грозами. Построенная токовая система состоит из среднеширотной части и экваториальных электроструй, дневных и ночных, направленных на запад и восток, с силой тока до 120 А.

DOI: 10.31857/S0367676522700260, EDN: JVCZXA

введение

Существует несколько физических процессов, создающих ионосферное электрическое поле. Токи, создаваемые всеми этими генераторами, называются глобальной электрической цепью (ГЭЦ) [1]. Здесь мы изучаем только ту часть ГЭЦ, которая генерируется токами, поднимающимися из атмосферы. Хотя связанная с грозами часть ГЭЦ анализируется в многочисленных статьях, ее ионосферная часть все еще недостаточно изучена. Цель настоящей статьи – представить нашу модель электрических полей и токов, являющихся ионосферным проявлением части ГЭЦ, связанной с грозами. Первые результаты нашего моделирования были представлены в [2] с исправлением опечаток в [3]. Важной особенностью глобальных ионосферных токов является их концентрация вблизи геомагнитного экватора. Для ГЭЦ это было показано в [4]. Здесь мы кратко опишем модель [2] и представим новые результаты, полученные с использованием модели глобального распределения гроз [5], полученной на основе данных Всемирной наземной сети определения местоположения молнии (WWLLN) [6].

МОДЕЛЬ ГЛОБАЛЬНОГО ИОНОСФЕРНОГО ПРОВОДНИКА

Наша модель глобального проводника, состоящего из атмосферы, ионосферы, магнитосферы и литосферы, построенная для описания ГЭЦ с допустимыми упрощениями, детально описана в статье [2]. Мы рассматриваем атмосферу, ионосферу и магнитосферу как единый проводник, ограниченный снизу идеальным проводником, включающим океаны и сушу. Основными уравнениями для стационарного электрического поля \vec{E} и плотности тока \vec{j} являются закон Фарадея, закон сохранения заряда и закон Ома с тензором проводимости $\hat{\mathbf{G}}$. Вводится электрический потенциал V, для которого система уравнений сводится к уравнению электропроводности

$$-\operatorname{div}(\hat{\boldsymbol{\sigma}}\operatorname{grad} V) = Q. \tag{1}$$

Мы используем сферические геомагнитные координаты θ_m, ϕ_m , геомагнитную широту $\lambda_m = \frac{\pi}{2} - \theta_m$ и высоту над средним уровнем моря *h*. Проводимость ионосферы Земли представляет собой гиротропный тензор, одна ось которого

определяется направлением магнитной индукции \vec{B} . Мы используем компоненты векторов, параллельных и нормальных к \vec{B} , которые отмечаем символами || и \perp , при этом $B = \vec{B}$. Тогда закон Ома имеет вид

$$\vec{j}_{\parallel} = \sigma_{\parallel} \vec{E}_{\parallel}, \quad \vec{j}_{\perp} = \sigma_{P} \vec{E}_{\perp} - \sigma_{H} \left[\vec{E}_{\perp} \times \vec{B} \right] / B,$$
 (2)

с проводимостью Холла (σ_H), Педерсена (σ_P) и продольной (σ_{\parallel}). Проводимости рассчитываются с использованием эмпирических моделей IRI-2016, MSIS 1990 Е и IGRF. Поскольку в ионосфере продольная проводимость σ_{\parallel} на несколько порядков больше, чем σ_P, σ_H , можно свести трехмерную модель к двумерной [7]. Проинтегрировав закон Ома (2) вдоль магнитной силовой линии, получаем суммарную плотность тока через магнитную силовую линию j_{\perp} . Если бы силовые линии были параллельными прямыми линиями, то \vec{E}_{\perp} было бы постоянным при этом интегрировании, и

$$\vec{J}_{\perp} = \begin{pmatrix} \Sigma_P & \Sigma_H \\ -\Sigma_H & \Sigma_P \end{pmatrix} \vec{E}_{\perp}, \tag{3}$$

с интегральными проводимостями Педерсена и Холла Σ_P, Σ_H , которые получены из локальных проводимостей Педерсена и Холла σ_P, σ_H интегрированием вдоль магнитной силовой линии. Магнитные силовые линии не являются параллельными прямыми, и это вносит некоторые геометрические факторы в интегрирование. Мы также используем проводимость Каулинга $\Sigma_C = \Sigma_P + \Sigma_H^2 / \Sigma_P$, которая наиболее важна в низких широтах.

Закон сохранения заряда (1) в двумерной модели выполняется в проинтегрированном вдоль магнитной силовой линии виде. Для численного решения задачи полезно построить некоторую опорную область на плоскости с декартовыми координатами *x*, *y*, точки которой идентифицируют все рассматриваемые силовые линии магнитного поля. В приближении дипольного геомагнитного поля двумерное уравнение электропроводности в такой области может быть записано в виде

$$-\frac{\partial}{\partial x} \left(\Sigma_{P} \frac{\partial V}{\partial x} + \Sigma_{H} \frac{\partial V}{\partial y} \right) -$$

$$-\frac{\partial}{\partial y} \left(-\Sigma_{H} \frac{\partial V}{\partial x} + \Sigma_{P} \frac{\partial V}{\partial y} \right) = Q,$$
(4)

где Q определяется атмосферными токами, входящими в ионосферу через концы магнитной силовой линии в Северном и Южном полушариях. Для реального геомагнитного поля коэффициенты в (4) имеют более сложный вид [7].

Рассмотрение проводников в магнитосфере [8] показывает, что авроральные зоны эквива-

лентны почти идеальным проводникам, поскольку они соединены параллельно как между собой, так и с хорошими магнитосферными проводниками. Мы считаем их идеальным проводником с нулевым электрическим потенциалом V = 0, что дает граничное условие Дирихле. Вторую границу проводника образуют самые нижние магнитные силовые линии, рассматриваемые как ионосферные. На них задан ток из атмосферы. Получается смешанная краевая задача для дифференциального уравнения в частных производных (4), которое является уравнением эллиптического типа. Она имеет единственное решение [9].

МОДЕЛЬ ГЛОБАЛЬНОГО ГРОЗОВОГО ГЕНЕРАТОРА

Генератором ГЭЦ является совокупность всех гроз на Земле [10]. Их единым параметром является суммарный электрический ток в ионосферу. К сожалению, нет способа измерить этот ток. Поэтому приходится использовать процедуру [5], которая кратко описана ниже.

Сначала, по диаграмме Карнеги, описанной в следующем разделе, мы берем напряженность электрического поля хорошей погоды вблизи поверхности океана для исследуемого момента времени. Это поле E_0 и одномерная модель атмосферной проводимости дают разность потенциалов между поверхностью Земли и ионосферой U_0 . Затем мы получаем токи хорошей погоды на всем земном шаре и путем интегрирования получаем суммарный ток хорошей погоды, текущий из ионосферы на землю I_0 . Параметр $R = U_0/I_0$ представляет собой полное сопротивление атмосферы.

Сохранение заряда в стационарном случае означает, что такой же ток течет из грозовых областей в ионосферу $I_{storm} = I_0$. Поскольку распределение грозового тока по Земле неизвестно, мы заменяем его глобальным распределением молниевой активности, предполагая, что ток в ионосферу и количество вспышек молнии линейно пропорциональны некоторому скрытому параметру, который характеризует грозовую активность. Мы используем модель [5] глобального распределения грозовой активности, построенную на основе данных Всемирной наземной сети определения молнии (WWLLN) [6].

ДИАГРАММА КРУИЗА VII МИССИИ КАРНЕГИ

В статье [11] построены аппроксимации кривых Карнеги, т.е. зависимостей E_0 от UT, полученных для разных сезонов во время круиза VII.

Рис. 1. Вертикальное электрическое поле E_0 над поверхностью океана, полученное из данных VII круиза Карнеги [11]. Линии $E_0 = \text{const}$ в зависимости от времени (UT) и месяца года построены с интервалом $10 \text{ B} \cdot \text{m}^{-1}$. Штриховые линии соответствуют значениям $E_0 \leq 120 \text{ B} \cdot \text{m}^{-1}$.

Аппроксимирующие функции были выбраны в виде

$$E_0(t) = A_0 + \sum_{n=1}^{4} A_n \sin(nt 15^\circ + \varphi_n), \qquad (5)$$

где E_0 — напряженность направленного вниз электрического поля над поверхностью океана, t — универсальное время (UT) в часах, значения коэффициентов A_n и фаз φ_n приведены в табл. 4 в [11] с усреднением по тройкам месяцев. Из них мы используем четыре тройки: NDJ (ноябрь, декабрь, январь) и аналогично обозначаемые FMA, MJJ, ASO.

Сезонную зависимость удобно анализировать, если от этих четырех функций времени $E_0(t)$ перейти к единой функции $E_0(m,t)$, где параметр *m* описывает время в течение года, например, в месяцах. Параметр *m* мы считаем не дискретным, а непрерывно меняющимся в интервале 0 < m < 12. Все функции считаем периодически продолженными вне этого интервала.

Для определения $E_0(m,t)$ следует определить зависимость параметров (5) от *m*, например, $A_0(m)$. Естественно предполагать, что приведенные в [11] значения параметров (5) получены как средние для этих сезонов, например:

$$A_0^{\text{NDJ}} = \frac{1}{3} \int_{-2}^{1} A_0(m) dm , \quad A_0^{\text{FMA}} = \frac{1}{3} \int_{-2}^{4} A_0(m) dm ,$$

$$A_0^{\text{MJJ}} = \frac{1}{3} \int_{-2}^{7} A_0(m) dm , \quad A_0^{\text{ASO}} = \frac{1}{3} \int_{-7}^{10} A_0(m) dm .$$
(6)

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 87 № 1 2023

Искомая аппроксимирующая функция $A_0(m)$ должна удовлетворять этим уравнениям. Можно использовать тригонометрический полином

$$A_0(m) = a + b \cos(2\pi(m - 0.5)/12) + + c \sin(2\pi(m - 0.5)/12) + + e \cos(4\pi(m - 0.5)/12).$$
(7)

Сдвиг на полмесяца соответствует сдвигу в усреднениях (6) и позволяет не включать в (7) еще один член $\sin(4\pi(m-0.5)/12)$, поскольку его средние значения по всем четырем интервалам (6) равны нулю. Средние значения функции (7) по каждому интервалу несложно вычислить. Подставив их в уравнения (6), получаем четыре линейных алгебраических уравнения для четырех неизвестных *a*, *b*, *c*, *e*. Их решением являются

$$a = \left(A_0^{\text{NDJ}} + A_0^{\text{FMA}} + A_0^{\text{MJJ}} + A_0^{\text{ASO}}\right) / 4,$$

$$b = \left(A_0^{\text{NDJ}} - A_0^{\text{MJJ}}\right) \pi / (4\sqrt{2}),$$

$$c = \left(A_0^{\text{FMA}} - A_0^{\text{ASO}}\right) \pi / (4\sqrt{2}),$$

$$e = \left(A_0^{\text{NDJ}} - A_0^{\text{FMA}} + A_0^{\text{MJJ}} - A_0^{\text{ASO}}\right) \pi / 16.$$

(8)

Аналогично вычисляем коэффициенты полиномов вида (7) для остальных восьми функций. Подставив полученные девять функций $A_0(m),..., \varphi_4(m)$ в представление (5), получаем искомую функцию $E_0(m,t)$. Ее линии уровня показаны на рис. 1. По построению, ее усреднение за три месяца дает кривую Карнеги для этого периода. Рисунок 1 можно назвать диаграммой Карнеги VII. Она дает наглядное представление не только

Рис. 2. Глобальное распределение проводимости Каулинга Σ_C в 18:00 UT 1 января при низкой солнечной активности. Жирными контурами выделены области грозы, где J_{atm} > 0. Точками показан геомагнитный экватор.

UT вариаций, как кривая Карнеги, но и вариации в течение года.

Как видно по рис. 1, напряженность электрического поля в атмосфере над океаном минимальна (около 100 В/м) в период 02–12 UT в июне-июле и максимальна (до 170 В/м) в период 15–19 UT в январе. Последним обстоятельством определяется выбор 1 января для детального представления результатов моделирования в настоящей статье.

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

Описанным выше способом мы получили глобальное распределение грозовых токов в ионосферу для первого дня года, когда диаграмма Карнеги на рис. 1 показывает абсолютный максимум $E_0 = 177 \text{ B} \cdot \text{m}^{-1}$ в момент времени 18 UT. Затем мы добавили токи хорошей погоды, которые имеют противоположное направление, $J_{atm} < 0$. Жирные контуры на рис. 2 выделяют грозовые области, в которых $J_{atm} > 0$.

Поскольку диаграмма Карнеги представляет измерения над океаном, мы используем соответствующие значения атмосферных параметров $\sigma(0) = 3.09 \cdot 10^{-14} \,\mathrm{Cm} \cdot \mathrm{m}^{-1} \,\mathrm{u} \,\Sigma(\lambda, \phi) = 1.09 \cdot 10^{-17} \,\mathrm{Cm}$ в соответствии с моделью [2]. Для $E_0 = 177 \,\mathrm{B/m}$ получаем $U_0 = 502 \,\mathrm{\kappa B}$ и $I_{storm} = 2.79 \,\mathrm{\kappa A}$ при R =

= 180 Ом. Если мы используем параметры, соответствующие суше, $\sigma(0) = 1.54 \cdot 10^{-14} \text{ См} \cdot \text{м}^{-1}$ и $\Sigma(\lambda, \phi) = 0.80 \cdot 10^{-17} \text{ См}$ для того же E_0 , мы получим $U_0 = 340 \text{ кВ и } I_{storm} = 1.89 \text{ кА.}$

Решение смешанной краевой задачи для уравнения (4) в основной части ионосферы в 18 ч UT представлено на рис. 3. Распределение электрического потенциала $V(\varphi_m, \lambda_m)$ на высоте h = 120 км в ионосфере показано с помощью эквипотенциалей, построенных с интервалом 20 В. Для малых значений V < 40 В интервал взят равным 4 В; на рис. 3 они показаны тонкими линиями, штриховые линии соответствуют отрицательным значениям.

Максимальная разность потенциалов в ионосфере составляет около 220 В. Это на три порядка меньше, чем напряжение между землей и ионосферой, которое в этой модели составляет 502 кВ. Соответствующая напряженность электрического поля также невелика. Его горизонтальная составляющая не превышает 90 мкВ · м⁻¹. Тем не менее, именно это небольшое электрическое поле обеспечивает распределение ионосферных токов, которые замыкают токи из атмосферы и в атмосферу.

Положение области максимального значения ионосферного потенциала V = 205 В соответ-

Рис. 3. Распределение электрического потенциала на высоте 120 км в ионосфере. Эквипотенциали построены с интервалом 20 В, дополнительно тонкими линиями для *V* < 40 В с интервалом 4 В. Штриховые линии соответствуют отрицательным значениям потенциала. Жирными контурами выделены области грозы, где *J*_{atm} > 0. Карта рассчитана для 18:00 UT 1 января при низкой солнечной активности. Точками показан геомагнитный экватор.

ствует большому грозовому генератору над Северо-Западной Австралией. Видны лишь незначительные возрастания потенциала над другими грозовыми областями из-за высокой дневной ионосферной проводимости (вблизи экватора местный полдень наступает при $\varphi_m = 340^\circ$). Рисунок 3 демонстрирует естественное свойство напряженности электрического поля: она намного больше в ночной ионосфере, поскольку там мала проводимость.

Теперь обратим внимание на окрестность геомагнитного экватора, на котором магнитное поле \vec{B} по определению имеет нулевую вертикальную составляющую. Геомагнитный экватор показан точками на рис. 2 и 3. Эквипотенциали примерно перпендикулярны геомагнитному экватору. Строго говоря, они параллельны магнитному полю \vec{B} , а направление \vec{B} точно перпендикулярно геомагнитному экватору только для дипольного поля. Мы видим изменение потенциала вдоль геомагнитного экватора на рис. 3, что означает ненулевую составляющую E_{ϕ} напряженности электрического поля.

Из-за существенного увеличения проводимости на геомагнитном экваторе E_{ϕ} создает экваториальные электроструи [12]. Строго говоря, нам нужна составляющая E_{jet} , которая нормальна к магнитному полю и не сильно отличается от E_{ω} . Это поле незначительно меняется с высотой на силовых линиях магнитного поля, вершины которых находятся ниже 200 км. Как видно на рис. 4, оно не превышает 40 мк $B \cdot M^{-1}$. Ток электроструи I_{iet} может быть получен численным интегрированием по силовым линиям магнитного поля с вершинами в интервале высот 90 < *H* < 135 км [12]. Интегрирование проводимости Каулинга по той же области дает полную проводимость области электроструи A_{jet}. Ток электроструй показан жирной линией на рис. 4. Направления электроструй также показаны горизонтальными стрелками (положительный ток направлен на восток). Вертикальными стрелками отмечены токи, поднимающиеся в ионосферу из основных грозовых областей, каждая стрелка соответствует 100 А в данном секторе. Большая часть этого тока возникает в огромной грозовой области, включающей Северо-Западную Австралию и Юго-Восточную Азию. Именно эта область порождает основную восточную электрострую к востоку от нее (до 120 А) и сильную западную электрострую к западу от нее

ДЕНИСЕНКО и др.

Рис. 4. Ток электроструй $I_{jet}(\varphi_m)$ (жирная линия), компонента $E_{jet}(\varphi_m)$ электрического поля (тонкая линия), проводимость области электроструи $A_{jet}(\varphi_m)$ в логарифмическом масштабе (штриховая линия). Горизонтальные стрелки показывают направления экваториальных электроструй в ионосфере. Вертикальные стрелки характеризуют токи, поступающие в ионосферу из грозовых областей; каждая стрелка соответствует 100 А вблизи этого меридиана.

(до 90 А). Такие направления означают, что заряды, доставляемые в ионосферу из атмосферы, разносятся ионосферными токами, в том числе, этими электроструями.

ЗАКЛЮЧЕНИЕ

Создана модель ионосферной части ГЭЦ, связанной с грозами, для январского вечера (18 UT). Эта токовая система содержит четыре экваториальных электроструи, дневные и ночные, направленные на запад и на восток, с токами, достигающими 120 А. Они создают магнитные возмущения на земле, которые, по оценкам, находятся в диапазоне 0.1 нТл. В принципе, эти магнитные возмущения можно было бы измерить на геомагнитном экваторе ночью, когда они не замаскированы сильными электроструями, порождаемыми всеми ионосферными и магнитосферными генераторами.

Данные миссии Карнеги представлены в виде диаграммы в координатах UT и время года, чтобы показать как суточные, так и сезонные вариации. Рисунок 1 построен для VII круиза Карнеги.

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 21-17-00208).

СПИСОК ЛИТЕРАТУРЫ

- Hays P.B., Roble R.G. // J. Geophys. Res. 1979. V. 84. No. A7. P. 3291.
- 2. Denisenko V.V., Rycroft M.J., Harrison R.G. // Surv. Geophys. 2019. V. 40. No. 1. P. 1.
- 3. Denisenko V.V., Rycroft M.J., Harrison R.G. // Surv. Geophys. 2019. V. 40. No. 1. P. 37.
- 4. *Denisenko V.V., Rycroft M.J.* // J. Atmos. Terr. Phys. 2021. V. 221. No. 3. Art. № 105704.
- Денисенко В.В., Ляхов А.Н. // Солн.-земн. физ. 2021. Т. 7. № 4. С. 111; Denisenko V.V., Lyakhov A.N. // Sol.-Terr. Phys. 2021. V. 7. No. 4. Р. 104.
- 6. *Rodger C.J., Brundell J.B., Dowden R.L., Thomson N.R.* // Ann. Geophys. 2004. V. 22. P. 747.
- 7. Denisenko V.V., Biernat H.K., Mezentsev A.V. et al. // Ann. Geophys. 2008. V. 26. P. 2111.
- 8. http://arxiv.org/abs/1802.07955.
- 9. Денисенко В.В. // Сибир. мат. журн. 1994. Т. 35. № 3. С. 554; Denisenko V.V. // Siberian Math. J. 1994. V. 35. No. 3. P. 495.
- Мареев Е.А. // УФН. 2010. Т. 180. С. 527; Mareev E.A. // Phys. Usp. 2010. V. 53. No. 5. P. 504.
- 11. Harrison R.G. // Surv. Geophys. 2013. V. 34. P. 209.
- Richmond A.D. // J. Atmos. Terr. Phys. 1973. V. 3. No. 6. P. 1083.

Mathematical model of the global ionospheric electric field generated by thunderstorms

V. V. Denisenko^{a, b, *}, M. J. Rycroft^c, R. G. Harrison^d

^aInstitute of Computational Modelling of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, 660036 Russia ^bWest Department of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences, Kaliningrad, 236016 Russia

^cCAESAR Consultancy, Cambridge, CB3 9HW United Kingdom

^dUniversity of Reading, Department of Meteorology, Reading, RG6 6BB United Kingdom

*e-mail: denisen@icm.krasn.ru

A model is created for the thunderstorm-related ionospheric part of the global electric circuit in January. This current system consists of both mid-latitude currents and equatorial electrojets, day-time and night-time, westward and eastward, up to 120 A. Data on the atmospheric fair weather electric field obtained during Carnegie cruise VII are plotted as a two dimensional map in Universal Time and month coordinates to show both time and seasonal variations.