УДК 551.510.535

ЭФФЕКТИВНОСТИ ВОЗБУЖДЕНИЯ ЭМИССИЙ И ФОРМИРОВАНИЯ ЭЛЕКТРОННОЙ КОНЦЕНТРАЦИИ В ПОЛЯРНЫХ СИЯНИЯХ

© 2023 г. В. Е. Иванов¹, Ж. В. Дашкевич^{1, *}, О. И. Ягодкина¹

¹ Федеральное государственное бюджетное научное учреждение "Полярный геофизический институт", Апатиты, Россия *E-mail: zhanna@pgia.ru

Поступила в редакцию 17.09.2022 г. После доработки 05.10.2022 г. Принята к публикации 26.10.2022 г.

Показано, что эффективности возбуждения авроральных эмиссий $\lambda = 391.4$, 557.7 и 630.0 нм и эффективность формирования электронной концентрации слабо зависят от формы энергетического спектра высыпающихся электронов и определяются в основном значениями средних энергий потока электронов.

DOI: 10.31857/S0367676522700508, EDN: AJCHKI

введение

Моделирование пространственного распределения интенсивностей свечения различных эмиссий и электронной концентрации в периолы магнитосферных возмушений имеет важное значение в вопросах диагностики и прогноза состояния возмущенной полярной ионосферы. Созданию глобальных моделей планетарного распределения аврорального свечения были посвящены работы [1, 2]. В качестве экспериментальной основы при создании таких моделей в этих работах были использованы эмпирические модели электронных высыпаний [3-5], при этом в обеих работах для проведения расчетов делалось априорное предположение о форме энергетического спектра потока высыпающихся электронов. В данной работе рассмотрено влияние формы энергетического спектра и средней энергии высыпающихся электронов на интегральную интенсивность авроральных эмиссий и содержание электронов в столбе полярного сияния.

ЭФФЕКТИВНОСТИ ВОЗБУЖДЕНИЯ ОПТИЧЕСКИХ ЭМИССИЙ

Введем понятие эффективности возбуждения оптической эмиссии как отношение интегральной интенсивности излучения с длиной волны λ к полному потоку энергии высыпающихся электронов:

$$Eff_{\lambda} = I_{\lambda} / F_E, \qquad (1)$$

где I_{λ} — интегральная интенсивность эмиссии, измеряемая в Рэлеях, F_E — поток энергии высыпающихся электронов в эрг · см⁻² · с⁻¹.

Интегральная интенсивность соответствует суммарной интенсивности в вертикальном столбе полярного сияния и может быть рассчитана из высотного профиля объемной интенсивности излучения:

$$I_{\lambda} = \int_{0}^{\infty} Q_{\lambda}(h) dh, \qquad (2)$$

где: $Q_{\lambda}(h)$ — величина объемной интенсивности излучения с длинной волны λ на высоте h в фотон · см⁻³ · с¹.

Рассмотрим влияние параметров потока высыпающихся электронов на эффективность возбуждения эмиссий в вертикальном столбе полярных сияний. Под параметрами потока будем понимать форму энергетического спектра и среднюю энергию высыпающихся электронов. Для исследования были выбраны наиболее характерные эмиссии, наблюдаемые в полярных сияниях: эмиссия первой отрицательной системы полос

 N_2^+ 1NG λ = 391.4 нм и эмиссии возбужденного атомарного кислорода OI λ = 557.7 нм и OI λ = 630.0 нм.

Расчеты интенсивностей эмиссий проводились в рамках физико-химической модели возбужденной полярной ионосферы, представленной в работе [6], позволяющей рассчитывать высотные профили концентрации 17 основных возбужденных и ионизированных компонент атмосферных газов и электронную концентрацию

Рис. 1. Эффективности возбуждения оптических эмиссий, рассчитанные для трех видов спектра высыпающихся электронов: длинный пунктир — поток с экспоненциальным распределением, короткий пунктир — моноэнергетический поток, сплошная линия — поток с максвелловским распределением (3).

во время авроральных высыпаний. Входными параметрами в этой модели являются энергетический спектр высыпающихся электронов на верхней границе ионосферы и модель нейтральной атмосферы. Перераспределение энергии, выделившейся вследствие высыпаний электронов, описывают 56 физико-химических реакций. Высотные профили скоростей образования возбужденных компонент атмосферных газов рассчитывались с использованием функции диссипации энергии и "энергетических цен", полученных на основе результатов моделирования процесса переноса электронов в атмосферных газах, представленных в работе [7]. Расчеты проводились в модели нейтральной атмосферы MSIS-E-90, данные взяты с веб-сайта https://ccmc.gsfc.nasa.gov/modelweb/models/msis_vitmo.php. Для исследования были выбраны три вида энергетического спектра потока высыпающихся электронов: моноэнергетический, поток с экспоненциальным распределением по энергиям и поток с максвелловским распределением по энергиям соответственно:

$$f(E) = F_E \delta(E - E_0), \quad f(E) = \frac{F_E}{E_0^2} \exp\left(-\frac{E}{E_0}\right),$$

$$f(E) = \frac{F_E}{2E_0^3} E \exp\left(-\frac{E}{E_0}\right).$$
 (3)

Расчеты проводились для средних энергий в диапазоне от 0.1 до 20 кэВ, который является типичным для авроральных электронов, возбуждающих полярные сияния [3, 8, 9]. При моделировании излучения авроральных эмиссий необходимо учитывать величины альбедо-потоков, которые определяют долю энергии электронов, отраженную атмосферой. Доля отраженной энергии находится в зависимости от высоты источника электронов и энергии высыпающихся частиц [7]. Поэтому расчеты эффективностей возбуждения оптических эмиссий проводились для двух случаев, без учета альбедо-потоков и с их учетом, при этом источник электронов помещался на высоте 700 км.

Исследуем зависимости эффективностей возбуждения оптических эмиссий $E\!f\!f_{\lambda}$ от средней энергии потока высыпающихся электронов Есп. Эмиссии первой отрицательной системы полос молекулярного азота возбуждаются только благодаря прямому возбуждению электронным ударом, следовательно, они могут служить эффективным инструментом для оценки процессов энергообмена между магнитосферой и ионосферой. На рис. 1 приведены рассчитанные зависимости эффективности возбуждения эмиссии 1NG $N_2^+ \lambda = 391.4$ нм от средней энергии высыпающихся электронов E_{cp} для трех видов энергетических спектров высыпающихся авроральных электронов (3). Из рисунка видно, что эффективность возбуждения оптической эмиссии $\lambda =$ = 391.4 нм – *Eff*_{391.4} – слабо зависит от формы начального дифференциального потока частиц (1). Максимальное отклонение Eff_{391.4} от среднего значения в рассматриваемом диапазоне средней энергии электронов не превышают 8%.

На рис. 1 также приведены зависимости эффективностей от средней энергии высыпающихся электронов $Eff_{\lambda}(E_{cp})$, рассчитанные для эмиссий возбужденного атомарного кислорода OI $\lambda =$ = 557.7 нм и OI $\lambda =$ 630.0 нм для трех видов энергетических спектров авроральных электронов (3). В отличие от эмиссии 1NG $\lambda =$ 391.4 нм, в возбуждение перечисленных выше эмиссий кроме, прямого удара, вносят вклад процессы перераспределения энергии в результате химических реакций, что в значительной степени влияет на интенсивность эмиссий возбужденного атомарного кислорода. [6, 10]. Несмотря на этот факт, эффективно-

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 87 № 2 2023

Рис. 2. Эффективность формирования электронной концентрации в столбе полярного сияния, рассчитанная для трех видов спектра высыпающихся электронов: длинный пунктир – экспоненциальное распределение, короткий пунктир – моноэнергетический поток, сплошная линия – максвелловское распределение (3).

сти возбуждения этих эмиссий $Eff_{557.7}$ и $Eff_{630.0}$ также слабо зависят от формы энергетического спектра потока высыпающихся электронов. Максимальное отклонение от среднего значения не более 10%.

Таким образом, эффективности возбуждения рассматриваемых авроральных эмиссий Eff_{λ} зависят в основном от средней энергии высыпающихся электронов E_{cp} .

ЭФФЕКТИВНОСТЬ ФОРМИРОВАНИЯ ЭЛЕКТРОННОЙ КОНЦЕНТРАЦИИ

Эффективность формирования электронной концентрации в столбе полярного сияния определим как отношение полного содержания электронной концентрации в столбе полярного сияния к величине потока энергии высыпающихся электронов:

где

$$Eff_e = N_e / F_E , \qquad (4)$$

$$N_e = \int_0^\infty n_e(h) \, dh. \tag{5}$$

В формулах: N_e — полное содержание электронной концентрации в столбе полярного сияния в см⁻², $n_e(h)$ — концентрация электронов на высоте h в см⁻³.

Электронная концентрация рассчитывалась в рамках физико-химической модели авроральной ионосферы [6] при условии термодинамического равновесия как сумма концентрации ионов на высоте *h*:

$$n_e = [N_2^+] + [O_2^+] + [O^+(^4S)] + + [O^+(^2D] + [O^+(^2P)] + [NO^+] + [N^+].$$

Рассмотрим влияние параметров спектра высыпающихся электронов на эффективность формирования полного содержания электронной концентрации. Для этого исследуем зависимости Eff_e от средней энергии высыпающихся электронов для трех видов энергетического спектра (3). Рассчитанные зависимости $Eff(E_{cp})$ для средних энергий в диапазоне 0.1-20 кэВ приведены на рис. 2. Можно видеть, что максимальные отклонения Eff_e от среднего значения не превышают 5%. Таким образом, эффективность формирования электронной концентрации также, как и эффективности возбуждения оптических эмиссий, слабо зависит от формы спектра высыпающихся электронов и определяется их средней энергией.

ПРОГНОЗ ПЛАНЕТАРНОЙ КАРТИНЫ ПОЛЯРНЫХ СИЯНИЙ

Слабая зависимость $Eff_{\lambda}(E_{cp})$ от вида энергетического спектра потока высыпающихся электронов позволяет в алгоритмах, реализующих прогноз планетарного распределения интенсивности излучения в полярных сияниях на основе эмпирических моделей авроральных высыпания, использовать следующую связь:

$$I_{\lambda} = F_E E f f_{\lambda} \left(E_{\rm cp} \right), \tag{6}$$

где I_{λ} — интегральная интенсивность излучения эмиссии с длиной волны λ , F_E и E_{cp} — поток энергии и средняя энергия электронов, представленных в эмпирических моделях авроральных высыпаний.

Величина $Eff_{\lambda}(E_{cp})$ определяется как усредненное значение соответствующих кривых на рис. 1.

Аналогично, для расчетов планетарного распределения электронной концентрации в столбе полярного сияния можно использовать формулу:

$$N_e = F_E Eff_e(E_{\rm cp}), \tag{7}$$

где N_e — полное содержание электронной концентрации в вертикальном столбе полярного сияния.

На рис. 3 приведены примеры планетарного распределения интенсивности свечения эмиссий $\lambda = 391.4$, 557.7 и 630.0 нм и электронной концентрации в столбе полярного сияния, рассчитанные с использованием формул (6) и (7), для трех уровней магнитных возмущений. Слабое возмущение: индексы *AL* и *D*_{st} равны -100 и -5 нТл соот-

Рис. 3. Планетарное распределения интенсивности свечения эмиссий $\lambda = 391.4$, 557.7 и 630.0 нм и электронной концентрации в столбе полярного сияния для трех уровней магнитной активности: левая колонка – индексы AL = -100 нТл и $D_{st} = -5$ нТл, средняя колонка – AL = -300 нТл и $D_{st} = -5$ нТл, правая колонка – AL = -100 нТл и $D_{st} = -100$ нТл.

ветственно, среднее возмущение: AL = -300 нТл и $D_{st} = -5$ нТл, сильное возмущение AL = -1000 нТл и $D_{st} = -100$ нТл. Расчеты были сделаны по данным эмпирической модели авроральных электронных высыпаний [9], где представлены про-

странственные распределения средних энергий и потока энергии высыпающихся электронов для разных уровней магнитной активности. На рисунке хорошо видны вариации как планетарного распределения, так и величин интенсивностей свечения авроральных эмиссий и содержания электронной концентрации.

ЗАКЛЮЧЕНИЕ

Исследовано влияние параметров потока высыпающихся электронов на интенсивность эмиссий $\lambda = 391.4$, 557.7 и 630.0 нм и величину электронной концентрации в вертикальном столбе полярных сияний. В качестве параметров потока авроральных электронов рассматривались: форма энергетического спектра и средняя энергия высыпающихся электронов.

Введено понятие эффективности возбуждения оптической эмиссии Eff_{λ} , определяемое как отношение интегральной интенсивности излучения с длиной волны λ к полному потоку энергии высыпающихся электронов и, по аналогии, эффективности формирования полного содержания электронной концентрации в столбе полярного сияния Eff_e . Расчеты Eff_{λ} и Eff_e проводились для трех видов энергетического спектра авроральных электронов: моноэнергетического, экспоненциального и потока с максвелловским распределением. Средняя энергия варьировалась в диапазоне 0.1-20 кэВ, который является типичным для авроральных электронов. Показано, что эффективности Eff_{λ} и Eff_{e} слабо зависят от формы энергетического спектра и определяются в основном значениями средних энергий потока электронов.

Рассчитанные зависимости Eff_{λ} и Eff_e от средних энергий позволяют построить эффективные алгоритмы для расчета планетарного распределения интенсивностей свечения и полной элек-

тронной концентрации в полярных сияниях по данным эмпирических моделей электронных высыпаний, не делая априорных предположений о виде энергетического спектра потока высыпающихся электронов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Иванов В.Е., Кириллов А.С., Мальков М.В. и др. // Геомагн. и аэроном. 1993. Т. 33. № 5. С. 80.
- Воробьев В.Г., Кириллов А.С., Катькалов Ю.В., Ягодкина О.И. // Геомагн. и аэроном. 2013. Т. 53. № 6. С. 757; Vorobyov V.G., Kirillov A.S., Katkalov Yu.V., Yagodkina O.I. // Geomagn. Aeron. 2013. V. 53. No. 5. P. 711.
- Spiro R.V., Reiff P.H., Maher L.J. Jr. // J. Geophys. Res. 1982. V. 87. No. A10. P. 8215.
- 4. Воробьев В.Г., Ягодкина О.И. // Геомагн. и аэроном. 2005. Т. 45. № 4. С. 467; Vorobyov V.G., Yagodkina O.I. // Geomagn. Aeron. 2005. V. 45. No. 4. Р. 438.
- 5. Воробьев В.Г., Ягодкина О.И. // Геомагн. и аэроном. 2007. Т. 47. № 2. С. 198; Vorobyov V.G., Yagodkina O.I. // Geomagn. Aeron. 2007. V. 47. No. 2. Р. 185.
- 6. Дашкевич Ж.В., Иванов В.Е., Сергиенко Т.И., Козелов Б.В. // Косм. иссл. 2017. Т. 55. № 2. С. 94; Dashkevich Zh.V., Ivanov V.E., Sergienko T.I., Kozelov B.V. // Cosmic Res. 2017. V. 55. No. 2. P. 88.
- Иванов В.Е., Козелов Б.В. Прохождение электронных и протонно-водородных пучков в атмосфере Земли. Апатиты: Изд. Кольского науч. центра, 2001. 260 с.
- Hardy D.A., Gussenhoven M.S., Raistrick R., McNeil W.J. // J. Geophys. Res. 1987. V. 92. No. A11. Art. No. 12275.
- 9. Vorobjev V.G., Yagodkina O.I., Katkalov Yu.V. // J. Atm. Sol.-Terr. Phys. 2013. V. 102. P. 157.
- 10. Дашкевич Ж.В., Иванов В.Е. // Тр. Кольск. науч. центра РАН. 2018. Т. 5. С. 69.

Efficiencies of emission excitation and electron density formation in auroras

V. E. Ivanov^a, Zh. V. Dashkevich^{a, *}, O. I. Yagodkina^a

^a Polar Geophysical Institute, Apatity, 184209 Russia *e-mail: zhanna@pgia.ru

It is shown that the efficiencies of excitation of optical emissions $\lambda = 391.4$, 557.7, and 630.0 nm and the efficiency of formation of the total electron density weakly depend on the shape of the energy spectrum of precipitating electrons and are mainly determined by the values of the average energy of the electron flux.