УДК 537.622.4

МАТЕРИАЛЫ НА ОСНОВЕ RC02 И RMnSi ДЛЯ ТВЕРДОТЕЛЬНОГО МАГНИТНОГО ОХЛАЖДЕНИЯ

© 2023 г. И. С. Терёшина^{1, *}, Ю. А. Овченкова¹, Г. А. Политова², Н. Ю. Панкратов¹

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова", Москва, Россия ²Федеральное государственное бюджетное учреждение науки

Институт металлургии и материаловедения имени А.А. Байкова Российской академии наук, Москва, Россия

**E-mail: tereshina@physics.msu.ru* Поступила в редакцию 28.09.2022 г. После доработки 27.10.2022 г. Принята к публикации 25.11.2022 г.

Разработаны высокоэффективные материалы для твердотельного магнитного охлаждения в области температур 120–280 К. Для этого были исследованы новые составы типа $(R,R')(Co,T)_2$ и R(Mn,T)Si (T = Fe, Co, Al) и их гидриды с заметным по величине магнитокалорическим эффектом в области температуры Кюри. Выявлены основные закономерности поведения магнитокалорического эффекта в зависимости от состава.

DOI: 10.31857/S0367676522700624, EDN: HFYNVW

введение

Твердотельное магнитное охлаждение — это технология, основанная на магнитокалорическом эффекте (МКЭ), способная помочь снизить потребление энергии в мире, а также избежать использования такого экологически вредного хладагента, как фреон [1, 2]. Благодаря значительным усилиям, предпринимаемым учеными разных стран, в настоящее время созданы предпосылки для качественного прорыва в развитии данной технологии и применения ее в различных областях науки и техники [3–5].

Отметим особо, что современная биология, медицина и пищевая промышленность испытывают крайнюю необходимость в удобных в эксплуатации экономных, бесшумных, безопасных, безвибрационных, компактных холодильных установках для длительного хранения уникальных биоматериалов, вакцин, лекарственных и пищевых продуктов при строго определенной температуре, как правило, намного ниже комнатной. К большому сожалению, научное сообщество уделяет мало внимания материалам, демонстрирующим значительный по величине магнитокалорический эффект в области таких температур, что является большим пробелом. Именно поэтому данная работа направлена на изучение и разработку основ создания новых магнитных материалов, демонстрирующих высокие значения МКЭ в интервале температур 120-280 К.

Наиболее полезными материалами тут могут быть ферро- или ферримагнетики, функционирующие вблизи температуры Кюри (T_C) – перехода из магнитоупорядоченного в неупорядоченное состояние, поскольку именно в области фазового перехода наблюдается наибольший по величине магнитокалорический эффект. Существует и основное требование к магнитокалорическому материалу: при использовании его в конструкциях эффективных теплообменников в магнитных холодильных устройствах магнитокалорический материал должен демонстрировать большие величины изменения температуры и энтропии в достаточно широком диапазоне температур. Другими словами, магнитный или магнитоструктурный переход должен быть второго, а не первого рода, а магнитный гистерезис – отсутствовать. В противном случае, возможна структурная нестабильность и механическая усталость, что приведет к проблемам необратимости и недолговечности используемого материала. Соединения с магнитными фазовыми переходами второго рода не имеют гистерезиса и, как правило, демонстрируют широкие пики на температурной зависимости МКЭ.

При комнатной температуре основным функциональным материалом является гадолиний, который в настоящее время широко используется в прототипах магнитных холодильных устройств. Его магнитокалорический эффект ($\Delta T_{a,f}$) равен 5 К при изменении магнитного поля $\mu_0 \Delta H = 2$ Тл (т.е. $\Delta T_{an}/\mu_0 \Delta H$ составляет 2.5 К/Тл). Еще несколько соединений, а именно FeRh [6], Gd₅(Ge,Si)₄ [7], MnAs [8], La(Fe,Si)₁₃ [9], а так же сплавы Гейслера [10] демонстрируют гигантский МКЭ вблизи комнатной температуры, однако для этих составов характерны магнитные фазовые переходы первого рода, что затрудняет их использование на практике.

В данной работе изучены и проанализированы магнитокалорические характеристики двух важнейших систем: соединений типа $(R,R')(Co,T)_2$ со структурой фаз Лавеса, а также слоистых магнетиков с общей формулой R(Mn,T)Si, с атомами замещения (T = Fe, Co, Al) и с атомами внедрения (водородом).

ЭКСПЕРИМЕНТ И МЕТОДИКА Обработки данных

Сплав ТbСо₂ и четыре системы на его осно-Be $Tb_{0.2}Dy_{0.8-x}Gd_xCo_2$, $Tb_{0.2}Dy_{0.8-x}Gd_xCo_{1.9}Al_{0.1}$, $Tb_{v}(Dy_{0.5}Ho_{0.5})_{1-v}Co_{2}, Tb_{v}(Dy_{0.5}Ho_{0.5})_{1-v}Co_{1.75}Al_{0.25}$ были синтезированы в атмосфере гелия в дуговой электропечи с использованием нерасходуемого W электрода, циркониевого гетра и медного водоохлаждаемого пода. Исходные навески металлов помещались в камеру вакуумной дуговой электропечи на медный водоохлаждаемый поддон; камера герметизировалась и откачивалась вакуумным и диффузионным насосами до остаточного давления 0.1 МПа, после чего заполнялась гелием. Синтез соединений проводился прямым сплавлением и таким образом исключались побочные примесные эффекты. Каждый сплав был переплавлен трижды. Последующий отжиг при 800°С в течение одного месяца в запаянных вакуумированных кварцевых ампулах обеспечивал получение высококачественных образцов.

Сплав GdMnSi и две системы на его основе GdMn_{1 – x}Fe_xSi и GdMn_{1 – x}Co_xSi были получены дуговой плавкой в атмосфере чистого аргона. Чистота исходных компонентов не хуже 99.9%. Методика синтеза образцов подробно описана в работе [11].

Гидрирование двух составов GdFeSi и TbCo₂ проводилось прямой реакцией исходных образцов с газом H₂ высокой чистоты, полученным при разложении дигидрида титана TiH₂. Для приготовления гидрида GdFeSi-H навеску 0.6 г помещали в металлическую реакционную камеру объемом около 6 см³ аппарата для синтеза типа Зиверта. Перед началом абсорбции водорода образец термически активировали в высоком вакууме 10⁻⁴ Торр при 250°C в течение 2 ч. После охлаждения образца до комнатной температуры в реакционную трубку вводили газообразный водород чистотой 5N под давлением 10 бар, затем образец нагревали до 150° С и оставляли при этой температуре на 20 ч. После снижения температуры до комнатной образец оставляли под давлением водорода на следующие 2–3 дня для достижения равновесия и завершения реакции. Количество поглощенного водорода рассчитывали волюметрическим методом. Используемый метод позволил получить гидрид GdFeSiH₁. Подробности и особенности процедуры гидрирования соединения TbCo₂ изложены в работе [12]. Точность определения концентрации водорода составляет 0.05 ат. Н/форм. ед. Были получены гидриды TbCo₂H₂ и TbCo₂H₂.

Все полученные исходные сплавы (до и после отжигов), а также их гидриды были аттестованы с помощью рентгеноструктурного и микроструктурного анализа.

Магнитокалорический эффект был измерен на установке MagEq MMS 901. Данная установка предназначена для измерения прямым методом адиабатического изменения температуры (ΔT_{ag}), вызванного изменением магнитного поля ($\mu_0 \Delta H$). Измерения проводились как в автоматическом, так и в ручном режимах. Величина внешнего магнитного поля могла изменяться от 0 до 1.8 Тл при установленной скорости изменения поля от 0.25 до 4.7 Тл/с и в интервале температур от 80 до 360 К. При этом точность определения изменения температуры составляла 0.05 К.

Намагниченность образцов измерялась с помощью стандартного оборудования PPMS-7. Изменение магнитной части энтропии вычислялось путем интегрирования полевых зависимостей намагниченности в соответствии с соотношением Максвелла:

$$\Delta S_M = \int_0^H \left(\frac{\partial M}{\partial T}\right)_H dH.$$
 (1)

Температура Кюри определялась термодинамическим методом Аррота-Белова.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА И ИХ ОБСУЖДЕНИЕ

Известно [13], что температура Кюри соединений RCo₂ колеблется в достаточно широкой области от ~400 К (для соединения GdCo₂) до ~4 К (для соединения TmCo₂). Используя атомы замещения или внедрения можно осуществлять "настройку" температуры Кюри на заданные значения. Для выбранного нами температурного интервала (120–280 К) среди RCo₂ наибольший интерес представляют составы TbCo₂ ($T_{\rm C}$ = 230 К, магнитный фазовый переход II рода) и DyCo₂ ($T_{\rm C}$ = 135 К, магнитный фазовый переход I рода). Магнитокалорический эффект ($\Delta T_{\rm an}$) в TbCo₂ и

DyCo₂ равен ~2 и 4.5 К при изменении магнитного поля $\mu_0 \Delta H = 2$ Тл соответственно [1]. Если влияние атомов замещения на МКЭ для соединений TbCo₂ и DyCo₂, а также для системы (Tb,Dy)Co₂ достаточно хорошо изучено как экспериментально [14], так и теоретически [15], то влияния атомов внедрения, таких как водород, практически не исследовалось. Ранее в работе [16] были исследованы магнитные свойства гидридов TbCo₂-H и DyCo₂-H. Обнаружено, что магнитный момент на атомах Co (µ_{Co}) и температура Кюри увеличиваются при малых содержаниях водорода (меньше, чем 1 ат. Н/форм. ед.), тогда как при больших содержаниях водорода (вплоть до ~4 ат. Н/форм. ед.) μ_{Co} , и T_C существенно уменьшаются. МКЭ в гидриде Tb_{0.3}Dy_{0.7}Co₂H_{0.5} с невысоким содержанием водорода на порядок величины меньше, чем в исходном соединении Tb_{0.3}Dy_{0.7}Co₂, хотя температура Кюри и возрастала приблизительно на 10 градусов [12].

Введение водорода с точки зрения расширения решетки равносильно приложению отрицательного гидростатического давления. Изменение температуры Кюри в системах TbCo₂-H и DyCo₂-H с высоким содержанием водорода как функция изменения объема элементарной ячейки $\Delta V/V$ показаны на рис. 1. На этом же рисунке проведена линия (сплошная), построенная на основе известных литературных данных по сжимаемости образца TbCo₂ ($\kappa = 10^{-2}$ ГПа⁻¹ [17]), а также по влиянию гидростатического давления на его температуру Кюри ($dT_C/dP = -9$ К/ГПа [18]). Скорость изменения температуры Кюри с изменением объема элементарной ячейки определяется по формуле:

$$\frac{d\ln T_{\rm C}}{dp} = -\left(\frac{\kappa}{T_{\rm C}}\right)\frac{dT_{\rm C}}{d\ln V},\tag{2}$$

здесь $\kappa = \frac{-dV/V}{p}$. Расчеты показывают, что $\frac{dT_{\rm C}}{dV/V}$

составляет 9 К при изменении объема элементарной ячейки на 1%. Из рис. 1 видно, что экспериментально определенное уменьшение T_C для составов TbCo₂H₂ и TbCo₂H_{2.4} совпадает с рассчитанным (в пределах экспериментальной ошибки), в то время как для состава TbCo₂H_{3.9} [16] наблюдается отклонение. Это означает, что кроме объемного эффекта в гидриде TbCo₂H_{3.9} начинает проявляться электронный эффект [19, 20].

На рис. 2*а* представлена температурная зависимость магнитокалорического эффекта, а именно, изменение магнитной части энтропии ($-\Delta S$) для TbCo₂ и его гидрида TbCo₂H_{2.4}. Отметим, что расчеты величины МКЭ при изменении внешнего магнитного поля от 0 до 5 Тл выполнялись с ис-

Рис. 1. Зависимость температуры Кюри от относительного увеличения объема элементарной ячейки $\Delta V/V$ для систем TbCo₂H_x и DyCo₂H_x [16] и ожидаемое изменение $T_{\rm C}$ (сплошная линия), определенное на основе данных по влиянию гидростатического давления на температуру Кюри соединения TbCo₂ [17, 18].

пользованием уравнения (1). Видно, что величина МКЭ в результате гидрирования снижается.

Проанализируем теперь результаты исследования зависимости величины МКЭ для Tb_vDy_{1 - v}Co₂ [14], TbCo_{2 - z}Fe_z [21] и TbCo₂H от их температур Кюри (см. рис. 2б). Сравнительный анализ показывает, что в соединении ТbCo₂ замещение атомов тербия на атомы диспрозия способствуют резкому возрастанию МКЭ и уменьшению температуры Кюри. В то же самое время частичное замещение атомов кобальта на атомы железа, наоборот, приводит к увеличению Т_с и снижению величины МКЭ. Данное явление связано с тем фактом, что тип магнитного фазового перехода в системе $TbCo_{2-z}Fe_z$ сохраняется, в то время как в системе $Tb_{v}Dy_{1-v}Co_{2}$, как уже отмечалось выше, тип перехода при увеличении содержания Dy меняется со второго на первый. Крайне важно с практической точки зрения, что при таких замещениях зависимость $-\Delta S(T_{\rm C})$ является монотонной.

Введение атомов водорода в кристаллическую решетку соединения $TbCo_2$ хотя и приводит к значительному (почти на 200 K) уменьшению T_C для концентраций водорода 2 и 2.4 ат./форм. ед., однако, как показано выше, величина МКЭ уменьшается (тип магнитного перехода при гидрировании соединения $TbCo_2$ не меняется).

Рис. 2. Зависимость МКЭ от температуры для TbCo₂ и его гидрида TbCo₂H_{2.4} при изменении внешнего магнитного поля от 1 до 5 Тл (*a*). Зависимость МКЭ (измеренного во магнитном поле 2 Тл) от температуры Кюри составов TbCo₂H_x (x = 0, 2 и 2.4), Tb_yDy_{1 - y}Co₂(y = 0, 0.2, 0.4, 0.6, 0.8, 1) [14] и TbCo_{2 - z}Fe_z (z = 0.06 и 0.1) [21] (δ).

Проанализируем далее представленные на рис. 3 результаты исследования зависимости величины МКЭ от температуры Кюри многокомпонентных систем $Tb_{0.2}Dy_{0.8-x}Gd_xCo_2 u Tb_y(Dy_{0.5}Ho_{0.5})_{1-y}Co_2$, а также для аналогичных систем, в которых атомы кобальта частично замещались атомами алюминия $Tb_{0.2}Dy_{0.8-x}Gd_xCo_{1.9}Al_{0.1} u Tb_y(Dy_{0.5}Ho_{0.5})_{1-y}Co_{1.75}Al_{0.25}$ [22, 23]. Заметим, что все измерения МКЭ проводились прямым методом, а по оси ординат показана величина $\Delta T_{an}/\mu_0\Delta H$, что позволяет проводить корректное сравнение экспериментальных данных не только между собой, но и с данными для эталонного образца Gd. Из рис. 3 видно, что в

Рис. 3. Изменение величины $\Delta T_{a,\mu}/\mu_0 \Delta H$ в зависимости от значения T_C многокомпонентных систем Tb_{0.2}Dy_{0.8 – x}Gd_xCo₂ (*a*), Tb_y(Dy_{0.5}Ho_{0.5})_{1 – y}Co₂ (*a*), Tb_{0.2}Dy_{0.8 – x}Gd_xCo_{1.9}Al_{0.1} (*b*), Tb_y(Dy_{0.5}Ho_{0.5})_{1 – y}Co₂ (*a*), Co_{1.75}Al_{0.25} (*b*) [22].

соединении TbCo₂ сложные замещения как в подрешетке тербия, так и в подрешетке кобальта позволяют (при определенных концентрациях замещающих элементов) стабилизировать величину МКЭ на некотором уровне, что не характерно, например, для соединений Tb_yDy_{1 – y}Co₂, рассмотренных выше. Наибольшие значения МКЭ наблюдаются при температурах ниже 200 К (в области, где тип магнитного фазового перехода меняется со второго на первый). Соединения Tb_{0.2}Dy_{0.8}Co₂ и Dy_{0.5}Ho_{0.5}Co₂ демонстрируют практически одинаковые значения МКЭ $(\Delta T_{an}/\mu_0\Delta H = 2 \text{ K/Tn})$ при температурах 165 и 115 К соответственно. Однако это значение ниже, чем у Gd $(\Delta T_{an}/\mu_0\Delta H = 2.5 \text{ K/Tn})$. Тем не менее, подобные замещения позволяют скомпенсировать константы магнитокристаллической анизотропии в многокомпонентных составов типа (Tb,Dy,Ho,Gd)(Co,Al)₂ и позволяют наблюдать в соединениях с фазовыми переходами второго рода стабильные тепловые эффекты в сравнительно слабых (до 2 Tл) магнитных полях.

На рис. 4 собраны результаты исследования изменения величины $\Delta T_{\rm ar}/\mu_0\Delta H$ (полученной в адиабатических условиях) в зависимости от T_C для соединений GdMnSi, GdCoSi, GdFeSi и замещенных составов на их основе $GdMn_{1-x}Fe_xSi$ и GdMn_{1 – v}Co_vSi, GdFe_{1 – z}Co_zSi [24]. Данные соединения являются слоистыми магнетиками: атомы гадолиния и 3d-металла находятся в изолированных слоях, разделенных слоями кремния. Магнитные свойства данной группы соединений крайне чувствительны к различным замещениям, поскольку последние оказывают сильное влияние как на межатомные расстояния, так и на электронную структуру данных соединений, приводя к изменению степени заполнения 3*d*-зоны на уровне Ферми и, следовательно, к изменению величины и знака обменных взаимодействий [25, 26].

Измерения МКЭ для всех указанных выше составов были выполнены прямым методом. Среди исследованных соединений самое высокое значение МКЭ $\Delta T_{a\pi}/\mu_0 \Delta H = 1.2$ К/Тл было обнаружено у соединения GdFeSi при температуре Кюри равной ~125 К. Для составов с более высокими температурами Кюри магнитокалорический эффект стремительно падает: при введении Со осциллирующее обменное взаимодействие между слоями редкоземельного металла меняет знак, и для соединения GdCoSi характерен отрицательный обмен между атомами Gd, а введение Mn, с одной стороны, уменьшает заполнение 3d-зоны, приводя к увеличению магнитного момента в 3*d*-подсистеме, усилению обменных взаимодействий и резкому росту температуры магнитного упорядочения, но с другой стороны, отрицательные взаимодействия между тяжелым редкоземельным металлом Gd и 3d-подсистемой приводят к уменьшению результирующей намагниченности всего соединения, неизбежно снижая величину МКЭ. Следует также отметить, что для всех представленных систем $GdMn_{1-x}Fe_xSi$ и $GdMn_{1-y}Co_ySi$, $GdFe_{1-z}Co_zSi$, зависимости $\Delta T_{ar}(T_c)$ не являются монотонными поскольку на величину МКЭ одновременно оказывает влияние несколько факторов.

В соединении GdFeSi магнитокалорический эффект, рассчитанный по формуле (1), при изме-

Рис. 4. Изменение величины $\Delta T_{a,\pi}/\mu_0 \Delta H$ в зависимости от значения $T_{\rm C}$ многокомпонентных систем GdMn_{1-x}Fe_xSi, GdMn_{1-x}Co_xSi и GdFe_{1-z}Co_zSi [24].

нении внешнего магнитного поля $\mu_0 \Delta H = 5$ Тл может достигать значений 10 Дж/кг · К [24]. Как уже отмечалось выше, нами был получен гидрид GdFeSiH₁. Установлено, что у гидрида величина МКЭ увеличилась в два раза относительно величины МКЭ в исходном составе и составила 20 Дж/кг · К. Однако, как и в случае гидридов TbCo₂H_{2-2.4} введение атомов водорода между атомами редкоземельного металла понизило температуру Кюри гидрида более, чем на 100 град: со 125 (у GdFeSi) до 20 К (у GdFeSiH₁), что может значительно расширить область применения подобных материалов.

ЗАКЛЮЧЕНИЕ

Изучены магнитные и магнитокалорические свойства соединений типа RCo₂ со структурой фаз Лавеса и слоистых магнетиков с общей формулой R(Mn,T)Si (T = Fe, Co), а также их гидридов. Установлены важные закономерности изменения температуры Кюри и магнитной части энтропии (или адиабатического изменения температуры) исследованных образцов в зависимости от состава. На примере большого количества соединений со стехиометрической пропорцией 1:2 и 1:1:1 было показано, что важным фактором, влияющим на величину МКЭ являются температура и тип магнитного фазового перехода. Установлено, что величина МКЭ может быть значительной для соединений типа RCo₂ с температурой Кюри $T_{\rm C}$ < 200 K, а для соединений типа RMnSi с $T_{\rm C}$ < 150 K.

Обнаружено, что в многокомпонентных соединениях типа (R,R',R")(Co,T)₂ можно наблюдать явление стабилизации величины МКЭ (его независимость от состава). Так, для системы $Tb_y(Dy_{0.5}Ho_{0.5})_{1 - y}Co_2$ высокие значения МКЭ $\Delta T_{a,f}/\mu_0\Delta H = 1.25 - 1.35$ К/Тл наблюдаются для составов с температурами Кюри в интервале от 150 до 230 К. Такие соединения наиболее привлекательны для практического использования.

Влияние гидрирования на МКЭ в системах с разной стехиометрической пропорцией (1 : 2 и 1 : 1 : 1) может отличаться существенным образом. Показано, что величина МКЭ в гидридах TbCo₂H_{2-2.4} падает (на 25–30%), в то время как в гидриде GdFeSiH₁, наоборот, возрастает в два раза по сравнению с исходным образцом. Общей тенденцией для исследованных гидридов является резкое уменьшение температуры Кюри, которое составляет приблизительно 100 градусов в расчете на 1 ат. Н/форм. ед.

Исследование выполнено при поддержке Российского научного фонда (проект № 22-29-00773).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Tishin A.M., Spichkin Y.I.* The magnetocaloric effect and its applications. Bristol and Philadelphia: Institute of Physics Publishing, 2003. 476 p.
- Franco V., Blázquez J.S., Ipus J.J. et al. // Prog. Mater. Sci. 2018. V. 93. P. 112.
- 3. *Kitanovski A., Tušek J., Tomc U. et al.* Magnetocaloric energy conversion from theory to applications. Cham: Springer International Publishing, 2015. 456 p.
- Соколовский В.В., Мирошкина О.Н., Бучельников В.Д. // Физ. мет. и металловед. 2022. Т. 123. С. 344; Sokolovskiy V.V., Miroshkina O.N. Buchelnikov V.D. // Phys. Met. Metallogr. 2022. V. 123. P. 319.
- Соколовский В.В., Мирошкина О.Н., Бучельников В.Д., Марченков В.В. // Физ. мет. и металловед. 2022.
 Т. 123. С. 339; Sokolovskiy V.V., Miroshkina O.N., Buchelnikov V.D. et al. // Phys. Met. Metallogr. 2022.
 V. 123. P. 315.
- Annaorazov M.P., Asatryan K.A., Myalikgulyev G. et al. // Cryogenics. 1992. V. 32. No. 10. P. 867.

- Pecharsky V.K., Gschneidner Jr. K.A. // Adv. Mater. 2001. V. 13. No. 9. P. 683.
- Govor G.A., Mitsiuk V.I., Nikitin S.A. et al. // J. Alloys Compounds. 2019. V. 801. P. 428.
- Skokov K.P., Karpenkov A.Y., Karpenkov D.Y., Gutfleisch O. // J. Appl. Phys. 2013. V. 113. No. 17. Art. No. 17A945.
- Aliev A., Batdalov A., Bosko S. et al. // J. Magn. Magn. Mater. 2004. V. 272. No. 3. P. 2040. Art. No. 17A933.
- 11. Nikitin S.A., Ivanova T.I., Tskhadadze I.A. // Acta Phys. Polon. A. 1997. 91. No. 2. P. 463.
- 12. Терешина И.С., Каминская Т.П., Чжан В.Б. и др. // ФТТ. 2019. Т. 61. № 7. С. 1229; Tereshina I.S., Kaminskaya T.P., Chzhan V.B. et al. // Phys. Solid State. 2019. V. 61. No. 7. P. 1169.
- Gratz E., Markosyan A.S. // J. Phys. Cond. Matter. 2001. V. 13. No. 23. Art. No. R385.
- 14. *Zhuang Y., Chen X., Zhok K. et al.* // J. Rare Earths. 2008. V. 26. No. 5. P. 749.
- De Oliveira N.A. // J. Magn. Magn. Mater. 2008. V. 320. No. 14. Art. No. e150.
- Мушников Н.В., Гавико В.С., Гото Т. // Физ. мет. и металловед. 2005. V. 100. Р. 24; Mushnikov N.V., Gaviko V.S., Goto T. // Phys. Met. Metallogr. 2005. V. 100. No. 4. P. 338.
- 17. Brouha M., Buschow K.H.J. // J. Phys. F. 1973. V. 3. P. 2218.
- Burzo E., Vlaic P., Kozlenko D.P. et al. // J. Alloys Compounds. 2013. V. 551. P. 702.
- Tereshina E.A., Khmelevskyi S., Politova G. et al. // Sci. Reports. 2016. V. 6. Art. No. 22553.
- 20. Tereshina E.A., Yoshida H., Andreev A.V. et al. // J. Phys. Soc. Japan. 2007. V. 76. No. Suppl. A. P. 82.
- 21. Halder M., Yusuf S.M., Mukadam M.D., Shashikala K. // Phys. Rev. B. 2010. V. 81. Art. No. 174402.
- 22. Chzhan V.B., Tereshina I.S., Karpenkov A.Yu., Tereshina-Chitrova E.A. // Acta Mater. 2018. V. 154. P. 303.
- 23. Politova G.A., Pankratov N.Y., Vanina P.Y. et al. // J. Magn. Magn. Mater. 2019. V. 470. P. 50.
- 24. Wlodarczyk P., Hawelek L., Zackiewicz P. et al. // Mater. Chem. Phys. 2015. V. 162. P. 273.
- Ovchenkova I.A., Nikitin S.A., Tereshina I.S. et al. // J. Appl. Phys. 2020. V. 128. No. 14.
- Nikitin S.A., Tskhadadze I.A., Morozkin A.V. et al. // J. Magn. Magn. Mater. 1999. V. 196. No. 197. P. 632.

Materials based on RCo₂ and RMnSi for solid-state magnetic cooling

I. S. Tereshina^{a, *}, I. A. Ovchenkova^a, G. A. Politova^b, N. Yu. Pankratov^a

^a Lomonosov Moscow State University, Moscow, 119991 Russia ^b Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, Moscow, 119334 Russia *e-mail: tereshina@physics.msu.ru

The aim of the work was to create highly efficient materials for solid-state magnetic cooling at temperatures below room temperature (120–280 K). For this, new $(R,R')(Co,T)_2$ and R(Mn,T)Si (T = Fe, Co, Al) compounds with a noticeable magnetocaloric effect (MCE) in the Curie temperature region were investigated. The main regularities of the behavior of the MCE depending on the composition are revealed.