УДК 538.945:538.915

# МОДЕЛИРОВАНИЕ СВЕРХПРОВОДЯЩЕГО ТРИПЛЕТНОГО СПИНОВОГО КЛАПАНА С НЕСКОЛЬКИМИ СЛОЯМИ СВЕРХПРОВОДНИКА

© 2023 г. Р. Р. Гайфуллин<sup>1,</sup> \*, Р. Г. Деминов<sup>1</sup>, В. Н. Кушнир<sup>2, 3</sup>, М. Ю. Куприянов<sup>4</sup>, А. А. Голубов<sup>5</sup>, Л. Р. Тагиров<sup>1, 6</sup>

 <sup>1</sup>Федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" Институт физики, Казань, Россия
 <sup>2</sup>Белорусский государственный университет информатики и радиоэлектроники, Минск, Беларусь
 <sup>3</sup>Белорусский государственный университет, Кафедра теоретической физики и астрофизики, Минск, Беларусь
 <sup>4</sup>Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имериетической физики и астрофизики, Минск, Беларусь "Московский государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова", Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына, Москва, Россия
 <sup>5</sup>Университет Твенте, Институт нанотехнологий MESA+, Факультет науки и технологий, Энсхеде, Нидерланды <sup>6</sup>Казанский физико-технический институт имени Е.К. Завойского – обособленное структурное подразделение Федерального государственного бюджетного учреждения науки "Федеральный исследовательский центр "Казанский научный центр Российской академии наук", Казань, Россия \*E-mail: gaifullin.rashid@gmail.com Поступила в редакцию 28.10.2022 г.

После доработки 15.11.2022 г. Принята к публикации 26.12.2022 г.

С помощью матричного метода решения линеаризованных уравнений Узаделя получена критическая температура и распределение синглетных компонент спаривания структуры сверхпроводник/ферромагнетик/сверхпроводник/ферромагнетик с неидеальными границами. Получен переход из  $\pi$ - в 0-фазовое состояние между слоями сверхпроводников при изменении угла между намагниченностями ферромагнитных слоев в такой структуре.

DOI: 10.31857/S0367676522700831, EDN: NKTWTF

#### введение

Исследуется критическая температура перехода в сверхпроводящее состояние  $T_{\kappa}$  и распределение синглетных компонент сверхпроводящего спаривания симметричных С/Ф/С, асимметричных  $C1/\Phi/C2$  и  $C1/\Phi1/C2/\Phi2$  гетероструктур (C – синглетный сверхпроводник, Ф – ферромагнитный металл) с неидеальными границами, в которых дальнодействующая триплетная сверхпроводящая компонента генерируется при неколлинеарных направлениях намагниченностей ферромагнитных слоев [1]. Ранее было показано, что критическая температура трехслойной С/Ф1/Ф2 гетероструктуры [2] может быть немонотонной функцией угла α между намагниченностями ферромагнитных слоев, в отличие от монотонного поведения  $T_{\kappa}(\alpha)$  в трехслойной  $\Phi 1/C/\Phi 2$  гетероструктуре [3]. В работе [4] рассмотрено влияние дополнительного слоя сверхпроводника и дополнительного слоя нормального металла между ферромагнитными слоями на прямой и триплетный режимы спинового вентиля при изменении толщин этих слоев в приближении идеальных границ: параметр квантово-механической прозрачности границы  $\gamma_r = 0$ , константы диффузии и удельные сопротивления слоев одинаковы. В данной работе рассматривается влияние дополнительного слоя сверхпроводящего металла с параметрами материалов и границ из работы [5]. Поэтому данное исследование актуально как для моделирования и определения параметров реальных структур, так и выявления особенностей в их поведении.

## МОДЕЛЬ И ЧИСЛЕННЫЙ МЕТОД

Первоначально зависимости критической температуры  $T_{\kappa}$  симметричных С/Ф/С пленок [6] с осью x, перпендикулярной поверхности слоев, и бесконечных в направлениях y и z, моделируются матричным методом [7–9] в 0 и  $\pi$  фазовом состоянии для сравнительного анализа с асимметричными С1/Ф/С2 гетероструктурами.

Затем моделируется критическая температура С1/Ф1/С2/Ф2 структур. Направление обменного поля Ф1 слоя лежит плоскости в vz.  $\vec{h}(x) = E_{ob}\vec{m}(x) = (0, E_{ob}\sin\alpha, E_{ob}\cos\alpha),$  а обменное поле Ф2 слоя направлено вдоль оси z,  $\vec{h}(x) = (0, 0, E_{00}), \vec{m}(x) -$  единичный вектор, сонаправленный вектору намагниченности, Е<sub>об</sub> – энергия обменного взаимодействия. Угол α изменяется от 0 (параллельная ориентация) до  $\pi$  (антипараллельная ориентация). Критическая температура спинового клапана определяется в диффузионном пределе. Справедливые в этом пределе уравнения Узаделя для сверхпроводящего и ферромагнитного слоя [7]

$$\begin{cases} \left(-\frac{D_{c}}{2}\partial_{x}^{2}+|\omega|\right)F_{0,\omega}\left(x\right)=\Delta\left(x\right)\\ \left(-\frac{D_{c}}{2}\partial_{x}^{2}+|\omega|\right)\vec{F}_{1,\omega}\left(x\right)=\vec{0}, \end{cases}$$
(1)
$$\begin{cases} \left(-\frac{D_{\phi}}{2}\partial_{x}^{2}+|\omega|\right)F_{0,\omega}\left(x\right)+i\mathrm{sgn}\left(\omega\right)\left(\vec{h}\left(x\right),\vec{F}_{1,\omega}\left(x\right)\right)=0\\ \left(-\frac{D_{\phi}}{2}\partial_{x}^{2}+|\omega|\right)\vec{F}_{1,\omega}\left(x\right)+i\mathrm{sgn}\left(\omega\right)\vec{h}\left(x\right)F_{0,\omega}\left(x\right)=\vec{0}, \end{cases}$$
(2)

решаются матричным методом. Здесь  $D_{c(\phi)}$  – коэффициенты диффузии сверхпроводящего и ферромагнитного материалов.  $\omega = \pi k_{\rm b} T (2n+1)$  – мацубаровские частоты,  $n = 0, 1, ..., n_{\rm d}$ ;  $n_{\rm d}$  – целая часть выражения  $\omega_{\rm d}/2\pi k_{\rm b} T - 0.5$ , где  $\omega_{\rm d}$  – дебаевская частота;  $\Delta(x) = \pi k_{\rm b} T \lambda \sum_{\omega} F_{0,\omega}(x)$  – параметр порядка в сверхпроводнике;  $\lambda$  – константа эффективного электрон-электронного взаимодействия;  $\vec{\mathcal{F}}_{\omega}(\vec{r}) = (F_{0,\omega}\sigma_0 + \vec{F}_{1,\omega}\vec{\sigma})\sigma_3 = (F_{0,\omega}\sigma_0 + F_{1,\omega}\sigma_2 + F_{13,\omega}\sigma_3)\sigma_3$  – аномальная функция Грина,  $F_{0,\omega}$ ,  $F_{12,\omega}$ ,  $F_{13,\omega}$  – синглетная и триплетные компоненты,  $\sigma_i$  – матрицы Паули. Уравнения (1), (2) дополнены условиями на внешних границах

$$\partial_x f_{0,n}(0) = \partial_x f_{0,n}(L) = 0,$$
  

$$\partial_x \vec{f}_{1,n}(0) = \partial_x \vec{f}_{1,n}(L) = \vec{0},$$
(3)

и на границах контактов

$$\rho^{-1}(x_i+0)\partial_x f_{0,n}(x_i+0) = \rho^{-1}(x_i-0)\partial_x f_{0,n}(x_i-0),$$
  
$$f_{0,n}(x_i+0) =$$
(4)

$$=f_{0,n}(x_i-0)+\gamma_{r\phi c}\xi_c\frac{\rho_{\Phi}}{\rho(x_i-0)}\partial_x f_{0,n}(x_i-0),$$

для синглетной компоненты, и такие же условия для триплетных компонент.  $\rho(x) = \rho_{c(\Phi)}$  – удельное низкотемпературное сопротивление сверхпроводящих и ферромагнитных материалов;  $\xi_{c(\Phi)} = \sqrt{D_{c(\Phi)}/2\pi k_{\rm b}T_{\rm kC}}$  – их длины когерентности,

 $T_{\rm kC}$  – температура перехода в сверхпроводящее состояние массивного сверхпроводника. Характеристическое уравнение имеет вид

$$\Psi\left(\frac{\omega_{\mathrm{A}}}{2\pi k_{\mathrm{B}}T} + 1 + \mu_{\mathrm{c}}^{(k)}(T)\right) - \Psi\left(\frac{1}{2} + \mu_{\mathrm{c}}^{(k)}(T)\right) = \\
= \Psi\left(\frac{\omega_{\mathrm{A}}}{2\pi k_{\mathrm{B}}T_{\mathrm{KC}}} + 1\right) - \Psi\left(\frac{1}{2}\right),$$
(5)

где  $\psi(x)$  дигамма функция. В данной работе используются следующие значения параметров:  $T_{\rm kC} = 7 \text{ K}, \rho_{\rm c} = 7.5 \text{ мкОм} \cdot \text{см}, \xi_{\rm c} = 8.9 \text{ нм}, E_{\rm of} = 150 \text{ K},$  $\rho_{\rm p} = 60 \text{ мкОм} \cdot \text{см}, \xi_{\rm p} = 7.6 \text{ нм}.$ 

#### РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Распределение парной волновой функции характеризует фазовое состояние и поведение критической температуры в зависимости от толщины ферромагнитного слоя симметричных С/Ф/С, асимметричных С1/Ф/С2 и С1/Ф1/С2/Ф2 гетероструктур (рис. 1а-3а). Физически наблюдаемой критической температурой является наибольшая из двух. 0-фазовое состояние, когда разность фаз межлу сверхпроволящим парным потенциалом в сверхпроводящих слоях равна нулю, и *π*-фазовое состояние с разным знаком у сверхпроводящих слоев изображены на рис. 16 в поперечном сечении структуры. Для асимметричных C1/Ф/C2 структур толщина С1 слоя постоянна, толщина С2 слоя меньше на левой половине рис. 2а и больше на правой половине. Для различных толщин ферромагнитного слоя  $d_{\phi}/\xi_{\phi} = 0.75, 1.0$  асимметричной структуры C1/ $\Phi$ /C2 построены распределения синглетной компоненты для каждой из двух критических температур. Сплошной линией показано распределение при большей Т<sub>к</sub>, пунктиром при меньшей. Нормирующий знаменатель  $\sum f_0$ синглетных компонент асимметричной структуры C1/ $\Phi$ /C2 большей  $T_{\kappa}$  принадлежит более толстому сверхпроводящему слою на рис. 2б.

В C1/ $\Phi$ /C2 структуре  $\pi$ -состояние (с разностью фаз π между сверхпроводящими слоями) может иметь большую критическую температуру, чем в 0-состоянии (с нулевой разностью фаз) (рис. 1 и 2). Вероятно, что C1/Ф1/C2/Ф2 структура также содержит спин-вентильные режимы в πсостоянии с большей критической температурой, чем в С/Ф1/Ф2 структуре. Для С1/Ф1/С2/Ф2 структуры толщина С1 слоя такая же, как и для  $C1/\Phi/C2$  на рис. 1 и 2, толщины  $\Phi1$  и  $\Phi2$  слоев одинаковые (рис. 3). Распределение синглетных компонент обсуждается как основная причина поведекритической температуры С1/Ф1/С2/Ф2 ния структуры в зависимости от угла α между магнитными моментами ферромагнитных слоев. Толщина ферромагнитного слоя между сверхпроводниками,



**Рис. 1.**  $T_{\rm K}$  как функция толщины  $d_{\Phi}$  симметричной С/Ф/С структуры,  $d_{\rm c}/\xi_{\rm c} = 1.24$ ,  $\gamma_{\rm r\phi c} = 0.07$  (*a*). Распределения спиновых синглетных  $\sum f_0(x)/\sum f_0(0)$  компонент сверхпроводящего спаривания в поперечном сечении структуры для рис. 1*a* ( $\delta$ ).



**Рис. 2.**  $T_{\rm K}$  как функция толщины  $d_{\rm p}$  асимметричной C1/ $\Phi$ /C2 структуры,  $d_{\rm c1}/\xi_{\rm c1} = 1.24$ ,  $\gamma_{\rm r\phi c} = 0.07$  (*a*). Распределение спиновых синглетных  $\sum f_0(x)/\sum f_0$  компонент сверхпроводящего спаривания в поперечном сечении структуры для рис. 2*a* ( $\delta$ ).

при которой происходит смена фазового состояния структуры, при изменении угла между намагниченностями ферромагнитных слоев смещается в сторону больших толщин. Возникает область толщин ферромагнитного слоя  $d_{\phi}/\xi_{\phi} = 0.9 - 0.95$  (рис. 3*a*), при которой происходит смена фазового состояния с  $\pi$ - на 0-фазовое состояние. Вопреки предположению, полученные режимы обладают меньшей критической температурой, чем в случае, когда смена фазового состояния при изменении угла между намагниченностями ферромагнитных слоев смещалась бы в сторону меньших толщин и происходила смена фазового состояния с 0- на  $\pi$ фазовое состояние. Добавление C2 слоя в C/Ф1/Ф2 структуру изменяет прямой, триплетный и инверсный режимы на прямой режим с большим значением критической температуры, чем в C/Ф1/Ф2 структуре (вставки на рис. 3).

Получен триплетный режим, реализующийся переходом из  $\pi$ - в 0-фазовое состояние (рис. 4*a*). Для па-



**Рис. 3.**  $T_{\rm K}$  как функция толщины  $d_{\rm \phi}$  для параллельной и антипараллельной конфигурации магнитных моментов ферромагнитных слоев для: C1/ $\Phi$ 1/C2/ $\Phi$ 2 (*a*) и C/ $\Phi$ 1/ $\Phi$ 2 (*b*) структуры. Остальные параметры задаются как  $d_{\rm c1}/\xi_{\rm c1} = 1.24$ ,  $\gamma_{\rm rbc} = 0.07$ .



**Рис. 4.** Критическая температура  $T_{\rm K}$  C1/ $\Phi$ 1/C2/ $\Phi$ 2 структуры в зависимости от угла  $\alpha$ ,  $d_{\rm c1}/\xi_{\rm c1} = 1.24$ ,  $\gamma_{\rm r\phi c} = 0.07$  (*a*). Распределение спиновых синглетных  $\sum f_0(x)/\sum f_0$  компонент сверхпроводящего спаривания в поперечном сечении C1/ $\Phi$ 1/C2/ $\Phi$ 2 структуры рис. 4*a* (*b*).

раллельной и антипараллельной ориентаций намагниченностей ферромагнитных слоев C1/Ф1/C2/Ф2 структуры построены распределения синглетной составляющей в поперечном сечении для большей из двух критических температур (рис. 46).

#### ЗАКЛЮЧЕНИЕ

Таким образом, получена критическая температура несимметричной C1/Ф1/C2 трехслойной гетероструктуры в зависимости от толщин слоев и распределение по слоям в поперечном сечении

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 87 № 4 2023

структуры спин-синглетной компоненты конденсатной функции. Кроме того, был получен фазовый переход из  $\pi$ - в 0-фазовое состояние при изменении угла  $\alpha$  между намагниченностями ферромагнитных слоев в C1/Ф1/C2/Ф2 гетероструктуре.

Работа была поддержана Программой КФУ "Приоритет-2030". В.Н.К. благодарит за поддержку проект ГПНИ "Конвергенция-2025" (2021–2025), подпрограмму "Междисциплинарные исследования и новые зарождающиеся технологии", проект "Спиновое упорядочение в гетероструктурах типа Сверхпроводник–Графен".

## СПИСОК ЛИТЕРАТУРЫ

 Bergeret F.S., Volkov A.F., Efetov K.B. // Rev. Mod. Phys. 2005. V. 77. No. 4. P. 1321.

- 2. Fominov Ya.V., Golubov A.A., Karminskaya T.Y. et al. // Письма в ЖЭТФ. 2010. Т. 91. № 6. С. 329; Fominov Y.V., Golubov A.A., Karminskaya T.Y. et al. // JETP Lett. 2010. V. 91. No. 6. P. 308.
- 3. Fominov Ya.V., Golubov A.A., Kupriyanov M.Y. // JETP Lett. 2003. V. 77. No. 9. P. 510.
- Гайфуллин Р.Р., Кушнир В.Н., Деминов Р.Г. и др. // ФТТ. 2019. Т. 61. № 9. С. 1585; Gaifullin R.R., Kushnir V.N., Deminov R.G. et al. // Phys. Solid State. 2019. V. 61. No. 9. P. 1535.
- Fominov Y.V., Chtchelkatchev N.M., Golubov A.A. // Phys. Rev. B. 2002. V. 66. No. 1. Art. No. 014507.
- Karabassov T., Stolyarov V.S., Golubov A.A. et al. // Phys. Rev. B. 2019. V. 100. No. 10. Art. No. 104502.
- 7. Кушнир В.Н. // Докл. БГУИР. 2016. Т. 97. № 3. С. 18.
- 8. *Кушнир В.Н.* Сверхпроводимость слоистых структур. Минск: БНТУ, 2010. 234 с.
- 9. Kushnir V.N., Prischepa S.L., Cirillo C. et al. // Phys. Rev. B. 2011. V. 84. No. 21. Art. No. 214512.

# Modeling of the superconducting triplet spin valve with several superconductor layers

R. R. Gaifullin<sup>*a*, \*</sup>, R. G. Deminov<sup>*a*</sup>, V. N. Kushnir<sup>*b*, *c*</sup>, M. Yu. Kupriyanov<sup>*d*</sup>, A. A. Golubov<sup>*e*</sup>, L. R. Tagirov<sup>*a*, *f*</sup>

<sup>a</sup> Institute of Physics, Kazan Federal University, Kazan, 420008 Russia

<sup>b</sup> Belarus State University of Informatics and Radioelectronics, Minsk, 220013 Belarus

<sup>c</sup> Theoretical Physics Department, Belarusian State University, Minsk, 220030 Belarus

<sup>d</sup> Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, 119992 Russia

<sup>e</sup> Faculty of Science and Technology and MESA+ Institute of Nanotechnology, University of Twente,

Enschede, 7500 AE The Netherlands

<sup>f</sup>Zavoisky Physical-Technical Institute, FRC Kazan Scientic Center of the Russian Academy of Sciences, Kazan, 420029 Russia \*e-mail: gaifullin.rashid@gmail.com

Using the matrix method for solving the linearized Usadel equations, the critical temperature and the distribution of singlet pairing components of the superconductor/ferromagnet/superconductor/ferromagnet structure with nonideal boundaries are obtained. A transition from the  $\pi$ - to the 0-phase state between layers of superconductors was obtained with a change in the angle between the magnetizations of ferromagnetic layers in such a structure.