УДК 537.9:537.6:53.06

СОЗДАНИЕ И ИССЛЕДОВАНИЕ ТОНКОПЛЕНОЧНЫХ ГЕТЕРОСТРУКТУР НА БАЗЕ Fe/Nb

© 2023 г. А. А. Валидов^{1,} *, М. И. Насырова¹, Р. Р. Хабибуллин¹, И. А. Гарифуллин¹

¹Казанский физико-технический институт имени Е.К. Завойского — обособленное структурное подразделение Федерального государственного бюджетного учреждения науки "Федеральный исследовательский центр "Казанский научный центр Российской академии наук", Казань, Россия

> **E-mail: validov@kfti.knc.ru* Поступила в редакцию 28.10.2022 г. После доработки 15.11.2022 г. Принята к публикации 26.12.2022 г.

Исследованы структуры Fe/Nb и Fe/Al₂O₃/Nb приготовленные на монокристаллических подложках MgO и Al₂O₃ при различных температурах подложки во время напыления. Обнаружено, что структуры, приготовленные при высоких температурах подложки (>600 K) на MgO демонстрируют наиболее стабильные, а главное воспроизводимые транспортные свойства образцов.

DOI: 10.31857/S0367676522700922, EDN: NOOMAK

введение

В конце прошлого века были предложены две теоретические модели сверхпроводящего спинового клапана (ССК). Первая конструкция Ф1/Ф2/С была предложена Санжиун О и др. в работе [1]. Вторая модель $\Phi 1/C/\Phi 2$ была предложена позже профессором Тагировым [2]. Здесь Φ 1 и Φ 2 – ферромагнитные слои, а С – сверхпроводящий слой. Принцип работы обеих моделей ССК одинаков. Базовым эффектом в конструкциях ССК является эффект близости сверхпроводник/ферромагнетик (С/Ф). Принцип работы ССК основан на том, что величина обменного поля от двух Ф-слоев, действующего на куперовскую пару из С-слоя, в случае параллельной (П) ориентации намагниченностей Ф-слоев больше, чем в случае антипараллельной (АП). Это разница приводит к более низкому значению температуры перехода в сверхпроводящее состояние в случае параллельной ориентации намагниченностей Φ -слоев $\left(T_{c}^{\Pi}\right)$, чем при антипараллельной ориентации $\left(T_{c}^{A\Pi}\right)$. Именно такая концепция работы ССК была представлена в работах [1, 2]. Как показывают эксперименты, это утверждение верно только для классического эффекта ССК с конструктивной квантовой интерференцией парной волновой функции сверхпроводящего конденсата. В случае же обратного эффекта ССК с деструктивной квантовой интерференцией парной волновой функции сверхпроводящего конденсата в структурах ССК $T_c^{A\Pi}$ ниже, чем T_c^{Π} . Данный эффект впервые был теоретически описан в работе Фоминова и др. [3].

Конструкция ССК модели профессора Тагирова Ф1/С/Ф2 экспериментально исследовалась первой. В 2002 г. Гу и др. в работе [4] исследовали такую конструкцию и обнаружили величину эффекта ССК $\Delta T_c = T_c^{A\Pi} (\alpha = 180^\circ) - T_c^{\Pi} (\alpha = 0^\circ)$ (где α – угол между направлениями векторов намагниченностей ферромагнитных слоев) порядка 6 мК при ширинах сверхпроводящих переходов $\partial T_c \sim 0.1$ К. Структуры сверхпроводящего спинового клапана являются перспективными моделями для создания различных логических устройств на их базе для нужд сверхпроводящей спинтроники. Главным условием для успешной работы ССК является: $\Delta T_c > \partial T_c$, где $\Delta T_c = T_c^{A\Pi} - T_c^{\Pi}$; $\partial T_c -$ ширина сверхпроводящего перехода. Это необходимо для того, чтобы существовала возможность полного включения/выключения сверхпроводящего тока. После работы Гу и др. [4] были исследованы различные структуры ССК (см., например, [5-8]).

В 2010 г. наша группа впервые экспериментально продемонстрировала полное переключение между нормальным и сверхпроводящим состояниями в структуре ССК Fe₁/Cu/Fe₂/In в работе [9], путем взаимного изменения направления векторов намагниченностей Ф-слоев. Таким образом, мы смогли контролировать сверхпроводящий ток в на-

ших системах. Для этой структуры были получены следующие результаты: $\Delta T_c = 19$ мК и $\partial T_c \sim 7$ мК. Наш интерес к модели ССК, предложенной Санжиун О и др. [1] связан с тем, что в работе [10] была косвенна продемонстрирована возможность достижения величины эффекта ССК $\Delta T_c \sim 200$ мК. Таким образом, модель Ф1/Ф2/С выглядит для нас более перспективной для достижения максимальных величин эффекта ССК. После нашей работы [9] мы исследовали различные конструкции ССК с разнообразными ферромагнитными и сверхпроводящими материалами. Мы наблюдали знакопеременное осцилляционное поведение величины эффекта ССК от толщины слоя Ф2-слоя в работе [11]. Нашей группой были получены первые экспериментальные доказательства существования дальнодействующих триплетных компонент сверхпроводящего конденсата в структурах ССК в работе [12]. Далее наша группа занималась детальным изучением эффекта сверхпроводящего спинового клапана в различных конструкция ССК, а также подбором материалов для достижения максимальных величин эффекта ССК [13-15]. Мы продемонстрировали гигантскую величину эффекта сверхпроводящего спинового клапана ΔT_c более 0.5 К в магнитном поле 3.5 кЭ, что является рекордным значением величины эффекта ССК в этих магнитных полях для структур Ф1/Ф2/С [16–18].

На сегодняшний день, область знаний, связанная с созданием и исследованием классических моделей ССК хорошо изучена. Как показывают наши результаты [16-18] и результаты других групп [19], предельные значения эффекта ССК уже достигнуты при использовании различных сплавов и элементных ферромагнетиков в структурах Ф1/Ф2/С. В связи с этим необходимо начинать изучение конструкций ССК с нетривиальными подходами. Одним из таких подходов, может быть, исследование структур ССК на базе сегнетоэлектрических подложек. Мы уже приступили к исследованию таких структур [20]. В этих структурах возникает возможность управлять сверхпроводящим током с помощью электрического поля, а немагнитного как это было ранее.

Здесь же мы предлагаем создавать и исследовать принципиально новые структуры сверхпроводящих спиновых клапанов. Работа новых структур построена за пределами классического эффекта близости сверхпроводник/ферромагнетик, т. к. в них будет отсутствовать прямой интерфейсный контакт между сверхпроводником и ферромагнетиком. Создание и исследование таких структур отчасти мотивировано работой [21]. В работе [21] продемонстрирована возможность достижения эффекта ССК порядка 300 мК в структурах с изоляционными слоями. Однако это работа 1969 г. и далее такие структуры подробно не исследовались.

На первом этапе мы предлагаем создавать и исследовать структуры сверхпроводящего спинового клапана на базе железа (Fe) и ниобия (Nb). Во-первых, ниобий имеет широкое применение в качестве сверхпроводника в современной сверхпроводящей спинтронике, благодаря высокой температуре сверхпроводящего перехода. Во-вторых, в работах [22-24] наша группа продемонстрировала наличие "мертвой" зоны в интерфейсе Fe/Nb. Эта "мертвая" зона на границах Fe/Nb и Nb/Fe может успешно послужить в качестве изоляционных слоев на границе раздела ферромагнетик/сверхпроводник и сверхпроводник/ферромагнетик в структуре ССК. Для реализации ССК такой конструкции необходимо отладить технологию приготовления двухслойных систем Fe/Nb. В этой работе мы также отладили технологию приготовления трехслойных структур Fe/Al₂O₃/Nb, где оксид алюминия (Al₂O₃) – изоляционный слой. Как показывают наши исследования конструкции сверхпроводящего спинового клапана на базе Fe/Al₂O₃/Nb являются более перспективными для дальнейших исследований.

ОБРАЗЦЫ

Была отлажена технология приготовления двухслойных Fe/Nb и трехслойных Fe/Al₂O₃/Nb систем на монокристаллических подложках MgO и Al₂O₃. Образцы готовились при различных температурах подложек (Тподложка) в диапазоне от 300 до 700 К. Структуры были приготовлены на напылительной установке фирмы BESTEC в Казанском физико-техническом институте им. Е.К. Завойского. Образцы готовились в камере молекулярно-лучевой эпитаксии (МЛЭ) с использованием классического метода электронно-лучевого испарения в сверхвысоком вакууме 1 · 10⁻⁹ мбар. Для приготовления структур были использованы сверхчистые мишени железа (Fe), алюминия (Al) и ниобия (Nb) с концентрацией примесей менее 0.01%. В структурах Fe/Al₂O₃/Nb оксид алюминия напылялся в два этапа. Сначала последовательно напылялись слои Fe и Al, после чего держатель образцов перемещался в загрузочный шлюз и выдерживался в течение 2 ч в атмосфере кислорода при давлении 100 мбар. Далее держатель снова возвращался в камеру МЛЭ для нанесения слоя Nb. Линейные размеры образцов на монокристаллических подложках составляли 3 × 7 мм². Скорость напыления слоев Fe и Al составляла 0.5 Å/с, скорость напыления сверхпроводящего слоя Nb составляла 1.5 Å/с. В камере МЛЭ установлено 4 различных мишени, что позволяет осуществлять напы-

524

Рис. 1. Модели и фотографии исследуемых образцов: серия образцов 1, приготовленные при $T_{\text{подложка}} = 300 \text{ K}$ (*a*) и серия образцов 2, приготовленные при $T_{\text{подложка}} > 600 \text{ K}$ (*б*). Подробности о сериях образцов см. в табл. 1.

ление различных материалов в одном вакуумном цикле. Скорость осаждения контролировалась при помощи водоохлаждаемого кварцевого осциллятора, находящего непосредственно поблизости с образцами. Благодаря специальному самодельному держателю образцов существовала возможность приготовления 8 различных образцов за один вакуумный цикл. Также данный держатель позволяет варьировать температуру подложек во время приготовления. Держатель оборудован температурным датчиком и магнитными контактами для подключения к системе нагрева в сверхвысоком вакууме. Модели и фотографии образцов представлены на рис. 1. На рис. 1а представлены структуры, приготовленные при комнатной температуре подложки $T_{\text{подложка}} = 300 \text{ K}$ (серия образцов 1). На рис. 16 представлены структуры, приготовленные при высокой температуре подложки $T_{\text{подложка}} > 600$ К (серия образцов 2). Параметры исследуемых образцов представлены в табл. 1. Во время приготовления образцов варьировались температура подложек и толщины слоев.

Из рис. 1 видно, что структуры, приготовленные при комнатной температуре подложки, демон-

стрируют плохое качество образцов. Вероятнее всего, это связано с тем, что при $T_{\text{подложка}} = 300 \text{ K нио-}$ бий растет островками, что приводит к срыву всей структуры образца от поверхности подложки (см. рис. 1а). Этот факт не зависит от подложки, которую мы использовали. Одинаковые некачественные образцы получались на монокристаллических подложках MgO и Al₂O₃. Про необходимость нагрева во время синтеза пленок ниобия также указано в работе [25]. При этом стоит отметить, что повышение Т_{подложка} до 400-500 К позволяло визуально стабилизировать образцы. Образцы выглядели идеально гладкими, как это представлено на рис. 16, но обладали нестабильными транспортными свойствами. Это будет показано лалее.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

После того, как удалось визуально стабилизировать свойства образцов путем повышения $T_{\text{подложка}}$ во время приготовления образцов, мы приступили к исследованию их транспортных свойств. Мы исследовали T_c наших систем. Мы хотели получить

ВАЛИДОВ и др.

Таблица 1. Параметры исследуемых образцов: серия $1 - \text{Fe}(d_{\text{Fe}})/\text{Nb}(60 \text{ нм})$; серия $2 - \text{Fe}(d_{\text{Fe}})/\text{Nb}(60 \text{ нм})$; серия $3a - \text{Fe}(10 \text{ нм})/\text{Nb}(d_{\text{Nb}})$; серия $36 - \text{Fe}(10 \text{ нм})/\text{Nb}(d_{\text{Nb}})$; серия $4a - \text{Fe}(10 \text{ нм})/\text{Al}_2\text{O}_3(2 \text{ нм})/\text{Nb}(d_{\text{Nb}})$; серия $46 - \text{Fe}(10 \text{ нм})/\text{Al}_2\text{O}_3(2 \text{ нм})/\text{Nb}(d_{\text{Nb}})$; серия $4b - \text{Fe}(10 \text{ нм})/\text{Al}_2\text{O}_3(2 \text{ нм})/\text{Nb}(d_{\text{Nb}})$;

Серия образцов	Номер образца	$d_{\rm Fe}$, нм	$d_{ m Nb}$, нм	<i>Т</i> _{подложка} , К	Тип подложки
1	1	1	60	300	MgO
	2	1.5	60	300	MgO
	3	2	60	300	MgO
	4	1	60	300	Al_2O_3
	5	2	60	300	Al_2O_3
2	1	1	60	700	MgO
	2	1.5	60	700	MgO
	3	2	60	700	MgO
	4	1	60	700	Al_2O_3
	5	2	60	700	Al_2O_3
3a	1	10	70	700	MgO
	2	10	60	700	MgO
	3	10	50	700	MgO
	4	10	45	700	MgO
	5	10	40	700	MgO
	6	10	35	700	MgO
	7	10	30	700	MgO
36	1	10	40	700	MgO
	2	10	30	700	MgO
	3	10	25	700	MgO
	4	10	20	700	MgO
	5	10	15	700	MgO
	6	10	10	700	MgO
4a	1	10	80	400	Al ₂ O ₃
	2	10	60	400	Al_2O_3
	3	10	40	400	Al_2O_3
	4	10	35	400	Al_2O_3
	5	10	30	400	Al_2O_3
	6	10	25	400	Al_2O_3
	7	10	20	400	Al_2O_3
	8	10	15	400	Al_2O_3
46	1	10	80	500	Al ₂ O ₃
	2	10	60	500	Al_2O_3
	3	10	40	500	Al_2O_3
4 _B	1	10	80	700	MgO
	2	10	60	700	MgO
	3	10	40	700	MgO
	4	10	35	700	MgO
	5	10	30	700	MgO
	6	10	25	700	MgO
	7	10	20	700	MgO
	8	10	15	700	MgO
	9	10	10	700	MgO
	10	10	7	700	MgO
	11	10	5	700	MgO
	12	10	3	700	MgO

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 87 № 4 2023

стабильные и воспроизводимые свойства наших образцов. Это было необходимо, чтобы в дальнейшем интегрировать двухслойные Fe/Nb и трехслойные Fe/Al₂O₃/Nb системы в конструкцию сверхпроводящего спинового клапана. Измерения Т_с проводились путем записи сверхпроводящих переходов по изменению сопротивления при помоши стандартного 4-контактного метода на постоянном токе на установке, которая была создана на базе спектрометра ЭПРХ-диапазона фирмы Bruker. В качестве контактов здесь использовались прижимные контакты из бериллиевой бронзы. В этом случае контакты являются стационарными, т.е. отсутствует необходимость нанесения новых контактов на образец от эксперимента к эксперименту. Была проведена серия экспериментов, которая позволила определить оптимальные параметры данных контактов. Измерения сопротивления образцов до и после экспериментов, показали, что контакты устойчивы к низкотемпературным измерениям и не изменяют своего положения на образце в ходе эксперимента.

Результаты по исследованию зависимости Т_с от толщины слоя Nb (d_{Nb}) для различных серий образцов, приготовленных при варьируемой $T_{\text{подложка}}$, представлены на рис. 2. На этом рисунке представлены результаты для пяти различных серий образцов: серии образцов За и Зб приготовлены при T_{подложка} > 600 К на монокристаллических подложках MgO; серии образцов 4а и 4б приготовлены при T_{подложка} равной 400 и 500 К, соответственно, на монокристаллических подложках Al₂O₃; серия образцов 4в приготовлена при $T_{\text{подложка}} > 600 \text{ K}$ на монокристаллических подложках MgO. Согласно результатам, представленным на рис. 2, видно, что свойства серий образцов За и Зб хорошо воспроизводятся. В обеих сериях есть повторяющие образцы, которые демонстрируют близкое значение T_c (см. рис. 2). Это говорит о хорошей воспроизводимости транспортных свойств образцов этих серий. Абсолютно обратный эффект наблюдается для серий образцов 4а и 4б. Согласно рис. 2, транспортные свойства образцов не воспроизводятся. При этом стоит подчеркнуть, что характер зависимости Т_с от толщины сверхпроводящего слоя нехарактерен для таких структур. Стандартное поведение зависимости Т_с от толщины сверхпроводящего слоя представлено на рис. 2 для серий образцов За, Зб, 4в. Таким образом, стоит предположить, что структуры, приготовленные при $T_{\text{подложка}} < 600 \text{ K}$ на монокристаллических подложках MgO и Al₂O₃ обладают нестабильными и невоспроизводимыми транспортными свойствами. Стоит подчеркнуть, что результат, представлен-

Рис. 2. Зависимость T_c от толщины Nb-слоя для пяти различных серий образцов: серии образцов За и Зб приготовлены при $T_{подложка} > 600$ К на монокристаллических подложках MgO; серии образцов 4а и 4б приготовлены при $T_{подложка}$ равной 400 и 500 К, соответственно, на монокристаллических подложках Al₂O₃; серия образцов 4в приготовлена при $T_{подложка} >$ > 600 К на монокристаллических подложках MgO. Подробности о сериях образцов см. в табл. 1.

ный на рис. 2 для серии образцов 4в, также косвенно подтверждается результатами работы [25].

Для оценки качества приготовленных образцов при *Т*_{подложка} > 600 К на монокристаллических подложках MgO, а, именно, пленок ниобия в этих структурах, мы провели дополнительные измерения транспортных свойств. Мы исследовали зависимость остаточного сопротивления (RRR == R(300 K)/R(10 K)) от толщины слоя Nb для серии образцов 36. Результаты этих исследований представлены на рис. 3. Как видно, из рис. 3, значение *RRR* линейно зависит от толщины слоя Nb. Это стандартное поведение зависимости остаточного сопротивления от толщины сверхпроводящей пленки. Как правило это связано с тем, что с уменьшением толщины сверхпроводящей пленки, качество пленки ухудшается, и примесный вклад в сопротивление пленки возрастает. Зависимость на рис. 3 демонстрирует высокое значение RRR = 6 для образцов с толщиной пленок $d_{\rm Nb} = 40$ нм. Это говорит о высоком качестве приготовленной сверхпроводящей пленки. В случае с пленками ниобия получение высоких значений *RRR* тяжело достижимо, это связано с тем, что

Рис. 3. Зависимость остаточного сопротивления (RRR = R(300 K)/R(10 K)) от толщины слоя Nb для серии образцов 36.

ниобий хороший гетер. Мы делаем акцент именно на этой толщине $d_{\rm Nb}$, потому что согласно результатам, представленным на рис. 2, эта толщина является близкой к рабочей толщине для структур сверхпроводящего спинового клапана на базе двухслойных систем Fe/Nb. Таким образом, результат на рис. 3, также подтверждает необходимость приготовления двухслойных Fe/Nb и трехслойных Fe/Al₂O₃/Nb систем при $T_{подложка} >$ > 600 K, так как это позволяет достичь высоких значений *RRR* пленок ниобия вблизи рабочих толщин структур CCK.

ЗАКЛЮЧЕНИЕ

Исследованы двухслойные Fe/Nb и трехслойные Fe/Al₂O₃/Nb системы, приготовленные при различных температурах монокристаллических подложек MgO и Al₂O₃. Эти системы в дальнейшем планируется интегрировать в систему сверхпроводящего спинового клапана, работа которого будет построена за пределами классического эффекта близости сверхпроводник/ферромагнетик. Согласно результатам наших исследований, двухслойные Fe/Nb и трехслойные Fe/Al₂O₃/Nb системы, приготовленные при высоких температурах подложки (>600 K) на MgO демонстрируют наиболее стабильные, а главное воспроизводимые транспортные свойства образцов. Таким образом, структуры, приготовленные при высоких температурах подложки (>600 К) на MgO, являются наиболее перспективными для их интеграции в структуру сверхпроводящего спинового клапана.

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 22-22-00916).

СПИСОК ЛИТЕРАТУРЫ

- Youm S., Oh D., Beasley M.R. // Appl. Phys. Lett. 1997. V. 71. No. 16. P. 2376.
- 2. Tagirov L.R. // Physica C. 1998. V. 307. P. 145.
- Fominov Ya.V., Golubov A.A., Karminskaya T.Yu. et al. // Письма в ЖЭТФ. 2010. Т. 91. С. 329; Fominov Ya.V., Golubov A.A., Karminskaya T.Yu. et al. // JETP Lett. 2010. V. 91. No. 6. P. 329.
- Gu J.Y., You C.-Y., Jiang J.S. et al. // Phys. Rev. Lett. 2002. V. 89. Art. No. 267001.
- Gu Yu., Halász G.B., Robinson J.W.A., Blamire M.G. // Phys. Rev. Lett. 2015. V. 115. Art. No. 067201.
- Garifullin I.A., Leksin P.V., Garif'yanov N.N. et al. // J. Magn. Magn. Mater. 2015. V. 373. P. 18.
- Linder J., Robinson J.W.A. // Nature Phys. 2015. V. 11. P. 307.
- Blamire M.G., Robinson J.W.A. // J. Phys. Cond. Matter 2014. V. 26. Art. No. 453201.
- 9. Leksin P.V., Garif'yanov N.N., Garifullin I.A. et al. // Appl. Phys. Lett. 2010. V. 97. Art. No. 102505.
- Westerholt K., Sprungmann D., Zabel H. et al. // Phys. Rev. Lett. 2005. V. 95. Art. No. 097003.
- 11. Leksin P.V., Garif'yanov N.N., Garifullin I.A. et al. // Phys. Rev. Lett. 2011. V. 106. Art. No. 067005.
- Leksin P.V., Garif'yanov N.N., Garifullin I.A. et al. // Phys. Rev. Lett. 2012. V. 109. Art. No. 057005.
- 13. Leksin P.V., Garif'yanov N.N., Kamashev A.A. et al. // Phys. Rev. B. 2015. V. 91. Art. No. 214508.
- 14. Leksin P.V., Garif'yanov N.N., Garifullin I.A. et al. // Phys. Rev. B. 2016. V. 93. Art. No. 100502(R).
- 15. *Leksin P.V., Kamashev A.A., Schumann J. et al.* // Nano Res. 2016. V. 9. P. 1005.
- Kamashev A.A., Garif'yanov N.N., Validov A.A. et al. // Beilstein J. Nanotechnol. 2019. V. 10. P. 1458.
- 17. Kamashev A.A., Garif'yanov N.N., Validov A.A. et al. // Письма в ЖЭТФ. 2019. Т. 110. № 5. С. 325; Kamashev A.A., Garif'yanov N.N., Validov A.A. et al. // JETP Lett. 2019. V. 110. P. 342.
- Kamashev A.A., Garif'yanov N.N., Validov A.A. et al. // Phys. Rev. B. 2019. V. 100. Art. No. 134511.
- Singh A., Voltan S., Lahabi K., Aarts J. // Phys. Rev. X. 2015. V. 5. Art. No. 021019.
- Kamashev A.A., Leontyev A.V., Garifullin I.A. et al. // Ferroelectrics. 2022. V. 592. No. 1. P. 123.
- Deutscher G., Meunie F. // Phys. Rev. Lett. 1969. V. 22. P. 395.
- 22. Mühge Th., Garif'yanov N.N., Goryunov Yu.V. et al. // Phys. Rev. Lett. 1996. V. 77. P. 1857.
- 23. *Mühge Th., Westerholt K., Zabel H. et al.* // Phys. Rev. B. 1997. V. 55. Art. No. 8945.
- 24. Mühge Th., Theis-Bröhl K., Westerholt K. et al. // Phys. Rev. B. 1998. V. 57. Art. No. 5071.
- 25. Янилкин И.В., Гумаров А.И., Рогов А.М. и др. // ЖТФ. 2021. Т. 91. № 2. С. 275; Yanilkin I.V., Gumarov A.I., Rogov A.M. et al. // Tech. Phys. 2021. V. 66. No. 2. P. 263.

Creation and investigation of thin-film heterostructures based on Fe/Nb

A. A. Validov^{a, *}, M. I. Nasyrova^a, R. R. Khabibullin^a, I. A. Garifullin^a

^a Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the Russian Academy Sciences, Kazan, 420029 Russia *e-mail: validov@kfti.knc.ru

Fe/Nb-based thin-film heterostructures prepared under various conditions are studied. Here, Fe/Nb and Fe/Al₂O₃/Nb structures prepared on MgO and Al₂O₃ single-crystal substrates at various substrate temperatures during deposition were studied. According to the results of our studies, the structures prepared at high substrate temperatures (>600 K) on MgO demonstrate the most stable and, most importantly, reproducible transport properties of the samples.