УДК 535.3:538.9

ПОЛУЧЕНИЕ И ИССЛЕДОВАНИЕ СВОЙСТВ МАГНИТНО-ЛЮМИНЕСЦЕНТНЫХ ГИБРИДНЫХ СТРУКТУР НА ОСНОВЕ ОКСИДА ЖЕЛЕЗА (Fe₃O₄) С ПОЛУПРОВОДНИКОВЫМИ ОБОЛОЧКАМИ

© 2023 г. Д. А. Кафеева^{1, *}, Д. А. Куршанов¹, А. Ю. Дубовик¹

¹Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО", Санкт-Петербург, Россия

**E-mail: kafeyeva@gmail.com* Поступила в редакцию 05.12.2022 г. После доработки 23.12.2022 г. Принята к публикации 27.02.2023 г.

Описывается высокотемпературный органический синтез гидрофобных суперпарамагнитных нанокомпозитов типа ядро-оболочка Fe_3O_4/ZnS и $Fe_3O_4/ZnSe$. Представлен анализ спектров поглощения, люминесценции, магнитного кругового дихроизма (МКД) и морфологии гидрофобных магнито-люминесцентных нанокомпозитов. Показано, что нанокомпозиты обладают люминесцентными свойствами, а наращивание оболочки на ядро Fe_3O_4 сохраняет магнитные свойства частиц. Анализ спектров МКД показывает, что магнитное поле индуцирует спин-зависимую хиральную магнитооптическую активность. Оценка зависимости g-фактора от величины и знака внешнего магнитного поля демонстрирует изменение намагниченности полученных нанокомпозитов относительно Fe_3O_4 .

DOI: 10.31857/S0367676523701399, EDN: VKXGGK

введение

Магнитооптические нанокомпозитные гетероструктуры типа "ядро-оболочка", состоящие из наночастиц оксида железа и квантовых точек, привлекают широкое внимание исследователей благодаря одновременному сочетанию высокой магнитной восприимчивости и яркой люминесценции, что имеет широкий спектр потенциальных применений в биомедицинском направлении. Эти свойства нанокомпозитов позволяют контролировать их внутриклеточные движения с помощью магнитной силы и отслеживать их с помощью флуоресцентного микроскопа. Недавние исследования показали, что интегрированные магнитооптические свойства позволяют нанокомпозитам расширять свое применение, особенно в адресной доставке лекарств, магнитнорезонансной томографии (МРТ), диагностике, биоразделении, магнитной гипертермии, магнитных носителях информации и т.д. Магнитно-люминесцентные структуры также являются хорошими кандидатами для тераностики рака. Этот класс материалов имеет большой потенциал в области спинтроники за счет придания магнитных свойств полупроводниковым люминесцентным нанокристаллам [1-3].

В системе бимодальных магнитно-флуоресцентных нанокомпозитных материалов "два в одном", которые сочетают в себе как магнитные, так и флуоресцентные свойства, ключевым фактором является успешное связывание магнитных и флуоресцентных материалов и предотвращение тушения люминесценции. Оксид железа является сильным тушителем люминесценции и может гасить излучение квантовых точек. Тем не менее среди различных оксидов железа наночастицы магнетита (Fe₃O₄) по-прежнему являются предпочтительными из-за их высокой намагниченности, стабильности и биосовместимости. Кроме того, наночастицы Fe₃O₄ могут быть получены простыми методами [4]. Сульфид цинка (ZnS) известный полупроводник с широкой запрещенной зоной 3.68 эВ, обладает широкой оптической прозрачностью от ультрафиолетового (УФ) до инфракрасного (ИК) диапазона. ZnSe имеет объемную ширину запрещенной зоны при комнатной температуре 2.7 эВ. Оболочки из ZnSe уже давно используются в качестве покрывающего материала для квантовых точек (КТ) с ядром CdSe для пассивации поверхности и реагентов для биологической маркировки. Сульфид и селенид цинка (ZnS, ZnSe) обладают низкой токсичностью, низкой стоимостью, хорошей термической и экологической стабильностью, хорошей биосовместимостью [5].

Данная работа нацелена на получение гибридных бескадмиевых наноструктур на основе магнетита Fe_3O_4 с оболочкой ZnS и ZnSe. Были исследованы магнитные и оптические свойств полученных нанокомпозитов Fe_3O_4/ZnS и $Fe_3O_4/ZnSe$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реактивы

Синтез проводили с использованием стандартных безвоздушных методик и коммерчески доступных реагентов. Этанол и гексан использовали в готовом виде. Ацетилацетонат железа(III) (Fe(acac)₃, 97%), триоктилфосфин (ТОФ, 90%), триоктилфосфиноксид (ТОФО, 90%, технический) олеиламин (ОАм, 90%, технический), этилат цинка (Zn(Et)₂), сера (S, 99.98%), селен (Se, 99.99%) были приобретены у Sigma-Aldrich. Олеиновая кислота (OK, 92%) приобретена у компании Fisher. Все материалы использовали без дополнительной очистки.

Синтез наночастиц Fe₃O₄

Гидрофобные частицы Fe_3O_4 были синтезированы высокотемпературным органическим синтезом согласно статье [6]. Магнитные наночастицы получали из 2 ммоль Fe(acac)₃, в присутствии ОК и ОАм (1.7 и 4.6 г соответственно) путем растворения в 20 мл дифенилового эфира с перемешиванием в потоке аргона и нагреванием до 265°С. Полученный продукт черного цвета был дважды очищен осаждением этанолом в объемном соотношении 1 : 2 = исходный раствор : этанол и последующим центрифугированием при 12000 об. · мин⁻¹ в течение 3 мин, затем повторно растворен в гексане.

Синтез нанокомпозитов Fe_3O_4/ZnS , $Fe_3O_4/ZnSe$

Нанокомпозиты были синтезированы традиционным методом ТОФО-ТОФ по методике из той же статьи [6] с небольшими модификациями. Растворы прекурсоров Zn, S, Se готовили по отдельности растворением в 0.75 мл ТОФ в атмосфере аргона из 0.5 ммоль (Zn(Et)₂) и 1 ммоль S, Se. Олеиламин в реакции выступает в качестве дополнительного координирующего компонента. Для получения нанокомпозитов 1 ммоль полученных наночастиц оксида железа растворили в 5 мл ОАм, смешанным с 0.5 г ТОФО и прекурсором Zn, смесь нагрели до 170°С в течение 1 ч в потоке аргона. Затем в раствор вводили раствор прекурсора серы, повышали температуру до 290°С и выдерживали в течение 1 ч. К полученной смеси добавили избыток этанола и осадили черный материал, который отделяли центрифугированием для удаления остатков непрореагировавших реактивов. После многократной промывки этанолом продукт хорошо растворим в гексане.

Характеризация

Средний размер полученных образцов оценивали методом динамического рассеяния света (ДРС) Zetasizer Nano ZS (Malvern, Великобритания). Спектры поглощения (А) образцов регистрировали на спектрофотометре UV Probe 3600 (Shimadzu, Япония). Спектры фотолюминесценции (PL) регистрировали на спектрофлуориметре Cary Eclipse (Varian, Австралия), спектры магнитного кругового дихроизма (МКД) регистрировали на J-1500 JASCO. Эксперимент МКД проводился в магнитных полях от 0 до 1 Тл при комнатной температуре со шкалой кругового дихроизма 20 мград и скоростью сканирования 50 нм · мин⁻¹.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Морфология магнитных частиц Fe₃O₄ и композитов на их основе исследовалась методом ДРС электронной сканирующей микроскопией И (СЭМ). Результаты представлены на рис. 1. Средний гидродинамический диаметр полученных наночастиц Fe₃O₄ составляет 7 нм (рис. 1*a*), гидролинамический диаметр лля композитов Fe_3O_4/ZnS и $Fe_3O_4/ZnSe$ примерно 10–12 нм. Изображения СЭМ демонстрируют сферическую форму частиц с дисперсией по размерам ~16, ~12, ~14% для Fe₃O₄, Fe₃O₄/ZnS и Fe₃O₄/ZnSe cooтветственно (рис. 16). Гистограммы распределения частиц по размерам демонстрируют близкие значения к гидродинамическому диаметру (рис. 1*в*). Поскольку размер менее 20 нм характерен для достижения суперпарамагнетизма в Fe₃O₄, можно заключить о получении однодоменных однородно намагниченных наночастии оксила железа и композитов на его основе.

Магнитооптические свойства полученных образцов исследовались с помощью МКД-спектроскопии. Сигнал МКД проявляется при возмущении состояния частиц внешним магнитным полем, что приводит к дифференциальному поглощению поляризованного света. Измерения МКД (рис. 2) демонстрируют, как интенсивность сигнала меняется в зависимости от величины и знака приложенного магнитного поля.

Положения полос МКД, соответствующих различным энергетическим переходам, показывают увеличение интенсивности сигнала КД в сильных магнитных полях до достижения предела насыщения (рис. 2*a*). При изменении направления магнитного поля наблюдаются зеркальные профили спектров МКД со сменой знака при

Рис. 1. Размер частиц и морфология магнитных наночастиц Fe_3O_4 и композитов Fe_3O_4/ZnS и $Fe_3O_4/ZnSe$. Измерение размера динамических светорассеяний (ДРС) демонстрирует распределение размеров наночастиц Fe_3O_4 и композитов ядро/оболочка Fe_3O_4/ZnS и $Fe_3O_4/ZnSe$ (*a*). Изображение наночастиц, полученные с помощью сканирующего электронного микроскопа (СЭМ) (*б*). Гистограммы распределения наночастиц по размерам, построенные путем измерения размеров частиц по СЭМ изображениям (*в*).

450 нм, что свидетельствует о том, что приложение внешнего магнитного поля индуцирует преимущественную спиновую поляризацию по отношению к направлению приложенного поля и проявляется как спин-зависимая хиральная магнитооптическая активность [7]. Спектры были разложены с использованием восьмизонного описания с гауссовскими распределениями (рис. 2*б*).

Доминирующие оптические переходы в магнетите можно разделить на три категории: (1) межвалентный перенос заряда (IVCT) за счет релаксации спинового меньшинства; (2) межподрешеточный перенос заряда (ISCT), обусловленный кислородом, через оптическую щель спинового большинства с участием [Fe] (e_g) , который гибридизуется с кислородом; (3) перенос заряда p-d от лиганда к металлу через оптическую щель спинового меньшинства с участием поляризованного O(2p). Основные переходы описаны в табл. 1. Обозначения ионов тетраэдрической и октаэдрической подрешеток заключены в круглые и квадратные скобки соответственно [8, 9].

Количественной мерой магнитооптических свойств является фактор асимметрии (*g*-фактор), определяемый по формуле (1).

$$g = \frac{\theta}{A \cdot 32980},\tag{1}$$

Таблица 1. Результаты гауссовского анализа образцов наночастиц Fe_3O_4 . Основные оптические переходы для Fe_3O_4 в соответствии с [8, 9]

<i>Е</i> , эВ	Переход	Тип
2.3	$[\mathrm{Fe}^{3+}]\mathrm{e}_{\mathrm{g}} \rightarrow (\mathrm{Fe}^{2+})\mathrm{e}$	ISCT
2.5	$(\mathrm{Fe}^{3+})\mathbf{t}_2 \rightarrow [\mathrm{Fe}^{2+}]\mathbf{t}_{2g}$ $\mathrm{O}(2p) \rightarrow [\mathrm{Fe}^{2+}]\mathbf{t}_{2g}$	ISCT LMCT
2.7, 3.3	$(\mathrm{Fe}^{2+})t_{2g} \rightarrow [\mathrm{Fe}^{2+}]e$	ISCT
3.11	$[\mathrm{Fe}^{2+}]\mathrm{t}_{2\mathrm{g}} \rightarrow (\mathrm{Fe}^{2+})\mathrm{e}$	IVCT
3.93	$[\mathrm{Fe}^{2+}]\mathrm{t}_{2g} \rightarrow (\mathrm{Fe}^{2+})\mathrm{t}_2$	IVCT
4.25	$O(2p) \rightarrow [Fe^{2+}]t_{2g}$	LMCT

Рис. 2. Магнитооптические свойства наночастиц Fe_3O_4 и композитов Fe_3O_4/ZnS и $Fe_3O_4/ZnSe$. Спектр поглощения (пунктирная линия) и спектры магнитного кругового дихроизма (МКД) наночастиц в магнитных полях (диапазон 0– 1 Тл) (а). Вставка: фотография образов под действием постоянного магнитного поля. Спектры МКД, аппроксимированные пиками Гаусса для образцов наночастиц Fe_3O_4 и композитов Fe_3O_4/ZnS и $Fe_3O_4/ZnSe$ (δ). Для получения численно описания спектров требовалось минимум восемь гауссовских компонент (8-полосное описание).

где θ — эллиптичность (мград), представляющая интенсивность сигнала МКД, а A — оптическая плотность. Зависимости g-фактора от величины и знака внешнего магнитного поля повторяют кривую намагничивания образцов [10]. Это означает,

Рис. 3. Зависимость *g*-фактора от индукции внешнего магнитного поля для наночастиц Fe_3O_4 и композитов Fe_3O_4/ZnS и Fe_3O_4/ZnS на длине волны 303 нм.

что интенсивность спектров МКД отражает данные о намагниченности образцов, что делает спектроскопию МКД эффективным методом сравнительной оценки магнитных свойств образцов. Зависимость g-фактора от индукции внешнего магнитного поля показана на рис. 3. Нанокомпозиты обладают слабой остаточной намагниченностью по сравнению с ядрами оксида железа, что может быть вызвано анизотропией формы и поверхности кристаллической решетки. Уменьшение g-фактора композитов по сравнению с голыми ядрами может быть связано с изменением формы нанокомпозитов и влиянием полупроводниковой оболочки.

Оптические свойства композитов Fe_3O_4/ZnS и $Fe_3O_4/ZnSe$ были исследованы с помощью абсорбционной и эмиссионной спектроскопии (рис. 4). Возбуждение люминесценции проводилось на длине волны 300 нм в соответствии со спектрами возбуждения люминесценции (рис. 4*a*). После выращивания полупроводниковой оболочки наблюдается пик люминесценции на 400 нм с полушириной 50 нм для обоих образцов. Спектр возбуждения ФЛ нанокомпозитов подтверждает наличие экситонного пика на длине волны 360 нм. Это подтверждает существование эффекта размерного квантования в сферическом кван-

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 87 № 6 2023

Поглощение, отн. ед. 0 0 300 400 500 600 300 400 500 600 Длина волны, нм Длина волны, нм

Рис. 4. Оптические свойства композитов Fe_3O_4/ZnS и $Fe_3O_4/ZnSe$: спектры возбуждения люминесценции (*a*), люминесценции и поглощения (б).

товоразмерном слое. Представленные данные в сочетании с информацией о размерах наночастиц свидетельствуют об успешном росте оболочек на магнитном ядре.

Интенсивность ФЛ, отн. ед.

1.0

0.5

б

280

a

ЗАКЛЮЧЕНИЕ

Были синтезированы нанокомпозиты Fe_3O_4/ZnS и $Fe_3O_4/ZnSe$ на основе магнетита Fe₃O₄ со средним размером 10-12 нм, стабилизированные ОАм в неполярных органических растворителях. Полученные наночастицы ядрооболочка Fe₃O₄/ZnS и Fe₃O₄/ZnSe демонстрируют высокий магнитный отклик. Зеркальные профили спектров МКД при изменении направления поля свидетельствуют о спин-зависимой магнитооптической активности. Исследованы оптические свойства полупроводниковой оболочки ZnS и ZnSe на поверхности магнетита. Композиты Fe₃O₄/ZnS и Fe₃O₄/ZnSe обладают пиком люминесценции на 400 нм. Показано

влияние оболочки на свойства оксида железа. Зависимость g-фактора от величины магнитного поля демонстрирует незначительное ослабление намагниченности нанокомпозитов по сравнению с чистыми ядрами.

Влияние различных факторов на синтез МНК и их применение in vivo или in vitro еще предстоит полностью изучить, поскольку применение МНК в биомедицине неизбежно и, как ожидается, в ближайшие голы будет расти из-за их мультимодальной функциональности. в областях, таких как нанодиагностика, системы визуализации и тераностики, магнитная гипертермия и магнитная сепарация, а также системы доставки лекарств в терапевтических целях.

Авторы выражают признательность Национальному исследовательскому университету ИТ-МО и Центру "Информационные оптические технологии" за оказанную помощь при проведении данного исследования, а также Научно-образовательному центру БФУ им. И. Канта "Умные

700

материалы и биомедицинские приложения" за публикацию статьи. Работа выполнена при поддержке Министерства науки и высшего образования РФ (тема государственного задания № 2019-1080).

СПИСОК ЛИТЕРАТУРЫ

- Tufani A., Qureshi A., Niazi J.H. // Mater. Sci. Engin. C. 2021. V. 118. Art. No. 111545.
- Dulińska–Litewka J., Łazarczyk A, Hałubiec P. et al. // Materials. 2019. V. 12. No. 4. Art. No. 617.
- Xie W., Guo Z., Gao F. et al. // Theranostics. 2018. V. 8. No. 12. P. 3284.

- Özgür M.E., Ulu A., Balcıoğlu S. et al. // Toxics. 2018. V. 6. No. 4. Art. No. 62.
- Ding L., Zhou P., Zhan H. et al. // Chemosphere. 2013. V. 92. No. 8. P. 892.
- Liu L., Jiang W., Yao L. et al. // J. Nanosci. Nanotech. 2014. V. 14. No. 7. P. 5047.
- 7. *Maqbool Q., Jung A., Won S. et al.* // ACS Appl. Mater. Interfaces. 2021. V. 13. No. 45. P. 54301.
- Chen J., Hsu H.-S., Huang Y-H., Huang D.J. // Phys. Rev. B. 2018. V. 98. No. 8. Art. No. 085141.
- Fontijn W.F.J., van der Zaag P.J., Devillers M.A.C. et al. // Phys. Rev. B. 1997. V. 56. No. 9. Art. No. 5432.
- Gromova Y. A., Maslov V.G., Baranov M.A. et al. // J. Phys. Chem. C. 2018. V. 122. No. 21. P. 11491.

Obtaining and research of the properties of magnetic-luminescent hybrid structures based on iron oxide (Fe_3O_4) with semiconductor shells

D. A. Kafeeva^{a, *}, D. A. Kurshanov^a, A. Y. Dubavik^a

^aITMO University, Saint Petersburg, 197101 Russia *e-mail: kafeyeva@gmail.com

The high-temperature organic synthesis of hydrophobic superparamagnetic nanocomposites of the Fe_3O_4/ZnS and Fe_3O_4/ZnS core—shell type is discussed. An analysis of the absorption, luminescence, magnetic circular dichroism (MCD) and morphology spectra of hydrophobic magnetoluminescent nanocomposites is presented. It is shown that nanocomposites have luminescent properties, and the growth of the shell on the Fe_3O_4 core retains the magnetic properties of the particles. An analysis of the MCD spectra shows that the magnetic field induces spin-dependent chiral magneto-optical activity. An estimate of the dependence of the g factor on the magnitude and sign of the external magnetic field demonstrates a change in the magnetization of the resulting nanocomposites relative to Fe_3O_4 .