УДК 538.93

ВКЛАД СОСТОЯНИЙ НА ИНТЕРФЕЙСАХ В ТЕРАГЕРЦОВУЮ ФОТОПРОВОДИМОСТЬ В СТРУКТУРАХ НА ОСНОВЕ Hg_{1 – x}Cd_xTe С ИНВЕРСНЫМ СПЕКТРОМ

© 2023 г. А. С. Казаков^{1,} *, А. В. Галеева¹, А. И. Артамкин¹, А. В. Иконников¹, С. Н. Чмырь¹, С. А. Дворецкий², Н. Н. Михайлов², М. И. Банников³, С. Н. Данилов⁴, Л. И. Рябова⁵, Д. Р. Хохлов^{1, 3}

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова", Физический факультет, Москва, Россия

ковский государственный университет имени М.В. Ломоносова", Физический факультет, Москва, Росси ²Федеральное государственное бюджетное учреждение науки

"Институт физики полупроводников имени А.В. Ржанова Сибирского отделения Российской академии наук", Новосибирск, Россия

11000euoupen, 1 0eeun

³Федеральное государственное бюджетное учреждение науки Физический институт имени П.Н. Лебедева Российской академии наук, Москва, Россия ⁴Университет Регенсбурга, Регенсбург, Германия

⁵Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова", Химический факультет, Москва, Россия

> **E-mail: askazakov@physics.msu.ru* Поступила в редакцию 05.12.2022 г. После доработки 23.12.2022 г. Принята к публикации 27.02.2023 г.

Экспериментально выявлены различия электронных состояний в топологических материалах на основе эпитаксиальных пленок $Hg_{1-x}Cd_xTe$, с необходимостью формирующихся на границах топологической фазы с вакуумом и с тривиальным буфером в областях гетероперехода. Было продемонстрировано, что наблюдаемая в указанных структурах *PT*-симметричная терагерцовая фотопроводимость обусловлена именно состояниями в области интерфейсов топологическая пленка/тривиальный буфер (или покровный слой).

DOI: 10.31857/S0367676523701466, EDN: VLVPZT

введение

Физика топологических изоляторов (ТИ) одно из наиболее актуальных и динамично развивающихся направлений современной физики конденсированного состояния. В ТИ энергетические термы, соответствующие валентной зоне и зоне проводимости, оказываются инвертированными благодаря сильному спин-орбитальному взаимодействию. Как следствие, в приповерхностной области ТИ с необходимостью возникают двумерные электронные состояния, характеризующиеся линейным дираковским законом дисперсии и жесткой связью между направлениями векторов квазиимпульса и спина электрона [1]. Двумерные электронные состояния с линейным законом дисперсии могут образовываться не только на границе объемных ТИ, но и в гетероструктурах в области гетеропереходов тривиальный буфер/топологическая пленка [1–3]. Ранее предполагалось, что двумерные топологические

состояния, сформированные на различных типах границ топологической фазы, имеют аналогичные свойства [1].

Твердые растворы $Hg_{1-x}Cd_x$ Те обладают рядом отличительных свойств по сравнению с другими ТИ. НеТе характеризуется инверсной упорядоченностью зонной структуры и формирует топологическую фазу, что было однозначно экспериментально подтверждено ARPES [4, 5]. Замещение Hg и увеличение мольной доли Cd в твердом растворе Hg_{1- x}Cd_xTe приводит к фазовому переходу от топологической фазы к тривиальной при x = 0.16 (T = 0) [6-9]. В сравнении с большинством других объемных ТИ, Hg_{1-x}Cd_xTe характеризуется сравнительно низкими концентрациями носителей заряда в объеме активного слоя [10, 11], что способствует изучению электронного транспорта посредством топологических состояний на фоне проводимости по объему. В частности, это позволяет изучать целый ряд фотоэлек-

Рис. 1. Принципиальная схема изучаемой гетероструктуры. График на правой части рисунка отображает распределение содержания CdTe *x* в активном слое структуры. Заштрихованная область соответствует удаленному слою в травленой структуре.

трических эффектов, например, фотопроводимость [12–17] в топологической фазе $Hg_{1-x}Cd_xTe$. Особо отметим наблюдавшуюся в 3D пленках $Hg_{1-x}Cd_xTe$ в работе [18] нехарактерную *PT*-симметричную фотопроводимость в условиях возбуждения терагерцовым лазерным излучением.

Измерения фотопроводимости в работе [18] были проведены при температуре T = 4.2 К в магнитных полях до 4 Тл в геометрии Фарадея. Амплитуда фотопроводимости не является четной функцией магнитного поля, тем самым нарушая T-симметрию (обращения знака времени). Кроме того, на зеркально-противоположных потенциальных контактах мостика Холла фотопроводимость также принципиально различается, тем самым нарушая P-симметрию (пространственную четность). В то же время, одновременная смена пары контактов на зеркальную и направления магнитного поля на противоположное сохраняет качественный вид фотоотклика, что свидетельствует о сохранении PT-симметрии.

Целью настоящей работы являлось выявление элемента гетероструктуры, отвечающего за проявление *PT*-симметричной фотопроводимости. В частности, показано, что проявление эффекта обусловлено свойствами интерфейса топологическая пленка/тривиальный буфер (покровный слой), а не границей топологической фазы с вакуумом, на которой с помощью ARPES [4, 5] также было экспериментально подтверждено формирование спин-поляризованных электронных состояний с дираковским законом дисперсии.

РЕЗУЛЬТАТЫ

Изучена фотопроводимость, индуцированная терагерцовыми лазерными импульсами, в гетероструктурах на основе 3D $Hg_{1-x}Cd_xTe$. Образцы синтезированы методом молекулярно-лучевой эпитаксии на подложке полуизолирующего GaAs [10, 11]. Гетероструктуры имеют следующую последовательностью слоев: буферные слои ZnTe и CdTe, варизонный переходный слой $Hg_{1-v}Cd_vTe$ (~1.2 мкм) с высоким содержанием Cd, рабочий слой Hg_{1 – x}Cd_xTe (~4 мкм), закрывающий слой CdTe с толщиной порядка 10 нм (рис. 1). Содержание Cd в рабочей зоне структуры x = 0.145 соответствует топологической фазе. Вариация состава у в гетеропереходной области между активным слоем и тривиальным буфером осуществляется плавно, тогда как гетеропереход между рабочей зоной и закрывающим слоем характеризуется резким изменением состава твердого раствора. Состав твердого раствора в процессе синтеза контролировался *in situ* с помощью эллипсометрии [11].

Изучены два типа структур: изначальная и со стравленным закрывающим слоем (рис. 1, заштрихованная область). Удаление покровного слоя структуры производилось с помощью химического травления в растворе на основе HBr + + 0.01% Br₂.

Холловские мостики стандартной конфигурации с характерными размерами $5 \times 0.5 \text{ мм}^2$ были изготовлены с помощью фотолитографии. Все изученные образцы имели *n*-тип проводимости и концентрацию свободных электронов в объеме порядка ~10¹⁵ см⁻³ при температуре жидкого гелия.

Терагерцовое излучение генерировалось импульсным газовым NH₃ лазером с длительностью импульса ~100 нс. Частота лазерного излучения изменялась от 1.07 до 3.3 ТГц, мощность достигала 10 кВт [19, 20]. Фотопроводимость изучалась при T = 4.2 К в условиях приложения магнитного поля до 0.5 Тл в геометрии Фарадея. Условимся считать направление магнитной индукции положительным – B^+ – в случае если индукция маг-

Рис. 2. Кинетики терагерцового фотоотклика, измеренные в исходной (*a*) и травленой (*б*) структурах в условиях отсутствия и приложения магнитного поля различных направлений $B = 0, \pm 0.14$ Тл. Схема измерений подобрана таким образом, что положительное значение ΔU соответствует положительной фотопроводимости, а отрицательное ΔU – отрицательной фотопроводимости. Частота терагерцового излучения f = 1.07 ТГц.

нитного поля сонаправлена с потоком падающего излучения. В противном случае — отрицательным (B^{-}).

Сначала рассмотрим исходную структуру, кинетика сигнала фотопроводимости в которой представлена на рис. 2а. В нулевом магнитном поле фотоотклик в начале импульса отрицательный, далее – знакопеременный. С ростом магнитного поля B^+ положительная компонента фотоотклика существенно возрастает. Амплитуда этой компоненты А (см. определение на рис. 2а) достигает максимума в магнитном поле $B^+ \approx 0.15$ Тл и снижается при дальнейшем увеличении амплитуды поля (см. красные закрашенные точки на рис. За). В магнитном поле противоположного направления В- положительная компонента фотопроводимости практически отсутствует вне зависимости от амплитуды поля. Необходимо отметить, что для зеркально-противоположной пары потенциальных контактов (см. вставку на рис. 3а) положительная фотопроводимость ведет себя противоположным же образом: проявляется в отрицательных магнитных полях В- и подавляется в условиях приложения положительного магнитного поля B^+ (рис. 3*a*, пустые красные точки). Таким образом, как и в работе [18], положительная компонента фотопроводимости демонстрирует *PT*-симметричный характер.

Стравливание 10-нанометрового покровного слоя приводит к существенному изменению кинетики и амплитуды фотопроводимости. В отсутствие магнитного поля фотопроводимость становится положительной, тогда как отрицательная компонента начинает проявляться только при приложении магнитного поля (рис. 26). Положительная компонента фотопроводимости по-прежнему демонстрирует *PT*-симметричное поведение, но амплитуда увеличивается в несколько раз в сравнении с исходной структурой (рис. 3, синие точки).

Кроме того, изучена зависимость терагерцовой фотопроводимости от нормальной и тангенциальной компонент магнитного поля. Для оценки вкладов различных компонент магнитного поля образец поворачивался вокруг вертикальной оси (см. вставку на рис. 4). В условиях приложения ненулевого магнитного поля (рис. 4, красные точки) амплитуда положительной фотопроводимости хорошо аппроксимируется функцией соs(α). В отсутствие магнитного поля (рис. 4, черные точки) поворот образца, приводящий также к изменению угла падения терагерцового излучения, практически не влияет на величину положительной фотопроводимости.

Рис. 3. Магнитополевая зависимость амплитуды положительной компоненты фотопроводимости. На панели (*a*) представлена магнитополевая зависимость амплитуды положительной компоненты фотоотклика. На панелях (*б*) и (*в*) отображены зависимости четной и нечетной составляющих положительной компоненты фотопроводимости. Измерения осуществлены с пар потенциальных контактов 1-2 (закрашенные точки) и 3-4 (открытые точки) исходного (красные точки) и травленого (черные точки) образцов. Частота излучения f = 1.07 ТГц.

Ключевые особенности наблюдаемых эффектов не зависели от частоты излучения, варьируемой в пределах от 1.07 до 3.3. ТГц, также как и от поляризации — линейной или циркулярной.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Кинетика регистрируемого фотоотклика имеет сложный характер, обусловленный вкладами нескольких различных компонент, имеющих как положительный, так и отрицательный знак. Отрицательная компонента фотопроводимости является четной функцией магнитного поля и практически не отличается для двух зеркально-противоположных пар потенциальных контактов мостика Холла. В предыдущих наших работах было продемонстрировано, что этот вклад в фотопроводимость обусловлен разогревом электронного газа терагерцовым излучением, что приводит к снижению подвижности и, следовательно, к отрицательной фотопроводимости [16, 17].

Положительная компонента фотопроводимости демонстрирует асимметричное в магнитном поле поведение, а также зависит от расположения пары потенциальных контактов на мостике Холла. Феноменологически, положительная компонента фотопроводимости может быть интерпретирована в виде суммы четного A_e и нечетного A_o в магнитном поле вкладов. Разложение амплитуды положительного фотоотклика A на соответствующие четный A_e и нечетный A_o вклады для двух изученных структур приведена на рис. Зб и 3e, соответственно. Из рис. 3 видно, что четная по магнитному полю компонента A_e практически не отличается на зеркально-противоположных парах потенциальных контактов, тогда как нечетная компонента A_o , измеренная на противоположных сторонах образца имеет одинаковую амплитуду, но разные знаки.

Представленное на рис. 3 разложение фотоотклика на компоненты имеет вполне определенный физический смысл. В соответствии с [21], нечетная в магнитном поле компонента отвечает за возникновение киральной нелокальной фотопроводимости. В нелокальной геометрии измерений, исключающей вклад объемного транспорта, фотоиндуцированные терагерцовым излучением токи текут вдоль края образца. Киральность фототоков меняется как при изменении направления магнитного поля, так и при смене полярности приложенного напряжения смещения. Краевые фототоки отсутствуют в отсутствие магнитного поля или смещения. По всей видимости, в стандартной геометрии Холла, используемой в данной работе, киральные нелокальные фототоки складываются с объемными фототоками на одном конце образца и компенсируют друг друга на другом, что приводит к возникновению нечетного в магнитном поле вклада в фотоотклик и РТ-симметричному характеру фотопроводимости.

Симметричная в магнитном поле компонента фотопроводимости A_e может быть обусловлена генерационными процессами в объеме структуры. Ответ на вопрос о том, какой именно элемент гетероструктуры ответственен за проявление нечетной в магнитном поле компоненты A_o , не столь очевиден.

Прежде всего, очевидно, что объем структуры не может быть таковым элементом ввиду протекания фотоиндуцированных токов вдоль края образца. Таким образом, только боковые поверхности пленки и края интерфейсов топологическая пленка/тривиальный буфер и топологическая пленка/покровный слой могут быть ответственны за проявление асимметричной в магнитном поле фотопроводимости. Рассмотрим эти варианты подробнее.

В рамках предположения о том, что киральные фототоки текут вдоль боковых поверхностей пленки, т.е. в области между топологической пленкой и вакуумом, стравливание покровного слоя структуры должно приводить к исчезновению эффекта. Действительно, вследствие удаления закрывающего слоя, верхняя поверхность структуры также становится интерфейсом между топологической фазой и вакуумом. поэтому возникающие фототоки, текущие вдоль боковых поверхностей, должны шунтироваться токами вдоль верхней границы пленки. Однако экспериментальные результаты однозначно демонстрируют значительный рост РТ-симметричной компоненты фотопроводимости в результате удаления покровного слоя (рис. 3).

Рис. 4. Зависимость амплитуды положительной компоненты фотопроводимости от угла поворота образца в условиях приложения магнитного поля B = 0.06 Тл (красные точки) и в отсутствие магнитного поля (черный). Красная кривая — функция $\cos(\alpha)$. Частота терагерцового излучения f = 1.07 ТГц.

Дополнительным аргументом в пользу предположения об определяющем вкладе интерфейса топологическая пленка/тривиальный буфер в положительную РТ-симметричную фотопроводимость является косинусоидальная зависимость амплитуды фотоотклика от угла поворота образца. Действительно, если бы основной вклад в эффект асимметрии терагерцового фотоотклика вносили бы боковые поверхности структуры, это бы означало, что за проявление эффекта ответственна тангенциальная по отношению к боковым поверхностям компонента вектора индукции магнитного поля. В таком случае в результате поворота образца вокруг вертикальной оси на угол $\alpha = 90^{\circ}$ по крайней мере для двух боковых поверхностей тангенциальная компонента индукции магнитного поля не обращалась бы в 0. Следовательно, зависимость, приведенная на рис. 4, в таком случае не аппроксимировалась бы с хорошей точностью функцией cos(α). Таким образом, определяющий вклад в проявление эффекта асимметрии вносят именно интерфейсы топологическая пленка – тривиальный буфер (покровный слой).

Необходимо отметить, что микроскопическая природа возникновения киральных нелокальных фотоиндуцированных токов, приводящих к *PT*-симметричному характеру фотопроводимости, остается неизвестной.

Тем не менее, представленные результаты указывают, что область гетероперехода топологическая пленка/тривиальный буфер (покровный слой) является элементом структуры, ответственным за проявление эффекта асимметричной в магнитном поле фотопроводимости. Интерфейс топологическая пленка/вакуум такими свойствами не обладает.

ЗАКЛЮЧЕНИЕ

Таким образом, было показано, что электронные состояния, формирующиеся наинтерфейсах топологическая пленка/тривиальная фаза и топологическая пленка/вакуум обладают различными свойствами. В частности, показано, что вклад в РТ-симметричную терагерцовую фотопроводимость в 3D пленках на основе топологической фазы Hg_{1 - x}Cd_xTe вносят именно состояния на интерфейсах рабочий слой/буфер (покровный слой), а не интерфейсы пленка/вакуум. Предложена качественная модель, связывающая РТ-симметричную фотопроводимость с нелокальной киральной терагерцовой фотопроводимостью, а также предложен способ выделения вклада киральной нелокальной фотопроводимости из измерений. проведенных в рамках геометрии Холла.

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 19-02-00034). С.Н. Данилов благодарен Volkswagen Stiftung Program (97738) за поддержку.

СПИСОК ЛИТЕРАТУРЫ

- Hasan M.Z., Kane C.L. // Rev. Mod. Phys. 2010. V. 82. P. 3045.
- Волков Б.А., Панкратов О.А. // Письма в ЖЭТФ. 1985. Т. 42. № 4. С. 145; Volkov B.A., Pankratov O.A.// JETP Lett. 1985. V. 42. No. 4. Р. 145.
- Volkov B.A., Pakhomov S.V., Pankratov O.A. // Solid State Commun. 1987. V. 61. No. 2. P. 93.
- Brüne C., Liu C.X., Novik E.G. et al. // Phys. Rev. Lett. 2011. V. 106. Art. No. 126803.

- Liu C., Bian G., Chang T.R. et al. // Phys. Rev. B. 2015. V. 92. Art. No. 115436.
- 6. Rogalski A. // Rep. Prog. Phys. 2005. V. 68. P. 2267.
- 7. *Weiler M.* Semiconductors and semimetals. New York: Academic press, 1981. P. 119.
- 8. Orlita M., Basko D.M., Zholudev M.S. et al. // Nature Physics. 2014. V. 10. P. 233.
- 9. Teppe F, Marcinkiewicz M., Krishtopenko S.S. et al. // Nature Commun. 2016. V. 7. Art. No. 12576.
- Dvoretsky S., Mikhailov N., Sidorov Y. et al. // J. Electron. Mater. 2010. V. 39. P. 918.
- Varavin V.S., Dvoretsky S.A., Liberman V.I. et al. // J. Cryst. Growth. 1996. V. 159. P. 1161.
- 12. Ruffenach S., Kadykov A., Rumyantsev V.V. et al. // APL Materials. 2017. V. 5. No. 3. Art. No. 035503.
- 13. *Kvon Z.D., Danilov S.N., Mikhailov N.N. et al.* // Physica E. 2008. V. 40. No. 6. P. 1885.
- 14. Savchenko M.L., Otteneder M., Dmitriev I.A. et al. // Appl. Phys. Lett. 2020. V. 117. Art. No. 201103.
- Ярошевич А.С., Квон З.Д., Гусев Г.М., Михайлов Н.Н. // Письма в ЖЭТФ. 2020. Т. 111. № 2. С. 107; Yaroshevich A.S., Kvon Z.D., Gusev G.M., Mikhailov N.N. // JETP Lett. 2020. V. 111. No. 2. Р. 121.
- Галеева А.В., Артамкин А.И., Михайлов Н.Н. и др. // Письма в ЖЭТФ. 2017. Т. 106. № 3. С. 156; Galeeva A.V., Artamkin A.I., Mikhailov N.N. et al. // JETP Lett. 2017. V. 106. Р. 162.
- Galeeva A.V., Artamkin A.I., Kazakov A.S. et al. // Beilsten J. Nanotechnol. 2018. V. 9. P. 1035.
- Galeeva A.V., Kazakov A.S. Artamkin A.I. et al. // Sci. Reports. 2020. V. 10. P. 2377.
- Ганичев С.Д., Емельянов С.А., Ярошецкий И.Д. // Письма ЖЭТФ. 1982. Т. 35. № 7. С. 297; Ganichev S.D., Emel'yanov S.A., Yaroshetskii I.D. // JETP Lett. 1982. V. 35. Р. 368.
- 20. Bel'kov V.V. Ganichev S.D., Schneider P. et al. // Solid. State. Commun. 2003. V. 128. P. 283.
- Kazakov A.S., Galeeva A.V., Artamkin A.I. et al. // Sci. Reports. 2021. V. 11. P. 1587.

Interface electronic states contribution into terahertz photoconductivity in structures based on $Hg_{1-x}Cd_xTe$ with inverted energy spectrum

A. S. Kazakov^{a, *}, A. V. Galeeva^a, A. I. Artamkin^a, A. V. Ikonnikov^a, S. N. Chmyr^a, S. A. Dvoretskiy^b, N. N. Mikhailov^b, M. I. Bannikov^c, S. N. Danilov^d, L. I. Ryabova^e, D. R. Khokhlov^{a, c}

^aLomonosov Moscow State University, Physics Department, Moscow, 119991 Russia

^bRzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia

^cLebedev Physical Institute of the Russian Academy of Sciences, Moscow, 119991 Russia

^dUniversity of Regensburg, Regensburg, D-93053 Germany

^eLomonosov Moscow State University, Chemistry Department, Moscow, 119991 Russia

*e-mail: askazakov@physics.msu.ru

We show the differences in the necessarily formed electronic states at the boundaries of the topological phase with a vacuum and with a trivial buffer in the regions of heterojunction in topological materials based on epitaxial films $Hg_{1-x}Cd_xTe$. It was demonstrated that the *PT*-symmetric terahertz photoconductivity observed in these structures is due precisely to the states in the region of the topological film/trivial buffer (or cap-layer) interfaces.