ЭЛЕКТРОННОЕ СТРОЕНИЕ КОБАЛЬТИТОВ ${ m ScCo}_{1-x}{ m Fe}_x{ m O}_3$ (x=0,0.05) И ${ m BiCoO}_3$: РЕНТГЕНОВСКАЯ ФОТОЭЛЕКТРОННАЯ СПЕКТРОСКОПИЯ

Ю. А. Тетерин^{а,b}, А. В. Соболев^{а*}, А. А. Белик^с, Я. С. Глазкова^{а**}, К. И. Маслаков^а,

В. Г. Яржемский ^{b,d,e}, А. Ю. Тетерин^b, К. Е. Иванов^b, И. А. Пресняков^a

^а Химический факультет Московского государственного университета им. М. В. Ломоносова 199991, Москва, Россия

> ^b Национальный исследовательский центр «Курчатовский институт» 123182, Москва, Россия

^c Research Center for Functional Materials, National Institute for Materials Science (NIMS) 305-0044, Tsukuba, Ibaraki, Japan

^d Институт общей и неорганической химии Российской академии наук им. Н. С. Курнакова 119991, Москва, Россия

> ^е Московский физико-технический институт 141701, Долгопрудный, Московская обл., Россия

Поступила в редакцию 15 декабря 2018 г., после переработки 31 декабря 2018 г. Принята к публикации 10 января 2019 г.

Методом рентгеновской фотоэлектронной спектроскопии изучена электронная структура катионов Co^{3+} в перовскитоподобных кобальтитах $Sc_{1-y}Co_{1-x}Fe_xO_{3-(3/2)y}$ (x = 0, 0.05; y = 0.1) и $BiCoO_3$. Измерения проводились в диапазоне энергий 0-1250 эВ, что позволило определить энергии связей и детально охарактеризовать структуру спектров как валентных, так и внутренних электронов катионов кобальта. На основании полученных результатов проведен анализ валентного и спинового состояний катионов кобальта, а также структуры их локального кристаллического окружения в рассматриваемых оксидах. Изучено влияние «травления» поверхности образцов кобальтита на электронное состояние кобальта.

DOI: 10.1134/S0044451019060105

1. ВВЕДЕНИЕ

Ранее было установлено [1], что синтез под высоким давлением перовскитоподобных кобальтитов $ACoO_3$ (A = Sc, In), содержащих близкие по размеру катионы A^{3+} и Co^{3+} , приводит к стабилизации небольшой части катионов Co^{3+} в позициях A^{3+} с высокими координационными числами, равными 8–12 [1–3]. Недавние мессбауэровские исследования кобальтитов-ферритов $Sc_{1-y}Co_{1-x}Fe_xO_{3-(3/2)y}$ [4] показали, что наряду с ранее установленным частичным замещением катионами Co^{3+} более круп-

ных катионов Sc³⁺, также происходит стабилизация части катионов Fe³⁺ в подрешетке скандия. Однако, в отличие от катионов Со³⁺, все катионы железа стабилизируются исключительно в высокоспиновом состоянии. На основании магнитных измерений было сделано предположение, что катионы Co³⁺ в позициях с высоким координационным числом могут переходить в высокоспиновое состояние, в то время как октаэдрически координированные катионы $(Co^{3+}O_6)$, как и в случае перовскитов $RCoO_3$ (R — редкоземельный элемент), остаются в низкоспиновом состоянии. Подобные изменения локальной структуры катионов переходных металлов в перовскитоподобных оксидах могут в значительной степени повлиять на магнитные и электрофизические характеристики этих соединений. Тем не менее гипотеза об «инверсии» положений катионов А³⁺ и

^{*} E-mail: janglaz@bk.ru

^{**} E-mail: alex@radio.chem.msu.ru

Co³⁺/Fe³⁺ в A(Co,Fe)O₃ требует дополнительного экспериментального подтверждения с привлечением физических методов, чувствительных к валентному и спиновому состояниям катионов кобальта и железа.

При исследовании методом рентгеновской фотоэлектронной спектроскопии (РФЭС) валентного состояния переходных металлов в соединениях, как правило, используют два основных подхода. В первом из них учитывается число электронов, принимающих участие в образовании химических связей [5, 6]. Изменения в заселенностях валентных орбиталей атомов сказываются на энергиях связей внутренних электронов и проявляются в спектрах в виде химических сдвигов соответствующих линий. Помимо величин энергий связи внутренних электронов в качестве экспериментально определяемых параметров используются интенсивности спектральных линий, показывающие относительное содержание атомов в данном валентном состоянии. Во втором подходе экспериментально определяется число локализованных *d*-электронов, непосредственно не участвующих в образовании химических связей [5,7,8]. В этом случае анализируются параметры, характеризующие структуру спектров валентных и внутренних электронов, которая в основном связана с мультиплетным расщеплением, многоэлектронным возбуждением и индуцированием заряда на диамагнитные центры.

В настоящее время в литературе имеется очень ограниченная информация об использовании РФЭС для исследования перовскитоподобных кобальтитов Co(III), что, по-видимому, связано с трудностями синтеза однофазных образцов. Наши предварительные исследования показали, что даже при соблюдении всех мер предосторожности при приготовлении образцов, содержащих высоковалентный кобальт, и при проведении измерений на их поверхности наблюдаются примесные кислородсодержащие соединения, что может усложнить интерпретацию получаемых спектров. Тем не менее в ряде случаев на основе известных литературных данных удается идентифицировать подобные «поверхностные» примесные фазы. Это позволяет провести расшифровку структуры экспериментальных спектров РФЭС основного соединения в широком диапазоне энергий связи. В представленной работе данная методика анализа спектров РФЭС применена для исследования валентного состояния и структуры локального окружения ионов кобальта в кобальтитах $\operatorname{Sc}_{1-y}\operatorname{Co}_{1-x}\operatorname{Fe}_x\operatorname{O}_{3-(3/2)y}(x=0,0.05;y=$ = 0.1). Проведен также сравнительный анализ с

результатами аналогичных исследований кобальтита BiCoO₃, в котором, согласно ранее полученным данным магнитных измерений [9], все ионы Co³⁺ находятся в высокоспиновом состоянии. На основании проведенных нами исследований установлено, что большая часть катионов Co³⁺ в структуре $Sc_{1-y}Co_{1-x}Fe_xO_{3-(3/2)y}$ локализуется в низкоспиновом состоянии в позициях с октаэдрической кислородной координацией.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Кобальтиты $Sc_{1-y}Co_{1-x}Fe_xO_{3-(3/2)y}$ (x = 0, 0.05; y = 0.1) были получены из стехиометрической смеси оксидов Sc_2O_3 (99.9%), Co_3O_4 (99.9%), Fe_2O_3 (99.999%), а также перхлората KClO₄, использовавшегося в качестве «внутреннего» источника кислорода. Мольное соотношение исходных оксидов выбиралось с учетом того, что в процессе синтеза часть скандия не входит в структуру конечного образца, а выделяется в виде оксида. Для состава с низким содержанием железа (x = 0.05) использовали изотопно-обогащенный оксид железа ${}^{57}Fe_2O_3$ (95.5%). Для синтеза образца BiCoO₃ использовали смесь оксидов Bi₂O₃ (99.99%), Co₃O₄ и KClO₄.

Синтез проводили в аппарате высокого давления бельт-типа (belt) при 6 ГПа. Образцы в золотых капсулах последовательно нагревали до 1600 К за 10 мин, отжиг проводили в течение 1.5-2 ч, затем образцы закаливались до комнатной температуры, и медленно снижалось давление. Образовавшийся в результате разложения KClO₄ хлорид KCl удаляли дистиллированной водой. Рентгенофазовый анализ показал отсутствие примесей, в том числе Sc₂O₃, что позволяет приписать исследуемым в настоящей работе образцам следующие формулы: Sc_{0.9}CoO_{2.85}, Sc_{0.9}Co_{0.95}⁵⁷Fe_{0.05}O_{2.85} и BiCoO₃. Далее в тексте будем использовать условные формулы ScCoO₃ и ScCo_{0.95}Fe_{0.05}O₃ (без учета кислородной нестехиометрии).

Спектры РФЭС были измерены на спектрометре Kratos Axis Ultra DLD (Kratos Analytical Ltd., Great Britain) с монохроматическим рентгеновским излучением AlK_{α} (1486.6 эВ). В процессе измерения все образцы находились в вакууме ($5 \cdot 10^{-7}$ Па) при комнатной температуре. Для компенсации зарядки образцов использовалась низкоэнергетическая электронная пушка. Измельченный порошок ScCo_{0.95}Fe_{0.05}O₃ наносили на поверхность двухсторонней адгезионной ленты и придавливали. В результате образовывался плотный, относительно тол-

Рис. 1. Обзорный спектр РФЭС ScCo_{0.95}Fe_{0.05}O₃

стый слой образца, что исключало появление в спектрах линий материала подложки. Образцы ScCoO₃ и BiCoO₃ были приготовлены в виде таблеток, спрессованных из мелкодисперсных порошков, которые также закреплялись на подложках. Исследуемый образец металлического кобальта представлял собой пластину размером $7 \times 5 \times 1$ мм³, поверхность которой перед измерениями очищалась механически. Площадь анализируемой поверхности составляла примерно 300×700 мкм². Разрешение спектрометра, измеренное как ширина на полувысоте линии Au $4f_{7/2}$, составляло около 0.7 эВ.

В работе дополнительно исследовалось возможное влияние травления поверхности образцов на электронное состояние катионов кобальта. Травление осуществлялось ионами Ar⁺ (при U = 2 kB, I = 50 мкA с размером пучка ионов $2 \times 2 \text{ мм}^2$) в течение 15 мин для металлического кобальта и 20 с для кобальтитов ScCoO₃ и BiCoO₃.

Величины энергий связи электронов E_b [эВ] приведены относительно энергии С 1*s*-электронов насыщенных углеводородов на поверхности образца, принятой равной 285.0 эВ. На поверхности пластины из золота E_b (Au $4f_{7/2}$) = 84.0 эВ энергия связи С 1*s*-электронов насыщенных углеводородов E_b (С 1*s*) = 284.1 эВ. Эти значения учитывались при сравнении полученных результатов с данными других авторов. Опибка при измерении величин энергий связи электронов и ширины линий равна ± 0.1 эВ, сателлитов — ± 0.2 эВ, а при измерении относительных интенсивностей составляет ± 10 %. Величины ширин Г [эВ] линий на их полувысоте приведены по отношению к величине $\Gamma(C 1s) = 1.3$ эВ [8]. Спектральный фон, обусловленный упруго рассеянными электронами, для спектров РФЭС вычитался по методу Ширли [10].

Элементный количественный анализ поверхности (глубина около 5 нм [7]) проводился с использованием соотношения

$$\frac{n_i}{n_j} = \frac{S_i}{S_j} \frac{k_j}{k_i},$$

где n_i/n_j — относительная концентрация изучаемых атомов, S_i/S_j [%] — относительная интенсивность (площадь) линий электронов внутренних оболочек этих атомов, k_j/k_i — экспериментальный относительный коэффициент чувствительности. Для коэффициентов чувствительности по отношению к углероду использовались следующие значения: 1.00 (C 1s); 2.81 (O 1s); 0.12 (O 2s); 6.74 (Sc 2p); 1.84 (Sc 2s); 0.37 (Sc 3s); 0.81 (Sc 3p); 12.91 (Co 2p); 2.27 (Co 2s); 0.71 (Co 3s); 1.61 (Co 3p); 10.64 (Fe 2p); 2.17 (Fe 2s); 0.80 (Fe 3s); 1.33 (Fe 3p); 32.88 (Bi 4f). Результаты количественного элементного анализа

Рис. 2. Спектры РФЭС низкоэнергетических электронов: $a - ScCo_{0.95}Fe_{0.05}O_3$; $b - ScCoO_3$; $b - BiCoO_3$

в пределах ошибки измерения согласуются со стехиометрическими катионными составами кобальтитов Sc_{0.9}CoO_{2.85}, Sc_{0.9}Co_{0.95}Fe_{0.05}O_{2.85} и BiCoO₃. Из оценки результатов анализа, выполненного на основании интенсивностей линий Co 3*p*- и Fe 3*p*-электронов, найдено, что допированный железом кобальтит $ScCo_{0.95}Fe_{0.05}O_3$ содержит 95% Со и 5% Fe. Элементный химический анализ всех исследуемых образцов показал отсутствие примесей других металлов (не более 0.01 ат. %).

Рис. 3. Спектры РФЭС Со 2p-электронов: $a - ScCo_{0.95}Fe_{0.05}O_3$; $\delta - BiCoO_3$

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

3.1. ScCo_{0.95}Fe_{0.05}O₃ и ScCoO₃

В обзорном спектре $ScCo_{0.95}Fe_{0.05}O_3$ (рис. 1) наблюдаются линии спектра РФЭС образца кобальтита, а также оже-спектры кислорода (O KLL), металлического кобальта (Co LMM) и адсорбированного на его поверхности углерода (C KLL). К сожалению, оже-спектр Co LMM не позволяет наблюдать наиболее интенсивный спектр Fe 2*p*-электронов, что затрудняет определение степени окисления примесных катионов железа в исследуемом образце. Другими возможными причинами очень слабого вклада Fe 2*p*-электронов в спектр РФЭС являются очень маленькая концентрация железа (около 5 ат. %) в образце и «размытость» сложной структуры спектра высокоспиновых катионов Fe³⁺ (S = 5/2).

В низкоэнергетической области спектра РФЭС образца $ScCo_{0.95}Fe_{0.05}O_3$ при $E_b(Co~3d) = 1.4$ эВ наблюдается линия с шириной $\Gamma(\text{Co } 3d) = 1.1 \text{ эB}$ соответствующая (рис. 2a), локализованным Со 3*d*-электронам катионов Со³⁺ (таблица). Аналогичная линия наблюдалась ранее в рентгеновских эмиссионных спектрах Со L_{α} (Со $2p_{3/2} \leftarrow \text{Co} 3d$) и О K_{α} (О 1 $s \leftarrow O$ 2p) кобальтита LiCoO₂ [14]. Было показано, что подобная одиночная линия вблизи уровня Ферми соответствует электронному состоянию, основной вклад в которое дают Со 3*d*-электроны и лишь небольшое участие в его образование принимают О 2*p*-электроны [14].

В диапазоне 0–15 эВ наблюдаются максимумы, отвечающие электронам на валентных молекулярных орбиталях (MO) ScCo_{0.95}Fe_{0.05}O₃ (рис. 2*a*). Слабоинтенсивная структура при $E_b \approx 12.0$ эВ может быть связана как с сателлитом, возникающим от «встряски» Со 3*d*-электронов (shake up-сателлит), так и с электронами на MO анионных групп CO_3^{2-} , адсорбированных на поверхности образца.

Линия при $E_b \approx 21.2$ эВ относится к О 2*s*-электронам, участвующим в образовании внутренних МО в диапазоне энергий $\Delta E \approx 15$ –35 эВ. Данный диапазон включает в себя также 3*p*-электроны катионов Sc³⁺ при E_b (Sc 3*p*) = 30.6 эВ. Кроме того, со стороны больших энергий связи от линии Sc 3*p*-электронов при $\Delta E_{sat} = 11.7$ эВ наблюдается shake up-сателлит с интенсивностью $I_{sat} \approx 8\%$.

Спектр валентных Co 3*d*-электронов $ScCo_{0.95}Fe_{0.05}O_3$ практически не отличается от соответствующего спектра недопированного железом кобальтита $ScCoO_3$ (рис. 26), в котором октаэдрически координированные катионы Со³⁺ $({}^{1}A_{1g}: t_{2g}^{6}e_{g}^{0})$ находятся в низкоспиновом состоянии [1,4]. Воспользовавшись экспериментальным значением отношения интенсивностей линий для Co 3d- и Со 3р-электронов металлического кобальта, а также учитывая сечения фотоэффекта $\sigma(3p^6) = 26.14$ кбн, $\sigma(4s^2) = 0.72$ кбн и $\sigma(3d^1)n_{3d} = 0.51$ кбн (см. таблицу), где n_{3d} — число 3*d*-электронов, мы оценили заселенности 3*d*-орбиталей кобальта в соединениях ScCo_{0.95}Fe_{0.05}O₃ и ScCoO₃. Полученное в результате этих расчетов значение $n_{3d} \approx 6$ подтверждает правильность соотнесения линий при 1.4 и 2.7 эВ валентным 3*d*-электронам катионов Co^{3+} (*d*⁶). Как

будет показано ниже, спектры РФЭС внутренних ns/np-электронов обеих форм кобальтита также практически не отличаются друг от друга (см. таблицу). Это является экспериментальным подтверждением того, что примесные катионы железа не оказывают существенного влияния на валентное состояние кобальта в ScCo_{0.95}Fe_{0.05}O₃.

внутренних Со 2*р*-электронов Спектр в $ScCo_{0.95}Fe_{0.05}O_3$ содержит дублет, связанный со спин-орбитальным расщеплением. Его энергия ΔE_{sl} (Co 2p) = 15.1 эВ. Энергия связи Со $2p_{3/2}$ -электронов равна E_b (Со $2p_{3/2}$) = 780.2 эВ, а ширина линии составляет Г (Со $2p_{3/2}$) = 2.1 эВ (рис. 3а). Со стороны больших энергий от линии Со 2р_{3/2}-электронов находится малоинтенсивный $(I_{sat} = 8\%)$ сателлит при ΔE_{sat1} (Со $2p_{3/2}$) = = 10.2 эВ. Подобный сателлит наблюдается и со стороны больших энергий от линии Со 2p_{1/2}электронов с $\Delta E_{sat2}(\text{Co} 2p_{1/2}) = 10.2$ эВ с интенсивностью $I_{sat} = 25 \%$. Схожую структуру имеет спектр Со 2*p*-электронов для ScCoO₃ (см. таблицу). Важно также отметить, что наблюдаемые в наших экспериментах спектры кобальтитов аналогичны ранее изученным спектрам сложных оксидов LaCoO₃ [15, 16] и LiCoO₂ [14, 17], также содержащих низкоспиновые катионы Со³⁺ в искаженном октаэдрическом кислородном окружении. Кроме того, полученный в работе [17] профиль спектра для Со 2*p*-электронов с учетом многоэлектронного возбуждения в октаэдрическом кластере Со³⁺О₆ хорошо согласуется со спектрами ScCo_{0.95}Fe_{0.05}O₃ и ScCoO₃, включая асимметрию линий и shake up-сателлит (рис. 3*a*). Данный результат свидетельствует о том, что, несмотря на разный состав и структуру рассматриваемых кобальтитов, валентное состояние содержащихся в них низкоспиновых катионов Со³⁺ определяется главным образом спецификой локальной структуры кластеров CoO₆, имеющей в этих оксидах схожий характер.

Co Линии 2*р*-электронов для образцов ScCo_{0.95}Fe_{0.05}O₃ и ScCoO₃ явно асимметричны (рис. 3а). После выделения симметричной части этих линий со стороны больших энергий связи со сдвигом около 1.7 эВ можно выделить дополнительные линии с интенсивностью $I \approx 16\%$ (рис. 3*a*). Подобная асимметрия также наблюдается в спектре Sc 2*p*-электронов со сдвигом примерно 1.7 эВ и интенсивностью около 14% (рис. 4*a*). Важно подчеркнуть, что возможность неравномерной зарядки образца, способной вызывать подобную асимметрию линий, учитывалась нами при обработке спектров. Поэтому можно предположить,

$\begin{array}{c} \text{Co, Sc } nl_j \\ \text{O} \ nl_j \end{array}$	$\mathrm{ScCo}_{0.95}\mathrm{Fe}_{0.05}\mathrm{O}_3$	$ScCoO_3$	$\operatorname{BiCoO}_3^{(1)}$	$ m CoO^{2)} m Sc_2O_3^{2)}$	$\mathrm{Co}_{met}^{3)}\ \mathrm{Sc}_{met}^{3)}$	$\begin{array}{c} \operatorname{Co}_{theor}^{4)} \ \operatorname{Sc}_{theor}^{4)} \end{array}$	$\sigma^{5)}$
Co $4s$ Co $3d_{5/2}$ Co $3d_{3/2}$	$1.4 (1.1)^{6}$	$1.4 (1.1)^{6}$	$1.7 (1.3)^{6}$	1.7 (2.2)	0.4 (3.7)	-7.59 -2.62 -1.96	$0.72 \\ 0.51^{7)} \\ 0.52^{7)}$
Co 3p	61.0 (3.2) 63.5 10.3; 23% s	$\begin{array}{c} 61.0 \ (3.4) \\ 63.5 \\ 10.5; \ 15 \% s \end{array}$	$\begin{array}{c} 60.8 \ (3.6) \\ 63.5 \\ 10.5; \ 5 \% s \end{array}$	61.0 (3.8) 10.5; 17% s	58.9(3.3) 10.4; 6 %	58.80 64.28	17.2 8.94
Co 3 <i>s</i>	102.7 (3.2) 10.4; 13% s	102.6 (3.4) 10.1; $13\% s$	$\begin{array}{c} 102.3 \ (3.5) \\ 107.0 \ (4.3) \\ 10.0; \ 30 \ \% s \end{array}$	$\begin{array}{c} 102.6 \ (4.5) \\ 107.8 \ (4.5) \\ 10.0; \ 11 \ \% s \end{array}$	$\begin{array}{c} 100.7 \ (3.1) \\ 105.2 \ (5.0) \\ 10.2; \ 13 \% s \end{array}$	103.74	11.10
Co 2p _{3/2}	780.2 (2.1) 10.2; 8 $\% s$	$\begin{array}{c} 780.0 \ (2.4) \\ 10.2; \ 7 \ \% s \end{array}$	$\begin{array}{c} 780.2 \ (3.1) \\ 5.8; \ 31 \ \% s \\ 10.0; \ 13 \ \% s \end{array}$	780.4 (3.8) 6.5; 35 % s 10.0; 8 % s	777.9 (1.6) 10.0; $8\%s$	777.90	171
Co $2p_{1/2}$	795.3 (2.3) 10.2; $25 \% s$	795.0 (2.9) 10.2; $26 \% s$	795.3 (3.6)	795.6 (4.0)	792.9 (3.1)	794.03	88.4
Co $2s$	927.3 (7.0)	927.4 (6.9)	_	928.1	924.9 (10.6)	927.05	66.8
$\begin{array}{c} & \mathrm{Sc}\; 4s \\ & \mathrm{Sc}\; 3d_{3/2} \end{array}$	_	_	_	_	_	-5.61 -3.92	$0.43 \\ 0.06^{7)}$
Sc $3p_{3/2}$ Sc $3p_{1/2}$	30.6 (1.8)	30.7 (2.2)		31.5 (1.9)	28.6	27.68 29.44	$5.81 \\ 2.99$
Sc 3 <i>s</i>	52.5 (2.7)	52.4 (2.7)		$ \begin{array}{r} 11.8, 17 \\ 708 \\ 53.4 (2.7) \\ 11.7; 20 \\ \%s \end{array} $	51.4	55.69	5.58
Sc $2p_{3/2}$	$\begin{array}{c} 400.9 \ (1.4) \\ 11.4; \ 12 \% s \end{array}$	$\begin{array}{c} 400.8 \ (1.4) \\ 11.2; \ 17 \ \% s \end{array}$		$\begin{array}{l} 401.9 \ (1.5) \\ 11.5; \ 27 \% s \end{array}$	399.0	399.0	57.0
Sc $2p_{1/2}$	$\begin{array}{c} 405.4 \ (1.5) \\ 11.4; \ 22 \% s \end{array}$	$\begin{array}{c} 405.2 \ (1.7) \\ 11.4; \ 20 \ \% s \end{array}$		406.5 (1.7) 11.5; 30% s	403.9	403.91	29.4
Sc $2s$	500.2 (4.0) 11.5; 28 %s	500.3 (4.0) 11.4; 26% s		501.0 (3.7) 11.8; 30% s	498.3	499.2	39.9
O $2p^{8)}$	3.5 (6.4)	3.5 (5.9)	3.3 (6.3)	6.0 6.0 (3.5)			$0.07^{7)}$
O $2s^{8)}$	21.2 (2.7)	21.1 (3.3)	21.4 (3.5)	$22.1 \\ 21.9 (4.2)$			1.91
O $1s^{8)}$	529.4(1.1)	529.3 (1.1)	529.4 (1.1)	530.0 (1.4) 530.1 (1.5)			40.0

Таблица. Энергии связи электронов $E_b^{1)}$ [эВ] и сечения фотоионизации σ [кбн/атом]

Примечания к таблице.

¹⁾ Данные для соединений приведены относительно энергии связи С 1*s*-электронов E_b (С 1*s*) = 285.0 эВ. Для ВіСоО₃ величины E_b (Ві) [эВ] равны 25.6 (1.2) Ві $5d_{5/2}$ и 28.5 (1.5) Ві $5d_{3/2}$; 94.4 (6.4) Ві $5p_{3/2}$ и 121.0 (5.7) Ві $5p_{1/2}$; 158.4 (1.2) Ві $4f_{7/2}$ и 163.8 (1.2) Ві $4f_{5/2}$.

 $^{2)}$ Данные получены на спектрометре HP 5950A.

- $^{3)}$ Данные для Со приведены из работы [11], а для Sc-с учетом данных работы [6].
- ⁴⁾ Результаты расчета для Со [12] уменьшены на 15.27 эВ так, чтобы $E_b(\text{Co} 2p_{3/2}) = 777.9$ эВ, а для Sc

уменьшены на 11.08 эВ так, чтобы $E_b(\text{Sc } 2p_{3/2}) = 399.0$ эВ.

- $^{5)}$ Сечения фотои
онизации σ (кбн/атом) приведены для энергии возбуждения 1486.6
эВ из работы [13].
- ⁶⁾ В скобках приведены величины полуширин линий по отношению к $\Gamma(C \, 1s) = 1.3$ эВ.
- $^{7)}$ Величины σ (кбн/атом) приведены для одного из Со 3d-, Sc 3d- или О 2p-электронов [13].

 $^{8)}$ Величины приведены сначала для CoO и затем для ${\rm Sc_2O_3}.$

что наблюдаемая асимметрия связана с присутствием дополнительной структуры, относящейся к небольшой части катионов Co^{3+} и Sc^{3+} , которые занимают «внеструктурные» (дефектные) позиции. Образование таких позиций было зафиксировано с помощью магнитных [1] и мессбауэровских [1, 4] измерений кобальтитов $ScCo_{0.95}Fe_{0.05}O_3$ и $ScCoO_3$, что свидетельствует о частичной «инверсии» положений близких по размеру катионов Sc^{3+} и M^{3+} (M = Co, Fe). На основании обнаруженной в наших спектрах дополнительной структуры, способной вызывать асимметрию линии Co 2p-электронов, не представляется возможным оценить процентное содержание подобных примесных катионов кобальта и скандия в исследуемых оксидах.

Спектр Co 3*s*-электронов кобальтита ScCo_{0.95}Fe_{0.05}O₃ состоит из одиночной линии при $E_b = 102.7$ эВ шириной $\Gamma = 3.2$ эВ. Эта линия соответствует низкоспиновому состоянию Со³⁺, а также shake up-сателлиту с $\Delta E_{sat} = 10.4$ эВ и интенсивностью $I_{sat} = 13\%$ (рис. 5*a*). Максимум ($I \approx 27\%$) со стороны больших энергий на расстоянии 3.5 \Rightarrow B ($E_b = 106.2 \Rightarrow$ B) от основной линии может быть соотнесен с парамагнитными катионами $\operatorname{Co}^{3+}({}^{6}D: t_{2g}^{4}e_{g}^{2}, S = 2)$, замещающими скандий в позициях с высоким координационным числом [1-4]. Другой максимум на расстоянии 6.4 эВ ($E_b = 109.1$ эВ) от основного пика обусловлен или динамическим эффектом, или присутствием катионов кобальта в высокоспиновом состоянии. Кроме того, со стороны больших энергий связи от основной линии с $\Delta E_{sat} = 10.4$ эВ ($E_b = 113.1$ эВ) присутствует shake up-сателлит. Аналогичная структура наблюдается в спектре Co 3s-электронов не замещенного железом образца $ScCoO_3$ (рис. 56).

Спектр Со 3*p*-электронов $ScCo_{0.95}Fe_{0.05}O_3$ состоит из асимметричной уширенной ($\Gamma = 3.2$ эВ)

Рис. 4. Спектры РФЭС: a — Sc 2p-электронов ScCo_{0.95}Fe_{0.05}O₃; δ — Bi 4f-электронов BiCoO₃

линии, со стороны большей энергии связи от которой при $\Delta E_{sat} = 10.3$ эВ наблюдается shake up-сателлит с интенсивностью $I_{sat} \approx 23$ %. Несмотря на то что теоретическое значение спин-орбитального расщепления для Со 3*p*-электронов равно ΔE_{sl}^{theor} (Со 3*p*) = 5.46 эВ [12], в спектрах РФЭС со-

Рис. 5. Спектры РФЭС Со 3*s*-электронов: *a* — ScCo_{0.95}Fe_{0.05}O₃; *б* — ScCoO₃; *e* — BiCoO₃

единений кобальта не удается наблюдать характерного дублета для Со $3p_{3/2-}$ и Со $3p_{1/2}$ -электронов (см. таблицу и рис. 6). Со стороны меньших энергий от линии Со 3p-электронов при $E_b \approx 52.5$ эВ наблюдается синглетная линия Sc 3s-электронов. Ширина этой линии равна $\Gamma(\text{Sc} 3s) = 2.7$ эВ, что согласуется с соответствующей величиной для оксида Sc₂O₃ (см. таблицу), содержащего диамагнитные катионы Sc³⁺, линия от которых не уширена за счет мультиплетного расщепления. Сателлит от Sc 3s-электронов накладывается на линию при 63.5 эВ спектра Со 3p-электронов. Слабоинтенсивная линия в спектре ScCo_{0.95}Fe_{0.05}O₃ при $E_b \approx 55.9$ эВ может быть отнесена к Fe 3p-электронам высокоспиновых катионов Fe³⁺ ($^6A_{1q}$, S = 5/2).

3.2. BiCoO₃

Спектры Со 2*p*-электронов в кобальтите BiCoO₃ (см. рис. 36), содержащем катионы Со³⁺ исключительно в высокоспиновом состоянии $t_{2q}^4 e_q^2$

Рис. 6. Спектры РФЭС Со *3р*-электронов: *a* — ScCo_{0.95}Fe_{0.05}O₃; *б* — ScCoO₃; *в* — BiCoO₃

 $({}^{5}T_{1a})$, существенно отличаются от соответствующих спектров диамагнитных соединений ScCoO₃ ScCo_{0.95}Fe_{0.05}O₃. Основные линии дублета И Со 2*р*-электронов ВіСоО₃ существенно уширяются, а со стороны больших энергий от основных линий возникают интенсивные сателлиты. Уширение линий связано с мультиплетным расщеплением, обусловленным неспаренными электронами катионов высокоспиновых Со³⁺ [6–8]. Общая интенсивность таких сателлитов для линии Со 2р_{3/2}-электронов равна $I_{sat} \approx 44\%$ (см. таблицу). Сателлит при $\Delta E_{sat} \approx 10$ эВ можно отнести к внутриатомным shake up-сателлитам, а при $\Delta E_{sat} \approx 5.8$ эВ — к shake ир-сателлитам, связанным с зарядовым переносом $\mathrm{Co}^{3+} \leftarrow \mathrm{O}^{2-}$ в процессе фотоэмиссии внутреннего электрона [6-8].

Энергии связи электронов катионов Bi^{3+} равны 25.6 (1.2) Bi $5d_{5/2}$ и 28.5 (1.5) Bi $5d_{3/2}$ (см. рис. 2e); 94.4 (8.1) Bi $5p_{3/2}$ и 121.0 (7.4) Bi $5p_{1/2}$ (см. рис. 5e); 158.4 (1.2) Bi $4f_{7/2}$ и 163.8 (1.2) Bi $4f_{5/2}$ эВ (см. рис. 4ϕ); в скобках приведены полуширины линий. Отметим, что наблюдаемый спектр валентных Со 3*d*-электронов существенно усложняется из-за мультиплетного расщепления (см. рис. 2*6*).

Спектр Со 3p-электронов для BiCoO₃ в малой степени отличается от соответствующих спектров ScCo_{0.95}Fe_{0.05}O₃ и ScCoO₃ (см. рис. $6a, \delta$). В то же время сателлиты спектров для Со 3p-электронов имеют другую структуру (см. рис. 6a).

В спектре Со 3*s*-электронов наблюдается значительное расщепление основной линии с энергией $\Delta E_{ms} = 4.7$ эВ, а на расстоянии $\Delta E_{sat} \approx 10.0$ эВ от нее присутствует сателлит (см. рис. 5*6*), обусловленный мультиплетным расщеплением [14, 18, 19].

3.3. Травление поверхности образца ScCoO₃

После травления поверхности образца ScCoO₃ катионами Ar⁺ в течение 20 с линии в спектре валентных электронов уширяются, а интенсивность линии Co 3*d*-электронов при $E_b \approx 1.4$ эВ становится сравнимой с интенсивностью соответствующей линии в спектре BiCoO₃ (см. рис. 2*e*). Подобные изменения могут быть связаны с переходом части катионов кобальта в высокоспиновое состояние.

Аналогичное уширение после травления поверхности образца претерпевают линии спектра Со 2p-электронов. Помимо этого, в спектре Со 2p-электронов появляются интенсивные shake up-сателлиты при $\Delta E_{sat} = 6.0$ эВ, а сама структура спектра становится похожей на соответствующую структуру для BiCoO₃ (см. рис. 3*б*).

Травление поверхности образца ScCoO₃ также приводит к существенному изменению структуры спектров, относящихся к Co 3*p*- и Co 3*s*-электронам. Линия Co 3*p*-электронов уширяется до 3.6 эВ, появляется также небольшой максимум при 65.3 эВ, а интенсивность сателлита уменьшается до 3 %. Возникающая при этом структура спектра Co 3*p*-электронов становится очень похожей на соответствующую структуру спектра BiCoO₃ (см. рис. 6*a*), что также подтверждает образование катионов кобальта с неспаренными Co 3*d*-электронами. Возможно, при травлении поверхности происходит десорбция кислорода и как следствие восстановление части катионов кобальта с образованием высокоспиновых катионов Co²⁺ (3*d*⁷).

В спектре Со 3*s*-электронов вместо двух максимумов на расстоянии 3.5 и 6.4 эВ со стороны больших энергий связи от основной линии наблюдается одна интенсивная линия на расстоянии примерно 4.4 эВ, в результате чего спектр приобретает очень схожую структуру со спектром Со 3*s*-электронов BiCoO₃ (см. рис. 5*e*). Важно отметить, что линии Sc 3*s*-электронов диамагнитных катионов Sc³⁺ не претерпевают после травления видимых изменений. Это еще раз подтверждает тот факт, что линии на расстояниях примерно 3.5 и 6.3 эВ в спектрах Со 3*s*-электронов ScCoO₃ и ScCo_{0.95}Fe_{0.05}O₃ связаны с парамагнитными примесями, а не только с динамическим эффектом. Травление ионами Ar⁺ поверхности образца BiCoO₃ приводит лишь к некоторому сужению линий Со 3*s*-электронов.

4. ЗАКЛЮЧЕНИЕ

Методом РФЭС впервые изучены изоструктурные кобальтиты $Sc_{1-y}Co_{1-x}Fe_xO_{3-(3/2)y}$ (x = 0, 0.05; y = 0.05) и BiCoO₃. Определены энергии связи Co 2*p*-, 3*s*-, 3*p*-, Fe 3*p*-электронов и Bi 5*p*-, 4*f*-, 5*d*-электронов, а также проведен детальный анализ структуры спектров. Установлено, что кобальтиты ScCoO₃ и ScCo_{0.95}Fe_{0.05}O₃ имеют очень схожие структуры спектров, в которых интенсивности линий вблизи уровня Ферми (1.4–2.7 эВ) соответствуют электронной заселенности $n_{3d} \approx 6$ для формально трехвалентных ионов Co³⁺ (d^6). Это согласуется с предположением о том, что введение небольшого количества атомов Fe в матрицу ScCoO₃ не оказывает значительного влияния на ее электронное строение.

Ранее [20] при изучении кобальтитов GdCoO₃ и $Gd_{0.4}Sr_{0.6}CoO_{2.85}$ методом рентгеновской спектроскопии поглощения (XANES) для K-края поглощения Со не наблюдали его смещения при добавлении стронция. На основании этого авторы заключили, что степень окисления Со³⁺ не изменяется при добавлении стронция. С этим согласуются результаты настоящей работы, из которых следует, что энергии связи внутренних электронов кобальта слабо изменяются при переходе от ScCoO3 к Sc_{0.95}Fe_{0.05}CoO₃. Отсутствие в РФЭС-спектрах обоих кобальтитов высокоинтенсивных shake up-cateллитов, а также отсутствие расщепления линии для Со 3*s*-электронов подтверждают, что подавляющая часть катионов Со³⁺ в этих соединениях находится в низкоспиновом состоянии $t_{2g}^6 e_a^0 ({}^1A_{1g})$. В то же время сравнительный анализ структуры РФЭС-спектров кобальтитов скандия со спектрами кобальтита BiCoO₃, в котором все катионы Co³⁺ находятся в высокоспиновом состоянии $t_{2g}^4 e_g^2$ (⁵ T_{1g}), показал, что примерно 27% катионов кобальта в ScCoO₃ и ScCo_{0.95}Fe_{0.05}O₃ также находится в высокоспиновом состоянии. Данный результат может быть связан с частичной инверсией Co³⁺ в позиции катионов Sc³⁺ с высоким координационным числом.

Установлено, что травление поверхности образца ScCoO₃ приводит к существенному изменению структуры спектров, относящихся к Со 3*p*- и Со 3s-электронам. Возникающая при этом структура спектра Со 3*p*-электронов становится очень похожей на соответствующую структуру спектра BiCoO₃, что может быть связано с образованием катионов кобальта с неспаренными Со 3*d*-электронами.

Финансирование. Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 16-03-01065), а также с использованием оборудования, приобретенного за счет средств Программы развития Московского университета им. М. В. Ломоносова.

ЛИТЕРАТУРА

- W. Yi, I. A. Presniakov, A. V. Sobolev et al., Sci. Technol. Adv. Mater. 16, 024801 (2015).
- K. Fujita, T. Kawamoto, I. Yamada et al., Chem. Mater. 28, 6644 (2016).
- K. Fujita, T. Kawamoto, I. Yamada et al., Inorg Chem. 56, 11113 (2017).
- Я. С. Глазкова, А. В. Соболев, В. И и др., ЖЭТФ 153, 625 (2018).
- 5. К. Зигбан, К. Нордлинг, А. Фальма и др., Электронная спектроскопия, Мир, Москва (1971).
- В. И. Нефедов, Рентгеноэлектронная спектроскопия химических соединений, Химия, Москва (1984).

- В. В. Немошкаленко, В. Г. Алешин, Электронная спектроскопия кристаллов, Наукова думка, Киев (1976).
- Ю. А. Тетерин, А. Ю. Тетерин, Успехи химии 71, 403 (2002).
- A. A. Belik, S. Iikubo, K. Kodama et al., Chem. Mater. 18, 798 (2006).
- 10. D. A. Shirley, Phys. Rev. B 5, 4709 (1972).
- J. C. Fuggle and N. Martensson, J. Electr. Spectr. Relat. Phenom. 21, 275 (1980).
- K. N. Huang, M. Aojogi, M. N. Chen et al., Atom. Data Nucl. Data Tables 18, 243 (1976).
- M. Band, Y. I. Kharitonov, and M. B. Trzhaskovskaya, Atom. Data Nucl. Data Tables 23, 443 (1979).
- 14. В. Р. Галахов, В. В. Карелина, Д. Г. Келлерман и др., ФТТ 44, 257 (2002).
- T. Saitoh, T. Mizokawa, A. Fujimori et al., Phys. Rev. B 55, 4257 (1997).
- 16. T. Saitoh, T. Mizokawa, A. Fujimori et al., Phys. Rev. B 56, 1290 (1997).
- **17**. В. В. Месилов, В. Р. Галахов, Б. А. Гижевский и др., ФТТ **55**, 866 (2013).
- 18. M. Hassel and H.-J. Freund, Surf. Sci. Spectra 4, 273 (1998).
- 19. J. H. Van Vleck, Phys. Rev. 45, 405 (1934).
- 20. М. С. Платунов, В. А. Дудников, Ю. С. Орлов и др., Письма в ЖЭТФ 103, 214 (2016).