В. В. Марченков <sup>а,b\*</sup>, В. Ю. Ирхин<sup>а</sup>, Ю. А. Перевозчикова <sup>а\*\*</sup>, П. Б. Терентьев <sup>а,b</sup>,

А. А. Семянникова<sup>a</sup>, Е. Б. Марченкова<sup>a</sup>, М. Эйстерер<sup>c\*\*\*</sup>

<sup>а</sup> Институт физики металлов им. М. Н. Михеева Уральского отделения Российской академии наук 620108, Екатеринбург, Россия

> <sup>b</sup> Уральский федеральный университет 620002, Екатеринбург, Россия

<sup>c</sup> Atominstitut, TU Wien Austria, 1020, Vienna

Поступила в редакцию 14 января 2019 г., после переработки 30 января 2019 г. Принята к публикации 1 февраля 2019 г.

Экспериментально исследованы электрические, магнитные и гальваномагнитные свойства сплавов Гейслера  $Mn_2YAl$  (Y = Ti, V, Cr, Mn, Fe, Co, Ni). Получены температурные зависимости электросопротивления в широком интервале температур 4.2–1000 К. При T = 4.2 К измерены полевые зависимости магнитосопротивления и эффекта Холла в магнитных полях до 100 кЭ, а намагниченности — в полях до 70 кЭ. Рассматриваемые системы демонстрируют сильный ферромагнетизм либо скомпенсированный ферримагнетизм, причем возможны фазовые переходы с изменением магнитной структуры. Обсуждается вариативность электронной структуры в рядах данных сплавов, включающая состояния полуметаллического ферромагнетика и спинового бесщелевого полупроводника.

**DOI:** 10.1134/S0044451019060129

#### 1. ВВЕДЕНИЕ

Экспериментальные и теоретические исследования полуметаллических ферромагнетиков ( $\Pi M \Phi$ ) и спиновых бесщелевых полупроводников (СБП) представляют большой научный интерес, поскольку в таких материалах можно реализовать высокую степень спиновой поляризации носителей заряда, что может быть использовано в устройствах спинтроники [1].

Главной особенностью ПМФ является наличие щели на уровне Ферми для электронных состояний со спином вниз и отсутствие щели для носителей тока со спином вверх [2–4]. В простом приближении среднего поля это означает 100-процентную спиновую поляризацию носителей тока. Однако при учете квантовых эффектов электрон-магнонного взаимодействия возникает деполяризация [3]; этот факт недавно был экспериментально подтвержден для классического ПМФ — двуокиси хрома CrO<sub>2</sub> [5]. Указанные эффекты играют определяющую роль и в температурных зависимостях кинетических свойств [6].

К настоящему времени известно множество работ по экспериментальному изучению сплавов Гейслера, в которых сообщается о наблюдении ПМФ-состояния (см., например, [7]). При этом следует отметить недостатки ПМФ на основе сплавов Гейслера как материалов для спинтроники: как правило, они обладают металлической проводимостью, поэтому важны разработка и исследование подобных систем, но близких по свойствам к классическим полупроводникам. Недавно появились сообщения о получении ПМФ на основе вырожденного легированного полупроводника HgCr<sub>2</sub>Se<sub>4</sub> [8].

В 2008 г. был предсказан новый класс материалов — спиновые бесщелевые полупроводники, которые должны обладать рядом уникальных свойств, связанных с их необычной зонной структурой [9]. В СБП присутствует широкая ( $\Delta E \sim 1$  эВ) щель

<sup>&</sup>lt;sup>\*</sup> E-mail: march@imp.uran.ru

 $<sup>^{\</sup>ast\ast}$ E-mail: yu.perevozchikova@imp.uran.ru

<sup>\*\*\*</sup> M. Eisterer

| Сплав                | Состав по<br>данным EDAX               | Mn, % | Υ, %  | Al, % | Тип       |
|----------------------|----------------------------------------|-------|-------|-------|-----------|
|                      |                                        |       |       |       | структуры |
|                      |                                        |       |       |       | [17]      |
| $Mn_2TiAl$           | $\rm Mn_{2.04}Ti_{0.88}Al_{1.08}$      | 51    | 22    | 27    | $L2_1$    |
| $Mn_2VAl$            | $Mn_{1.95}V_{1.04}Al_{1.01}$           | 48.75 | 26    | 25.25 | $L2_1$    |
| $Mn_2CrAl$           | $Mn_{1.93}Cr_{1.04}Al_{1.03}$          | 48.25 | 26    | 25.75 | $L2_1$    |
| $Mn_2MnAl$           | $\mathrm{Mn}_{2.92}\mathrm{Al}_{1.08}$ | 73    | _     | 27    | $X_a$     |
| $Mn_2FeAl$           | $Mn_{1.99}Fe_{0.94}Al_{1.07}$          | 49.75 | 23.5  | 26.75 | $X_a$     |
| $Mn_2CoAl$           | $Mn_{1.99}Co_{0.96}Al_{1.05}$          | 49.75 | 24    | 26.25 | $X_a$     |
| Mn <sub>2</sub> NiAl | $Mn_{1.89}Ni_{1.05}Al_{1.06}$          | 47.25 | 26.25 | 26.5  | $X_a$     |

Таблица 1. Состав сплавов, содержание в них отдельных элементов по данным элементного анализа и тип структуры [17]

вблизи энергии Ферми для одной проекции спина носителей тока, а для носителей с противоположным направлением спина имеется нулевая энергетическая щель, характерная для классических бесщелевых полупроводников. Такие материалы позволяют совместить свойства ПМФ с полупроводниковыми характеристиками с возможностью тонкого регулирования величины энергетической щели, а следовательно, и управления электронными свойствами.

На практике строго реализовать условия возникновения состояний ПМФ и, особенно, СБП непросто, однако имеются работы, в которых сообщается о наблюдении ПМФ- и СБП-состояний в сплавах Гейслера (см., например, [10–12]). В работе [10] говорится о реализации ПМФ-состояния и почти 100-процентной поляризации по спину в тонких пленках сплава Гейслера Co<sub>2</sub>MnSi. Имеются также свидетельства о реализации СБП-состояния в соединениях Mn<sub>2</sub>CoAl [11] и CoFeMnSi [12]. Известно [13–16], что особенности электронной структуры (плотности электронных состояний вблизи уровня Ферми  $E_F$ ), а следовательно, и физических свойств, очень сильно изменяются при варьировании компонентов У и Z в соединениях Гейслера X<sub>2</sub>YZ. При этом могут наблюдаться переходы от обычного (магнитного и немагнитного) металлического и полупроводникового состояний в состояние полуметаллического ферромагнетика, затем в состояние спинового бесщелевого полупроводника и обратно. Поскольку обычно У — это переходные 3*d*-металлы, а Z — элементы III–V групп таблицы Менделеева, изменения в плотности электронных состояний вблизи  $E_F$ , а следовательно, и

в физических свойствах, проявляются по-разному при варьировании компонента *Y* либо Z.

Таким образом, цель данной работы — проследить за изменением кинетических и магнитных свойств в сплавах Гейслера  $Mn_2YAl$  (Y = Ti, V, Cr, Mn, Fe, Co, Ni). Мы представим результаты экспериментальных исследований электрических, магнитных и гальваномагнитных свойств этих сплавов, свидетельствующие об изменении их электронных и магнитных характеристик при варьировании компонента Y. Комплексное экспериментальное изучение кинетических и магнитных характеристик для широкой совокупности сплавов этой системы, насколько известно авторам, до настоящего времени отсутствовало.

# 2. ОБРАЗЦЫ И МЕТОДИКА ЭКСПЕРИМЕНТА

Сплавы Гейслера  $Mn_2YAl$  были выплавлены в индукционной печи в атмосфере очищенного аргона. Затем они отжигались в течение 72 ч при T == 650 °C в атмосфере аргона с последующим охлаждением до комнатной температуры со скоростью 100 град/ч.

Атомное содержание элементов в сплаве контролировалось с помощью сканирующего электронного микроскопа FEI Company Quanta 200, оснащенного приставкой энергодисперсионного рентгеновского микроанализа EDAX. В табл. 1 представлены данные элементного анализа исследованных сплавов и тип кристаллической структуры [17]. Методики измерения электро- и магнитосопротивления, намагниченности и эффекта Холла подробно описаны в работах [13–16].

#### 3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

#### 3.1. Электросопротивление

На рис. 1 представлены температурные зависимости электросопротивления  $\rho(T)$  сплавов Mn<sub>2</sub>YAl. Видно, что при изменении компонента У для большинства сплавов системы Mn<sub>2</sub>YAl (при вариации 3*d*-металлов) наблюдаются аномалии. Прежде всего, это относительно большая величина остаточного сопротивления, которая для Mn<sub>2</sub>TiAl, Mn<sub>2</sub>CrAl, Mn<sub>3</sub>Al, Mn<sub>2</sub>FeAl, Mn<sub>2</sub>CoAl варьируется от 242 до 305 мкОм · см, а также наличие участков с отрицательным температурным коэффициентом сопротивления (ТКС). Исключение составляют сплавы Mn<sub>2</sub>VAl и Mn<sub>2</sub>NiAl, остаточное сопротивление которых сравнительно невелико и равно соответственно 84 и 120 мкОм · см, а  $\rho(T)$  монотонно возрастает с температурой. Это может указывать на близость соединений Mn<sub>2</sub>TiAl, Mn<sub>2</sub>CrAl, Mn<sub>3</sub>Al, Mn<sub>2</sub>FeAl, Mn<sub>2</sub>CoAl к состоянию СБП с малой щелью и низкой энергией активации.

Для сравнения укажем на результаты, полученные в работе [18] для соединения Co<sub>2</sub>TiSn, которое, по-видимому, является ПМФ со сравнительно низкой температурой Кюри,  $T_C \approx 350$  K, что удобно с точки зрения исследования изменения кинетических свойств при магнитном превращении. Оно демонстрирует переход из обычного металлического в состояние с отрицательным ТКС (которое интерпретируется как полупроводниковое), когда система претерпевает превращение из ферромагнитного в парамагнитное состояние с ростом температуры. Кинетические свойства ферромагнитного сплава Гейслера CoFeTiSn с  $T_C \approx 300$  K демонстрируют ту же особенность [19]; расчеты ab initio [20] дают для этой системы почти полуметаллическую электронную структуру с очень малым числом носителей заряда для одной из проекций спина. Такая неопределенность указывает на возможное формирование состояния, близкого к СБП.

Можно ожидать, что наличие щели на  $E_F$  для одной либо двух проекций спина должно проявляться и в других транспортных, а также магнитных свойствах. Особенно это должно быть заметным при температурах много меньших  $T_C$ . Поэтому были изучены полевые зависимости магнитных и гальваномагнитных свойств при температуре жид-



Рис. 1. Температурные зависимости сопротивления сплавов  $Mn_2YAl$  (Y = Ti (квадрат), V (кружок), Cr (треугольник), Mn (звездочка), Fe (ромб), Co (пятиугольник), Ni (перевернутый треугольник))



Рис. 2. Полевые зависимости намагниченности в сплавах Гейслера  $Mn_2YAl$  (Y = Ti (квадрат), V (кружок), Cr (треугольник), Mn (звездочка), Fe (ромб), Co (пятиугольник), Ni (перевернутый треугольник))

кого гелия T = 4.2 K, а также температурные зависимости намагниченности.

## 3.2. Магнитные свойства

На рис. 2 приведены результаты измерений полевых зависимостей намагниченности M(H) системы сплавов  $Mn_2YAl$  при T = 4.2 К. Видно, что для сплавов  $Mn_2VAl$  и  $Mn_2CoAl$  в пределе сильных магнитных полей зависимости M(H) становятся линейными функциями и могут быть описаны выражением

$$M = M_s + 4\pi\chi H,\tag{1}$$

где  $M_s$  — спонтанная намагниченность, а  $\chi$  восприимчивость парапроцесса. При этом гистерезис наблюдается для сплавов Mn<sub>2</sub>TiAl, Mn<sub>2</sub>VAl, Mn<sub>2</sub>CoAl и Mn<sub>2</sub>NiAl (см. табл. 2, где представлены значения коэрцитивной силы  $H_c$ ).

Величины спонтанной намагниченности  $M_s$ и восприимчивость парапроцесса  $\chi$ , полученные при обработке экспериментальных данных M(H)согласно выражению (1), приведены в табл. 2. Для всех исследованных сплавов величины  $\chi \sim$  $\sim$  (1.5–3.5) · 10<sup>-6</sup> см<sup>3</sup>/г. Кривые намагничивания M(H) имеют вид, свойственный обычным ферромагнетикам только для сплавов Mn<sub>2</sub>VAl и Mn<sub>2</sub>CoAl. Определенная при этом величина спонтанной намагниченности образца Mn<sub>2</sub>VAl близка к значению  $M_s = 1.97 \, \mu_B / \phi$ орм. ед., полученному для данного сплава [21]. Однако для сплава Mn<sub>2</sub>CoAl значение  $M_s = 0.62 \, \mu_B / \phi$ орм. ед., определенное нами, значительно меньше величины  $2\,\mu_B/$ форм.ед., полученной в расчетах *ab initio* (см., например, [22]). Возможно, это связано с тем, что в исследованном образце Mn<sub>2</sub>CoAl присутствовала дополнительная фаза типа  $DO_3$ , характерная для  $Mn_3Al$ .

Кривые намагничивания сплавов Mn<sub>2</sub>TiAl и Mn<sub>2</sub>NiAl свидетельствуют о более сложном типе их магнитного упорядочения. Для точного определения вида магнитного порядка рассматриваемых сплавов требуются нейтронографические исследования. Поведение M(H) свидетельствует о близком к нулю полном моменте для сплавов Mn<sub>3</sub>Al, Mn<sub>2</sub>CrAl и Mn<sub>2</sub>FeAl; для двух последних систем это противоречит результатам расчета [22]. Согласно работе [23], Mn<sub>3</sub>Al может быть охарактеризован как компенсированный ферримагнетик, сохраняющий природу полуметаллического состояния. Аналогична ситуация в  $Mn_{1.5}FeV_{0.5}Al$  [24]. Ранее подобное состояние было получено в расчетах [25] и названо полуметаллическим антиферромагнетиком. Оно может быть перспективным для спинтроники, поскольку в нем имеется высокая спиновая поляризация носителей тока. Вероятно, такое состояние реализуется и в сплавах Mn<sub>2</sub>CrAl и Mn<sub>2</sub>FeAl.

| Сплав                | $M_s,$ ед. СГСМ/г | $\chi \cdot 10^{6}, \ { m cm}^{3}/{ m r}$ | $R_0 \cdot 10^4, \ { m cm}^3/{ m K\pi}$ | $R_s, \ { m cm}^3/{ m K\pi}$ | <i>ρ</i> 0,<br>мкОм · см | $n \cdot 10^{-21},$<br>$cm^{-3}$ | $\mu, \ { m cm}^2/({ m c}\cdot{ m B})$ | $H_c, \Im$ |
|----------------------|-------------------|-------------------------------------------|-----------------------------------------|------------------------------|--------------------------|----------------------------------|----------------------------------------|------------|
| Mn <sub>2</sub> TiAl | 0.2               | 1.4                                       | 14.2                                    | 9.67                         | 305.5                    | 4.4                              | 4.6                                    | 240        |
| $Mn_2VAl$            | 58.9              | 1.5                                       | 1.76                                    | 0.24                         | 122.3                    | 35.4                             | 1.4                                    | 15         |
| $Mn_2CrAl$           | _                 | 1.5                                       | 4                                       | _                            | 250.4                    | 15.6                             | 1.6                                    | _          |
| $Mn_2MnAl$           | _                 | 1.2                                       | 1.71                                    | _                            | 250.6                    | 36.5                             | 0.7                                    | _          |
| $Mn_2FeAl$           | _                 | 3.3                                       | 4.06                                    | _                            | 242.1                    | 15.4                             | 1.7                                    | _          |
| $Mn_2CoAl$           | 17.8              | 1.1                                       | 4.46                                    | 3.02                         | 254.3                    | 14                               | 1.8                                    | 90         |
| Mn <sub>2</sub> NiAl | 1.2               | 3.5                                       | 0.18                                    | 0                            | 84.1                     | 34.7                             | 0.2                                    | 350        |

**Таблица 2.** Спонтанная намагниченность  $M_s$  при T = 4.2 К, парамагнитная восприимчивость  $\chi$ , коэффициенты нормального  $R_0$  и аномального  $R_s$  эффектов Холла, остаточное сопротивление  $\rho_0$ , концентрация n и подвижность  $\mu$  носителей заряда, коэрцитивная сила  $H_c$ , определенные из измерений намагниченности, эффекта Холла и электросопротивления в сплавах  $Mn_2YAl$ 

На рис. 3 представлены температурные зависимости намагниченности M(T) сплавов системы  $Mn_2YAl$  в поле 100 Э.

Из сравнения рис. 1 и 3 видно, что имеется совпадение особенностей на температурных зависимостях сопротивления и намагниченности для сплавов  $Mn_2FeAl$  в области T = 100 К и  $Mn_2NiAl$  вблизи T = 150 К (в последнем случае особенность в сопротивлении более слабая — сравнительно плавное изменение наклона). Это может указывать на влияние фазовых переходов с изменением магнитной структуры. Однако для однозначного вывода о наличии фазовых переходов вблизи этих температур нужны дополнительные эксперименты, например, рентгеновские исследования в широкой области температур, что является предметом отдельного изучения. Особенность сопротивления в системе  $Mn_2CoAl$  вблизи T = 350 K (рис. 1) совпадает с температурой Кюри для этого соединения (рис. 3).

## 3.3. Эффект Холла

Результаты измерений полевых зависимостей холловского сопротивления  $\rho_H(H)$  в сплавах  $Mn_2YAl$  приведены на рис. 4. Были также определены величины коэффициентов нормального (НЭХ)  $R_0$  и аномального (АЭХ)  $R_s$  эффектов Холла по методике, подробно описанной в работах [14, 16].

Согласно теории кинетических явлений в металлах [26–28], коэффициент  $R_0$  определяется не только числом холловских носителей. Важную роль в формировании НЭХ играет подвижность носителей заряда, которая определяется как

$$\mu = R_0 / \rho_0. \tag{2}$$

Здесь  $\rho_0$  — удельное электросопротивление; оно было измерено в рассматриваемых системах сплавов при T = 4.2 К и приводится в табл. 2.

Как известно, [26–28], коэффициент АЭХ ферромагнитных соединений  $R_s$  связан с их удельным сопротивлением  $\rho_0$  и спонтанной намагниченностью  $M_s$  соотношением

$$R_s \propto \lambda_{eff} \frac{\rho_0^k}{M_s},\tag{3}$$

где  $\lambda_{eff}$  — эффективный параметр спин-орбитального взаимодействия, k — показатель степени, величина которого (обычно 1 или 2) зависит от механизма рассеяния носителей заряда. Если сравнить значения коэффициента  $R_s$  с величинами остаточного сопротивления  $\rho_0$  и спонтанной намагниченности  $M_s$ , которые приведены в таблице, то можно увидеть справедливость выражения (3) для исследованных сплавов.

Зависимость аномального коэффициента Холла от остаточного сопротивления  $R_s = f(\rho_0)$  для  $\operatorname{Mn}_2 Y$ Al приведена на рис. 5. Видно, что в данном случае показатель степени k в зависимости  $R_s \propto \rho_0^k$  больше трех, т.е. он существенно отличается от 1 и 2. Поэтому можно предположить, что существующие модели, которые обычно используются при анализе аномального эффекта Холла, не описывают поведение АЭХ в данных сплавах. Следу-



Рис. 3. Температурные зависимости намагниченности M(T) сплавов системы  ${\rm Mn}_2Y{\rm Al}$  в поле 100 Э. Квадратами обозначены кривые FC, а треугольниками — ZFC



Рис. 4. Полевые зависимости холловского сопротивления в сплавах Гейслера  $Mn_2YAl$  (Y = Ti (квадрат), V (кружок), Cr (треугольник), Mn (звездочка), Fe (ромб), Co (пятиугольник), Ni (перевернутый треугольник))



Рис. 5. Зависимость  $R_s = f(
ho_0)$  для системы сплавов  ${
m Mn}_2 Y {
m Al}$ 

ет отметить, что зависимость  $R_s \propto \rho_0^k$  с показателем степени k > 3 наблюдалась в сплавах Гейслера Fe<sub>2</sub>YAl в работе [14]. По-видимому, АЭХ рассматриваемых сплавов во многом определяется перестройкой электронной зонной структуры вблизи уровня Ферми  $E_F$ , сопровождаемой изменением числа носителей тока с разными проекциями спина.

# 3.4. Магнитосопротивление

На рис. 6 представлены полевые зависимости магнитосопротивления сплавов при T = 4.2 К. Видно, что наблюдается как положительное, так и отри-



Рис. 6. Полевые зависимости магнитосопротивления системы сплавов  $Mn_2YAl$  (Y = Ti (квадрат), V (кружок), Cr (треугольник), Mn (звездочка), Fe (ромб), Co (пятиугольник), Ni (перевернутый треугольник)) при T = 4.2 K

цательное магнитосопротивление, линейное по магнитному полю и с более сильной зависимостью, близкой к квадратичной.

Согласно работе [6], двухмагнонные процессы рассеяния в ПМФ приводят, наряду с аномальными температурными зависимостями магнитного сопротивления, к отрицательному линейному магнитосопротивлению. Отметим, что в ПМФ-сплаве Co<sub>2</sub>FeSi [16, 29], а также ПМФ-системе Co<sub>2</sub>TiSn [18] наблюдалось отрицательное магнитосопротивление. Можно предположить, что в сплавах с Y = V, Mn, Fe, Co, Ni наблюдаемые полевые зависимости с отрицательным линейным и/или близким к линейному магнитосопротивлением могут быть косвенным подтверждением проявления двухмагнонных процессов рассеяния.

#### 4. ЗАКЛЮЧЕНИЕ

В результате проведенных экспериментальных исследований обнаружен ряд аномалий электронных и магнитных свойств сплавов Гейслера Mn<sub>2</sub>YAl. Эти аномалии могут быть проявлением особенностей электронного энергетического спектра, проявляющихся в возникновении состояний полуметаллического ферромагнетика или спинового бесщелевого полупроводника. Имеющиеся экспериментальные методики не позволяют в ряде случаев однозначно различить эти ситуации.

На температурных зависимостях сопротивления исследованных сплавов имеются участки с отрица-

тельным температурным коэффициентом сопротивления, что может указывать на близость к состоянию СБП с исчезающе малой энергетической щелью. Вопреки расчетам электронной структуры [22], магнитные измерения для систем  $Mn_2YAl$  (Y = Cr, Mn, Fe) дают нулевую полную намагниченность и могут указывать на скомпенсированный ферримагнетизм. Особый интерес представляют обнаруженные аномалии в температурной зависимости намагниченности сплавов  $Mn_2FeAl$  и  $Mn_2NiAl$ , которые коррелируют с аномалиями электросопротивления. Это может быть проявлением фазовых переходов с изменением магнитной структуры.

Полученные результаты могут представлять интерес для разработки новых материалов, применимых в устройствах спинтроники.

Финансирование. Работа выполнена в рамках государственного задания Минобрнауки России (темы «Спин», № АААА-А18-118020290104-2 и «Квант», № АААА-А18-118020190095-4) при частичной поддержке Российского фонда фундаментальных исследований (проекты №№ 18-02-00739, 18-32-00686), комплексной программы Уральского отделения РАН (проект № 18-10-2-37) и Правительства Российской Федерации (постановление № 211, контракт № 02.А03.21.0006).

Работа подготовлена по итогам XXXVIII Совещания по физике низких температур (HT-38).

# ЛИТЕРАТУРА

- K. Inomata, N. Ikeda, N. Tezuka et al., Sci. Tech. Adv. Mater. 9, 014101 (2008).
- В. Ю. Ирхин, М. И. Кацнельсон, УФН 164, 705 (1994).
- M. I. Katsnelson, V. Yu. Irkhin, L. Chioncel et al., Rev. Mod. Phys. 80, 315 (2008).
- V. Yu. Irkhin, M. I. Katsnelson, and A. I. Lichtenstein, J. Phys.: Cond. Mat. 19, 315201 (2007).
- H. Fujiwara, K. Terashima, M. Sunagawa et al., Phys. Rev. Lett. **121**, 257201 (2018).
- V. Yu. Irkhin and M. I. Katsnelson, Eur. Phys. J. B 30, 481 (2002).
- T. Graf, C. Felser, and S. S. P. Parkin, Prog. Solid State Chem. 39, 1 (2011).
- T. Guan, C. Lin, C. Yang et al., Phys. Rev. Lett. 115, 087002 (2015).

- 9. X. L. Wang, Phys. Rev. Lett. 100, 156404 (2008).
- M. Jourdan, J. Minar, J. Braun et al., Nature Comm. 5, 3974 (2014).
- S. Ouardi, G. H. Fecher, C. Felser et al., Phys. Rev. Lett. 110, 100401 (2013).
- 12. L. Bainsla, A. I. Mallick, M. M. Raja et al., Phys. Rev. B 91, 104408 (2015).
- **13**. Н. И. Коуров, В. В. Марченков, К. А. Белозерова и др., ЖЭТФ **145**, 491 (2014).
- 14. Н. И. Коуров, В. В. Марченков, К. А. Белозерова и др., ЖЭТФ 148, 966 (2015).
- N. I. Kourov, V. V. Marchenkov, A. V. Korolev et al., Mater. Res. Express 4, 116102 (2017).
- V. V. Marchenkov, Yu. A. Perevozchikova, N. I. Kourov et al., J. Magn. Magn. Mat. 459, 211 (2018).
- L. Wollmann, S. Chadov, J. Kubler et al., Phys. Rev. B 90, 214420 (2014).
- 18. S. Majumdar, M. K. Chattopadhyay, V. K. Sharma et al., Phys. Rev. B 72, 012417 (2005).
- 19. Sn. Chatterjee, S. Das, S. Pramanick et al., arXiv: 1810.04865.

- 20. Y. J. Zhang, Z. H. Liu, G. T. Li et al., J. Alloys Compd. 616, 449453 (2014).
- 21. C. Jiang, M. Venkatesan, and J. M. D. Coey, Solid State Comm. 118, 513 (2001).
- 22. H. Luo, Z. Zhu, L. Ma et al., J. Phys. D: Appl. Phys. 41, 055010 (2008).
- M. E. Jamer, Y. J. Wang, G. M. Stephen et al., Phys. Rev. Appl. 7, 064036 (2017).
- 24. R. Stinshoff, A. K. Nayak, G. H. Fecher et al., Phys. Rev. B 95, 060410(R) (2017).
- H. van Leuken and R. A. de Groot, Phys. Rev. Lett. 74, 1171 (1995).
- 26. В. Ю. Ирхин, Ю. П. Ирхин, Электронная структура, физические свойства и корреляционные эффекты d- и f-металлах и их соединениях, УрО РАН, Екатеринбург (2004).
- **27**. А. Б. Грановский, В. Н. Прудников, А. П. Казаков и др., ЖЭТФ **142**, 916 (2012).
- 28. Дж. Займан, Электроны и фононы, Изд-во иностр. лит., Москва (1962).
- 29. V. V. Marchenkov, N. I. Kourov, and V. Yu. Irkhin, Phys. Met. Metallogr. 119, 64 (2018).