АТОМИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ОБРАЗОВАНИЯ ДЕФЕКТОВ В СПЛАВЕ УРАН-МОЛИБДЕН ПРИ ПРОЛЕТЕ ОСКОЛКА ДЕЛЕНИЯ

 \mathcal{J} . Н. Колотова a,b^* , С. В. Стариков c, В. \mathcal{J} . Озрин a

^а Институт проблем безопасного развития атомной энергетики Российской академии наук 115191, Москва, Россия

^b Московский физико-технический институт (государственный университет) 141701, Долгопрудный, Московская обл., Россия

^c Объединенный институт высоких температур Российской академии наук 125412, Москва, Россия

Поступила в редакцию 22 октября 2018 г., после переработки 11 февраля 2019 г. Принята к публикации 15 февраля 2019 г.

Представлены результаты моделирования процесса образования дефектов в сплаве урана с молибденом при пролете ионов ксенона и циркония с характерными для осколков деления энергиями. Исследуется процесс генерации дефектов в рамках атомистической двухтемпературной модели и метода Монте-Карло. Это позволяет оценить полное число первичных радиационных дефектов, которые образуются на стадии «термической вспышки» и в столкновительных каскадах для различных температур. Результаты расчетов пороговых энерговкладов ионов, приводящих к образованию дефектов на стадии «термической вспышки», находятся в хорошем согласии с имеющимися теоретическими и экспериментальными данными.

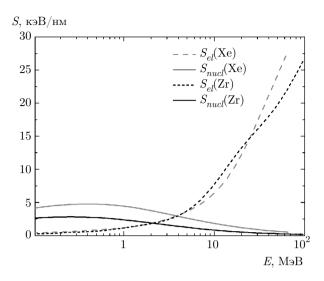
$\mathbf{DOI:}\ 10.1134/S0044451019070071$

1. ВВЕДЕНИЕ

На всех этапах жизненного цикла в ядерном топливе протекают сложные термомеханические и физико-химические процессы — при производстве, облучении в ядерном реакторе, последующей переработке и хранении. Физика, химия и материаловедение ядерного топлива существенно усложнена радиационными эффектами, и по этой причине большинство коммерческих топливных кодов, описывающих поведение ядерного топлива в реакторе, являются полуэмпирическими. В связи с этим весьма актуальной задачей является разработка так называемых механистических моделей, базирующихся на современных представлениях о физике и химии процессов в ядерном топливе [1–5]. Такие модели обычно формулируются для описания явлений в мезомасштабе, таких как теплопередача, диффузия компонентов топлива, зарождение в топливе новых фаз, их стабильность и т. д. При этом модели содержат, как правило, неизвестные микроскопические параметры, величины которых подгоняются под имеющиеся экспериментальные данные.

В свою очередь, оценка модельных параметров может быть проведена с помощью численного моделирования процессов, протекающих на атомистическом уровне [6–9], с использованием современных численных методов квантовой механики, Монте-Карло и молекулярной динамики. Это приводит к концепции мультимасштабности в разработке топливных кодов, когда данные на атомистическом уровне передаются через мезомасштабные модели для описания явлений в макромасштабе. Такой подход является особенно ценным при недостатке и тем более при отсутствии экспериментальной информации, касающейся физико-химических особенностей отдельных процессов в топливе.

В настоящее время в ряде стран, включая Россию, проводятся интенсивные работы по переводу атомной энергетики на новую технологическую


^{*} E-mail: lada.kolotova@gmail.com

платформу, в которой предусмотрена реализация замкнутого топливного цикла. Эта платформа предполагает использование реакторов на быстрых нейтронах, и важнейшей задачей является выбор оптимального топлива для этих реакторов. Наряду с традиционным смешанным оксидным топливом рассматривают альтернативные варианты, такие как карбидное, нитридное и металлическое топливо. В качестве металлического топлива часто используется сплав U-Mo из-за высоких показателей плотности, теплопроводности, повышенной коррозионной стойкости [10–14]. Но, в отличие от оксидного топлива, которое интенсивно исследовалось на протяжении многих десятков лет, экспериментальная информация, касающаяся новых видов топлива, весьма скудна. В этих условиях особое значение придается расчетным оценкам поведения топлива при облучении.

Многие процессы, протекающие в разных видах топлива, имеют сходную физико-химическую природу и, следовательно, описываются в рамках единой модели. Так, во всех видах топлива описание эволюции дефектной структуры предполагает знание энергий активации, коэффициентов диффузии точечных дефектов, скорости их генерации при облучении и т. д. Однако микроскопические параметры, с которыми оперируют модели, могут существенно различаться для разных видов топлива. В данной работе оценивается один из важнейших параметров дефектной модели кода BERKUT [15] число первичных радиационных дефектов, которые образуются на стадии «термической вспышки» и в столкновительных каскадах при прохождении фрагментов деления в U-Mo для различных температур эксплуатации топлива.

2. МОДЕЛЬ «ТЕРМИЧЕСКОЙ ВСПЫШКИ»

При делении урана в ядерном топливе формируются осколки деления (ионы) с большой начальной энергией. Быстрые тяжелые ионы (БТИ) при пролете через вещество теряют свою энергию в двух независимых процессах: передача энергии в электронную подсистему и упругие столкновения с атомами, которые могут приводить к развитию столкновительных каскадов. Оба процесса могут приводить к образованию дефектов. В случае быстрых тяжелых ионов (E > 100 кэВ/н) интенсивность передачи энергии S = dE/dz (энерговклад) в электронную подсистему на несколько порядков выше, чем энергия, теряемая за счет упругих столкновений [16–18].

Рис. 1. Зависимости энерговклада БТИ от энергии ионов Xe и Zr в сплаве U-Mo. Штриховые линии — передача энергии в электронную подсистему, сплошные линии — энергия, теряемая за счет столкновительных каскадов. Расчеты выполнены с помощью кода SRIM [19]

На рис. 1 представлены зависимости энерговкладов БТИ от энергии осколков деления, полученные с помощью кода SRIM [19].

Выделение большого количества энергии в электронную подсистему и релаксационные процессы приводят к образованию структурных дефектов и вызывают специфические эффекты, такие как формирование скрытых треков, локальное плавление, аморфизация, формирование различных твердых фаз [16, 18, 20-28]. Природа треков зависит от типа твердого тела. В случае большинства изоляторов и некоторых проводящих сплавов треки состоят из аморфного материала. В чистых металлах и многих керамиках трекообразование обычно ассоциируется с образованием точечных дефектов и их последующей кластеризацией в результате термически активируемой миграции [16, 22, 29, 30]. Таким образом, происходит нагрев ионной подсистемы, вещество плавится и при последующей кристаллизации образуются дефекты.

Структура сплава U–Мо и его ионная подсистема описываются в рамках молекулярно-динамического (МД) моделирования с модифицированной версией потенциала ADP [31]. Все расчеты проводились с использованием МД-пакета LAMMPS [32] с ttm/mod-модификацией [33].

Расчеты проводились в ячейке размерами $160\alpha_0 \times 160\alpha_0 \times 6\alpha_0$ вдоль осей $x,\,y,\,z$ соответственно, где $\alpha_0=3.45$ Å — параметр кристаллической

решетки сплава U–Мо. Для устранения поверхностных эффектов использовались периодические граничные условия. Размер элементарной ячейки для электронной подсистемы был равен $2\alpha_0 \times 2\alpha_0 \times 6\alpha_0$. Шаг интегрирования составлял 0.5 фс. Использовалось случайное распределение атомов урана и молибдена в кристаллической решетке для создания концентрации молибдена в 5 at. %.

На стадии термической вспышки энергия иона передается непосредственно в электронную подсистему. На короткое время это создает двухтемпературное состояние вещества, где температура электронов T_e на несколько порядков выше температуры ионов T_i . В модели взаимодействуют электронная и ионная подсистемы с различающимися начальными температурами [33–36]. Совместно решается система уравнений Ньютона для ионов и уравнение теплопроводности для электронной подсистемы. Силу, действующую на атом j, можно записать как

$$\mathbf{F}_{j} = -\nabla_{j} U(r_{1}, \dots, r_{n}) + F_{j}^{lang} (T_{e} - T_{i}) - \frac{\nabla P_{e}}{n_{i}}, (1)$$

где $U(r_1,\ldots,r_n)$ — потенциальная энергия системы ионов, задаваемая с помощью потенциала ADP [31], F^{lang} — ланжевеновский термостат в ионной подсистеме, $\nabla P_e/n_i$ — дополнительный член в уравнениях движения, отвечающий за влияние электронного давления на динамику ионов [37], $P_e=0.5\rho_eC_eT_e$ [33,36].

Изменение температуры электронной подсистемы описывается следующим образом:

$$C_e(T_e)\rho_e \frac{\partial T_e}{\partial t} = \nabla(\kappa_e \nabla T_e) - g_p(T_e - T_i),$$
 (2)

где C_e — удельная электронная теплоемкость, плотность $\rho_e=0.625e/\mathring{\rm A}^3,~\kappa_e=D_e\rho_eC_e$ — коэффициент теплопроводности, D_e — коэффициент термодиффузии электронов, константа электрон-ионного взаимодействия $g_p=6.5\cdot 10^{17}~{\rm B}\cdot{\rm m}^{-3}\cdot{\rm K}^{-1}$ [38].

Важно отметить, что уравнения (1) и (2) решаются совместно для всей моделируемой системы. Электронная подсистема влияет на ионную подсистему через электрон-ионную релаксацию (ланжевеновский термостат в ионной подсистеме) и дополнительный член в уравнениях движения, отвечающий за влияние электронного давления на динамику ионов. Стоит отметить, что более корректный подход заключается в учете изменения межатомного потенциала в ходе возбуждения электронной подсистемы. Однако моделирование треков происходит в объеме вещества, в отсутствие свободной поверхности. В этом случае за время электрон-ионной релаксации (около пикосекунды) атомы не успевают сильно изменить положение вследствие изменения межатомных сил. Силы между ионами можно считать не зависящими от электронной температуры и в первом приближении учитывать электронное давление только как дополнительный член в уравнениях движения ионов. По результатам проведенного моделирования можно сделать даже более сильное заключение: учет электронного давления хоть и важен с методической точки зрения, но практически не влияет на конечный результат моделирования образования дефектов в сплаве уран—молибден (в отличие от моделирования треков в диоксиде урана вблизи поверхности [33]).

Удельная электронная теплоемкость взята в форме

$$C_e = \gamma T_e, \tag{3}$$

где $\gamma = 4.0 \cdot 10^{-9} \text{ эВ}/(K^2 e)$ [38]. Значения g_p и γ были теоретически получены из первопринципных расчетов плотности электронных состояний и функции Элиашберга [38] для чистого урана. Релаксация сильных электронных возбуждений, создаваемых тяжелыми ионами, является главным фактором, который определяет природу трековой области. Таким образом, важной задачей для моделирования образования трека является оценка коэффициента термодиффузии D_e для двухтемпературной модели. Он был получен из экспериментальных данных о теплопроводности κ_e [39–43]. Коэффициент термодиффузии электронов D_e можно найти из аппроксимации экспериментальных данных линейной зависимостью от температуры $\kappa_e = D_e \rho_e \gamma T_e$. В настоящей работе было принято значение $D_e = 10 \text{ Å}^2/\text{фc}$, которое наиболее корректно описывает экспериментальные данные.

При пролете БТИ можно выделить следующие временные стадии [44,45]: перераспределение заряда и его нейтрализация, релаксация электронов, релаксация решетки, ее нагрев и последующее охлаждение. В металлах первые две стадии обычно протекают очень быстро и занимают около 0.1-1 фс. Это время можно оценить, решая статические уравнения Максвелла для напряженности электрического поля **E**, плотности тока **j** и проводимости σ [46–48]. Далее идет стадия релаксации электронов к равновесному распределению. В общем случае, если концентрация возбужденных электронов достаточно велика, обмен энергией между ними будет происходить сначала достаточно эффективно. Время этой стадии можно оценить как 10-100 фс в моделях, описывающих кинетику электронов с учетом их соударений [47–49]. Это делает возможным использовать уравнение теплопроводности для электронов после их термализации. Таким образом, двухтем-пературная атомистическая модель, используемая в данной работе, описывает процесс формирования трека при пролете БТИ после установления равновесного распределения электронов по энергиям и до стадии охлаждения кристаллической решетки с формированием в ней точечных дефектов.

3. ФОРМИРОВАНИЕ ТРЕКОВ В γ -ФАЗЕ СПЛАВА U–Мо

При моделировании треков БТИ проходит через вещество вдоль одного из направлений решетки сплава U–Мо. Влияние энергии иона обычно описывается в терминах энерговклада S=dE/dz, который отражает скорость потери кинетической энергии иона на единицу длины вдоль его траектории. В данной работе значения электронного энерговклада варьировались от 5 кэВ/нм до 30 кэВ/нм, которые близки к энерговкладам от осколков деления [50]. Энерговклад от БТИ моделировался заданием начального профиля электронной температуры. Начальное распределение электронной температуры было взято в виде

$$T_e = T_{init} + T_{max} \exp(-r/R). \tag{4}$$

Максимальное значение электронной температуры T_{max} находится в центре расчетной ячейки, $R=10\alpha_0$ (радиус трека), r — расстояние от оси трека. Значения электронной температуры T_{max} и радиус трека R подбирались таким образом, чтобы соответствовать значениям электронного энерговклада. Например, $T_{max}=35000~{\rm K}$ соответствует энерговкладу $S=29~{\rm кэB/hm}$. T_{init} — начальная температура сплава U—Мо, эта температура в расчетах менялась в пределах $300~{\rm K}$ — $900~{\rm K}$.

Два типа релаксационных процессов имеют место для электронной подсистемы: передача энергии от электронов к ионам и электронная теплопроводность. Электрон-ионная релаксация приводит к нагреву ионной подсистемы вблизи центра трека. В данной работе образование точечных дефектов и плавление при облучении БТИ происходит при нагреве ионной подсистемы, вызванном электронионной релаксацией. Время двухтемпературной стадии равно примерно 4 пс.

В предыдущей работе [51] было показано, что существуют различные механизмы образования дефектов при облучении сплава уран—молибден: плавление и последующая кристаллизация системы, фа-

зовый переход между двумя кристаллическими фазами ($\alpha \to \gamma$). Более того, результаты моделирования показывают, что генерация точечных дефектов может происходить без какого-либо фазового перехода. Возможная причина этого явления — небольшая энергия образования пары Френкеля в ү-фазе сплава уран-молибден. Также на образование дефектов в области трека может влиять распространение волн сжатия, поскольку они создают сильные локальные возмущения. Были рассчитаны пороговые энерговклады БТИ, облучение которыми приводит к формированию дефектов в сплаве урана с 5 at. % молибдена в различных условиях. Пороговые энерговклады уменьшаются от 27 кэВ/нм до 6 кэВ/нм при увеличении начальной температуры сплава от 300 К до 900 К.

4. ЗАВИСИМОСТЬ ПОРОГОВОГО ЭНЕРГОВКЛАДА ОТ СВОЙСТВ ОБЛУЧАЕМОГО МАТЕРИАЛА

В рамках модели термической вспышки пороговый энерговклад, приводящий к плавлению вещества, может быть оценен различными способами. В модели, предложенной в работе [52], зависимость температуры ионов от времени после передачи энергии в ионную подсистему аппроксимируется распределением Гаусса. Тогда пороговый энерговклад S_{th} для плавления и последующей кристаллизации с образованием дефектов можно оценить как энерговклад, при котором температура ионов в центре трека достигает температуры плавления T_m :

$$S_{th} = \frac{c\rho\pi a^2 (T_m - T_{init})}{g},\tag{5}$$

где a — радиус трека, g — доля энергии, передающейся от электронов к ионам. Для оценки теплоемкость c облучаемого вещества можно рассчитать как теплоемкость решетки по закону Дюлонга — Пти: c=(3R/M)N, где R — универсальная газовая постоянная, M — молярная масса вещества, N — число атомов в химической формуле вещества.

В работе [22] приводятся пороговые энерговклады БТИ для большого числа веществ из различных работ. Эти данные были нанесены на график зависимости порогового энерговклада S_{th} от $c\rho(T_m-T_{init})$ вместе с полученными из расчетов данными для сплава U–Mo (рис. 2).

При аппроксимации данных линейной зависимостью коэффициент наклона равен $\pi a^2/g$. Это позволяет оценить долю энергии на единицу площади, которая идет на нагрев ионной подсистемы. Все

Рис. 2. Пороговые энерговклады БТИ для различных веществ, полученные в экспериментах [22], в зависимости от $c\rho(T_m-T_{init})$. Результаты настоящей работы показаны черными кружками

данные можно разбить на две группы — металлы с большими пороговыми энерговкладами (около 30 кэВ/нм) при комнатной температуре (к этой группе также можно отнести U₃Si, близкий по свойствам к металлическому топливу, и полупроводник InP, обладающий большой теплопроводностью) и диэлектрики, полупроводники с энерговкладами меньше 30 кэВ/нм при комнатной температуре. Для первой группы веществ доля энергии на $1 \, \mathring{A}^2$, которая идет на нагрев ионной подсистемы, $q/\pi a^2$ составляет 34 %, а для второй группы $g/\pi a^2 \approx 5$ % на $1\,\text{Å}^2$. Различие на порядок в значениях $g/\pi a^2$ для неметаллов и металлов объясняется высокой теплопроводностью последних — большая часть энергии в электронной подсистеме успевает рассеяться по объему вещества до передачи в ионную подсистему. При этом значения пороговых энерговкладов, полученные для сплава U-Mo в настоящей работе, хорошо согласуются с имеющимися экспериментальными данными для других металлов.

5. ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ЧИСЛА ПАР ФРЕНКЕЛЯ, ОБРАЗУЮЩИХСЯ НА СТАДИИ «ТЕРМИЧЕСКОЙ ВСПЫШКИ»

Результаты моделирования позволяют оценить полное число первичных радиационных дефектов в ядерном топливе в условиях эксплуатации. В данной части работы мы выполнили оценку числа первичных радиационных дефектов, образующихся на ста-

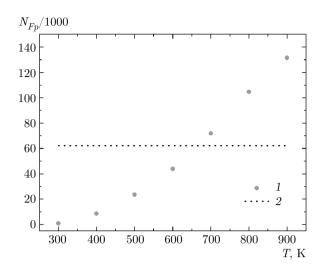
дии «термической вспышки». Число созданных радиационных дефектов линейно увеличивается с увеличением энерговклада, если он больше порогового значения S_{th} . Число пар Френкеля (N_{Fp}) на единицу длины пути Δz пролета БТИ может быть описано как $N_{Fp}/\Delta z = N_0(S - S_{th})$, где $N_0 \approx 2$ кэ B^{-1} . При распаде одного актинида основная часть энергии превращается в кинетическую энергию двух осколков деления, которые движутся в разные стороны. Существует два основных типа осколков деления: тяжелые осколки с массовым номером около 130 а.е.м. (в частности, Хе) и энергией около 65 МэВ; легкие фрагменты с массой около 95 а. е. м. (например, Zr) и энергией около 95 МэВ. Для расчета значений S для осколков деления (Xe и Zr) и изменения S вдоль их путей использовался код SRIM [19] (рис. 1).

Таким образом, число первичных радиационных дефектов N вдоль линии трека можно оценить как

$$N_{Fp}(T) = \int_{0}^{L_{th}} N_0 S dz - \int_{0}^{L_{th}} N_0 S_{th} dz =$$

$$= N_0 (E_0 - E_{th}) - N_0 S_{th} L_{th}, \quad (6)$$

где E_0 — начальная энергия иона. Конечные значения энергии E_{th} и длины пути L_{th} вычисляются при достижении энерговкладом порогового значения $S=S_{th}$ и, соответственно, зависят от температуры.


В итоге полное число первичных радиационных дефектов, образующихся на стадии «термической вспышки» (TS), равно сумме числа дефектов, образующихся при пролете Xe и Zr:

$$N_{Fp}^{TS}(T) = N_{Fp}^{\mathrm{Xe}}(T) + N_{Fp}^{\mathrm{Zr}}(T).$$

Зависимость полного числа первичных радиационных дефектов, образующихся в результате распада одного актинида, от температуры T показана на рис. 3. При увеличении температуры от 300 K до 900 K число пар Френкеля возрастает практически на два порядка. Следует отметить, что это число первичных радиационных дефектов образовалось только на стадии «термической вспышки».

6. РАСЧЕТ ЧИСЛА ПАР ФРЕНКЕЛЯ, ОБРАЗУЮЩИХСЯ В СТОЛКНОВИТЕЛЬНЫХ КАСКАДАХ МЕТОДОМ МОНТЕ-КАРЛО

Как уже было сказано выше, радиационные дефекты могут формироваться не только в результате

Рис. 3. Зависимости числа пар Френкеля, образующихся в результате распада одного актинида, от температуры T на стадии «термической вспышки» (1) и в столкновительных каскадах (2)

передачи энергии от БТИ в электронную подсистему, но и за счет упругих соударений между налетающим ионом и атомами матрицы [16,22,53]. При энергии БТИ меньше 10 МэВ, потери энергии иона на нагрев электронной подсистемы становятся меньше величины порогового энерговклада S_{th} и не могут приводить к образованию дефектов. В этом случае основное число дефектов формируется в результате столкновительных каскадов. Для расчета числа таких дефектов был использован кинетический метод Монте-Карло, реализованный в программном коде ТRIM [19].

Метод основан на приближении парных соударений между тяжелым ионом и атомами матрицы. После каждого столкновения случайным образом разыгрывается прицельный параметр следующего столкновения. Между столкновениями ион тратит свою энергию только на нагрев электронной подсистемы. Результат столкновения иона с атомом матрицы зависит от переданной атому энергии. Если она оказывается больше некоторого порогового значения E_D , то образуется пара Френкеля. Значение $E_D=35$ эВ для γ -урана было получено из молекулярно-динамических расчетов в работе [54]. Выбитый атом (РКА — primary knock-on atom) можно рассматривать в качестве самостоятельного быстрого иона, генерирующего вторично выбитые атомы, — формируется столкновительный каскад. В противоположном случае атом остается на месте, а переданная энергия переходит в тепло. Из результатов моделирования видно, что около $80\,\%$

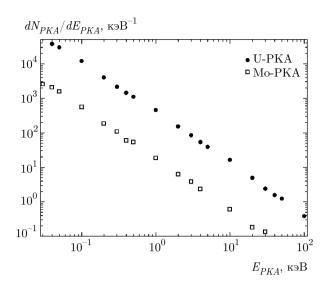


Рис. 4. Энергетическое распределение числа выбитых атомов (РКА), образующихся в сплаве урана с 5 at. % Mo, при пролете иона Xe с энергией 65 МэВ

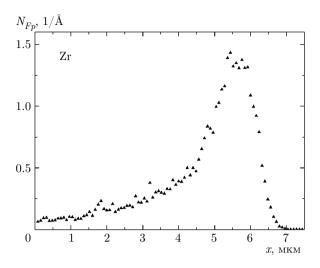


Рис. 5. Распределение количества пар Френкеля по длине пробега иона Xe с энергией $65~{\rm MpB}$

выбитых атомов (PKA) обладают энергией, меньшей 1 кэB (рис. 4).

Тем не менее, для расчета полного числа радиационных дефектов, образующихся в результате столкновительных каскадов, N_{Fp}^{CC} необходимо учитывать, что в модели Монте-Карло отсутствует тепловое движение атомов, которое приводит к частичной рекомбинации дефектов [55–57]. Поэтому полное число дефектов можно оценить как $N_{Fp}^{CC}=0.3N_{Fp}^{TRIM}$ [55].

На рис. 5, 6 представлены распределения количества пар Френкеля по длине пробега осколков деле-

Рис. 6. Распределение количества пар Френкеля по длине пробега иона ${\rm Zr}$ с энергией $95~{\rm MpB}$

ния Xe и Zr с учетом рекомбинации дефектов. В результате получается, что число первичных радиационных дефектов, генерируемых в столкновительных каскадах, $N_{Fp}^{CC} \approx 60000$ пар Френкеля. При этом в отличие от числа дефектов, образующихся на стадии «термической вспышки», оно практически не зависит от температуры (рис. 3).

7. ВЫВОДЫ

В данной работе выполнено исследование процесса генерации первичных радиационных дефектов в сплаве урана с молибденом. В результате распада одного атома U²³⁵ образуется около $6 \cdot 10^4$ пар Френкеля в столкновительных каскадах. Число дефектов, формирующихся на стадии «термической вспышки», сильно зависит от температуры и меняется от 10^3 до 10^5 при увеличении температуры сплава от 300 К до 900 К. Полученные в данной работе результаты могут являться входными данными для многомасштабных моделей, описывающих эволюцию топлива в условиях эксплуатации. Примером такой модели является механистический топливный код MFPR, разрабатываемый с 1996 г. ИБРАЭ РАН [4]. Код описывает эволюцию микроструктуры топлива, включая пространственное распределение точечных (вакансии и межузлия) и протяженных (дислокации, газонаполненные пузыри) дефектов, распухание топлива, генерацию и перенос в топливе продуктов деления, их выход в открытую пористость, формирование газовой и конденсированных фаз продуктов деления и компонентов топлива. Код включен в качестве самостоятельного модуля

в коды SFPR [3, 5] и BERKUT [15], описывающие поведение отдельного ТВЭЛа в ядерных реакторах соответственно на тепловых и быстрых нейтронах.

Благодарности. Расчеты проводились с использованием вычислительного кластера МВС-10П (Межведомственный суперкомпьютерный центр Российской академии наук).

ЛИТЕРАТУРА

- **1**. Ch. Newman, G. Hansen, and D. Gaston, J. Nucl. Mat. **392**(1), 6 (2009).
- R. L. Williamson, J. D. Hales, and S. R. Novascone, J. Nucl. Mat. 423(1), 149 (2012).
- M. S. Veshchunov, A. V. Boldyrev, A. V. Kuznetsov, V. D. Ozrin, M. S. Seryi, V. E. Shestak, V. I. Tarasov, G. E. Norman, A. Yu. Kuksin, V. V. Pisarev, D. E. Smirnova, S. V. Starikov, V. V. Stegailov, and A. V. Yanilkin, Nucl. Eng. Design 295, 116 (2015).
- M. S. Veshchunov, R. Dubourg, V. D. Ozrin, V. E. Shestak, and V. I. Tarasov, J. Nucl. Mat. 362, 327 (2007).
- M. S. Veshchunov, A. V. Boldyrev, V. D. Ozrin, V. E. Shestak, and V. I. Tarasov, Nucl. Eng. Design 241, 2822 (2011).
- R. E. Stoller and L. R. Greenwood, in Proc. of MRS1998 Fall Meeting, Symp. J: Multiscale Modeling of Materials, ORNL/CP-10122, Boston (1998).
- D. J. Bacon and Yu. N. Osetsky, Mat. Sci. Eng. A 365, 46 (2004).
- M. Stan, J. C. Ramirez, P. Cristea, S. Y. Hu, C. Deo,
 B. P. Uberuaga, S. Srivilliputhur, S. P. Rudin, and
 J. M. Wills, J. Alloys Comp. 444—445, 415 (2007).
- R. Darkins and D. M. Duffy, Comput. Mater. Sci. 147, 145 (2018).
- V. V. Kalashnikov, V. V. Titova, and G. Ia. Sergeev, Atom. Energy 5, 1315 (1959).
- A. Landa, P. Söderlind, and P. E. A. Turchi, J. Nucl. Mat. 414(2), 132 (2011).
- Y. S. Kim and G. L. Hofman, J. Nucl. Mat. 419(1), 291 (2011).
- **13**. A. V. Vatulin, A. V. Morozov, and V. B. Suprun, Atom. Energy **100**, 37 (2006).
- 14. J. Rest, Y. S. Kim, and G. L. Hofman, *U-Mo Fuels Handbook*, Argonne Nat. Lab., ANL-09/31 (2009).

- A. V. Boldyrev, S. Yu. Chernov, A. P. Dolgodvorov,
 I. O. Dolinsky, V. D. Ozrin, and V. I. Tarasov, in Proc. Int. Conf. FR-17, Ekaterinburg (2017), p. 363.
- Z. G. Wang, Ch. Dufour, and E. Paumier, J. Phys.: Condens. Matter 6, 6733 (1994).
- M. Toulemonde, Ch. Dufour, and E. Paumier, Phys. Rev. B 46, 14362 (1992).
- M. Toulemonde, Ch. Dufour, and A. Meftah, Nucl. Instr. Meth. Phys. Res. B 166, 903 (2000).
- J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Matter, Vol. 1, Pergamon Press, New York (1985).
- **20**. D. A. Young, Nature **182**, 917 (1958).
- E. C. H. Silk and R. S. Barnes, Phil. Mag. 4(44), 970 (1959).
- **22**. N. Itoh, D. M. Duffy, and S. Khakshouri, J. Phys.: Condens. Matter **21**, 474205 (2009).
- Th. Th. Hlatshwayo, J. H. O'Connell, and V. A. Skuratov, J. Phys. D: Appl. Phys. 48, 465306 (2015).
- M. Karlušić, R. Kozubek, and H. Lebius, J. Phys. D: Appl. Phys. 48, 325304 (2015).
- T. Steinbach, Th. Bierschenk, and S. Milz, J. Phys. D: Appl. Phys. 47, 065301 (2014).
- M. Lang, J. Lian, and J. Zhang, Phys. Rev. B 79, 224105 (2009).
- P. Kluth, C. S. Schnohr, and O. H. Pakarinen, Phys. Rev. Lett. 101, 175503 (2008).
- J. H. O'Connell, R. A. Rymzhanov, and V. A. Skuratov, Nucl. Instr. Meth. Phys. Res. B 374, 97 (2016).
- 29. B. Canut, A. Benyagoub, G. Marest, A. Meftah, N. Moncoffre, S. M. M. Ramos, F. Studer, P. Thevenard, and M. Toulemonde, Phys. Rev. B 51, 12194 (1995).
- V. A. Skuratov, J. O'Connell, N. S. Kirilkin, and J. Neethling, Nucl. Instr. Meth. Phys. Res. B 326, 223 (2014).
- S. V. Starikov, L. N. Kolotova, A. Yu. Kuksin,
 D. E. Smirnova, and V. I. Tseplyaev, J. Nucl. Mat. 499, 451 (2018).
- **32**. S. J. Plimpton, J. Comp. Phys. **117**, 1 (1995).
- **33**. V. V. Pisarev and S. V. Starikov, J. Phys.: Condens. Matter **26**, 475401 (2014).
- 34. G. E. Norman, S. V. Starikov, and V. V. Stegailov, Contrib. Plasma Phys. 53, 129 (2013).

- A. M. Rutherford and D. M. Duffy, J. Phys.: Condens. Matter 19, 496201 (2007).
- D. M. Duffy and A. M. Rutherford, J. Phys.: Condens. Matter 19, 016207 (2006).
- **37**. S. V. Starikov and V. V. Pisarev, J. Appl. Phys. **117**, 135901 (2015).
- **38**. Z. Li, C. Wang, and J. Zhao, Phys. Plasmas **24**, 022703 (2017).
- J. L. Klein, Uranium and its Alloys AR Kaufmann, Wiley, New York-London (1962), p. 31.
- 40. R. K. McGeary, USAEC Rep. WAPD-127-I (1955).
- **41**. Y. S. Touloukian, R. W. Powell, and C. Y. Ho, *Thermal Conductivity*, IFI (1970).
- **42**. C. Roy, A. Radenac, and F. Cado, Tech. Rep.: CEA, Montrouge, France (1973).
- **43**. H. A. Saller, R. F. Dickerson, and A. A. Bauer, Tech. Rep.: Battelle Memorial Inst., Columbus, Ohio (1956).
- 44. F. F. Komarov, Physics-Uspekhi 46, 1253 (2003).
- 45. F. F. Komarov, Physics-Uspekhi 60, 435 (2017).
- 46. Z. Insepov, M. Terasawa, and K. Takayama, Phys. Rev. A 77, 062901 (2008).
- **47**. B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, Phys. Rev. B **65**, 214303 (2002).
- **48**. Ю. В. Петров, Н. А. Иногамов, К. П. Мигдал, Письма в ЖЭТФ **97**, 24 (2013).
- R. R. Ramazashvili, A. A. Rukhadze, and V. P. Silin, Sov. Phys. JETP 16, 939 (1963).
- H.-Y. Chiang, S.-H. Park, and M. Mayer, J. Alloys Comp. 626, 381 (2015).
- L. N. Kolotova and S. V. Starikov, J. Nucl. Mat. 495, 111 (2017).
- 52. G. P. R. B. Szenes, Phys. Rev. B 51, 8026 (1995).
- 53. S. J. Zinkle, V. A. Skuratov, and D. T. Hoelzer, Nucl. Instr. Meth. Phys. Res. B 191, 758 (2002).
- **54**. B. Beeler, Y. Zhang, M. Okuniewski, and C. Deo, J. Nucl. Mat. **508**, 181 (2018).
- **55**. S. V. Starikov, High Temp. **53**, 55 (2015).
- 56. R. E. Stoller, M. B. Toloczko, G. S. Was, A. G. Certain, S. Dwaraknath, and F. A. Garner, Nucl. Instr. Meth. Phys. Res. 310, 75 (2013).
- T. Troev, N. Nankov, and T. Yoshiie, Nucl. Instr. Meth. Phys. Res. 269, 566 (2011).