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Duality plays an important role in the analysis of
statistical, quantum field, and string theory systems.
Usually, it maps a weak coupling region of one theory
to the strong coupling region of the other and makes it
possible to use perturbative, semiclassical, and renor-
malization group methods in different regions of the
coupling constant. For example, the well known du-
ality between Sine-Gordon and massive Thirring mo-
dels [1,2] together with integrability plays an impor-
tant role for the justification of exact scattering matrix
[3] in these theories. Another well known example of
the duality in two dimensional integrable systems is the
weak-strong coupling flow from affine Toda theories to
the same theories with dual affine Lie algebra [4-6].
The phenomenon of electric-magnetic duality in four
dimensional N = 4 supersymmetric gauge theories con-
jectured in [7,8] and developed for N = 2 theories in [9]
(and in many subsequent papers) opens the possibility
for the non-perturbative analysis of the spectrum and
phase structure in supersymmetric gauge field theories.
The remarkable field /string duality [10,11] leads to the
unification of the ideas and methods for the analysis of
these seemingly different quantum systems.

While known for many years the phenomenon of
duality in quantum field theory still looks rather mys-
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terious and needs to be further analyzed. Such analysis
crucially simplifies for two-dimensional integrable rela-
tivistic systems. These theories besides the Lagrangian
formulation possess also an unambiguous definition in
terms of factorized scattering theory, which contains
all information about off- shell data of quantum the-
ory. These data allow the use of non-perturbative
methods for the calculation of observables in integrable
field theories. The comparison of the observables cal-
culated from the scattering data and from the pertur-
bative, semiclassical or renormalization group analysis
based on the Lagrangian formulation makes it possible
in some cases to justify the existence of two different
(dual) Lagrangian representations of a quantum theory.

The two particle factorized scattering matrix is a
rather rigid object. It is constrained by the global sym-
metries, factorization equation and unitarity and cross-
ing symmetry relations. After solving of these equa-
tions the scattering matrix S can contain one (or more)
free parameter. At some value of this parameter A = g
the scattering matrix S (Ag) becomes the identity ma-
trix and has a regular expansion around this point. In
many cases this expansion can be associated with the
perturbative expansion of some Lagrangian theory with
parameter b near some free point. Sometimes there is
a second point A = A\; where S (\) reduces to identity
matrix and admits a regular expansion in (A — Ay). If
this expansion can be associated with the perturbative
expansion of another local Lagrangian at small coupling
~v = ~(b), then the two different Lagrangians describe
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the same theory, which has two different (dual) pertur-
bative regimes.

A more interesting situation occurs when S () has
a regular expansion in (A — \g) which agrees with per-
turbative expansion in b of some field theory with local
action A (b), but at the point A; the S-matrix tends
to some “rational” scattering matrix corresponding to
the S-matrix of a non-linear sigma model on a sym-
metric space. Near the point A; it can be considered as
a deformation of a symmetric scattering. In this case
it is natural to search for the dual theory as sigma
model with target space looking as a deformed sym-
metric space. The metric and other characteristics of
sigma model on the manifold is subject to very rigid
conditions, namely non-linear renormalization group
(RG) equations [12]. If one has found the solution of
RG equations which gives the observables in the sigma
model theory, coinciding with those derived from the
factorized S-matrix theory one can conclude that field
theory with the action A (b) is dual to a sigma model
on the deformed symmetric space. The short distance
behaviour of such theory can be studied by RG and
conformal field theory (CFT) methods. The agreement
of the CFT data, derived from the action A4 (b) (consi-
dered as a perturbed CFT) with the data derived from
RG for sigma model gives an additional important test
for the duality ("nice” duality).

The analysis of integrable quantum SMs on the de-
formed symmetric spaces and their dualities started in
the papers [13-15]. Later in the papers [16,17] the ge-
neral classical SMs on the deformed groups and cosets
manifolds have been constructed. Unfortunately, not
all these SMs, integrable classically, are integrable in
quantum case. In particular it happens for the cosets
having U (1) group in denominator (see for example
[18]). In many cases this situation can be improved by
introduction of additional quantum degrees of freedom,
which are invisible in the classical limit.

We say that an integrable SM has the “nice” dua-
lity if the dual integrable QFT has the weak coupling
region. This implies that we can study this theory by
different methods (perturbation theory, RG and CFT
analysis) in different regimes. Note that the SMs with
the property of “nice” duality form a very small sub-
space in the space of all integrable quantum SMs on
the deformed symmetric spaces and such SMs with ad-
ditional quantum degrees freedom.

A simple (but rather non-trivial) example is pro-
vided by the CP (n — 1) SM. This model is integrable
classically but non-integrable (for n > 2) at the quan-
tum level. After adding the massless fermion inter-
acting with U (1) gauge field on CP (n — 1) (massless
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axion, linearly coupled with the density of topological
charge), this SM becomes integrable and its deformed
version has the “nice” duality property. We study this
theory in the main part of this paper. Here, we say a
few words about non-integrable CP (n — 1) SMs.

These models were intensively studied during 70-80s
due to their’s similarity with four-dimensional SU(n)
gauge QFTs. Namely, the CP (n — 1) SMs and SU(n)
gauge theories are asymptotically free, possess instan-
tons, and manifest the phenomenon of confinement®).
It is natural that CP(n—1) SMs served as baby-
laboratory for the analysis of SU(n) gauge theory, in
particular, for analysis of instanton contributions [19]
and lattice simulations [20].

The spectrum of the CP(n—1) SMs in 1/n ap-
proach was studied in [21]. It was shown that besides
the basic particles, which are the only particles in the
integrable version of this model, one has also the parti-
cles which are their bound states, confined by Coulomb
forces. The addition of fermion (axion) produces an
essential restructure of the spectrum. Of course, the
influence of the axion on the spectrum of gauge the-
ory is a more interesting and much more complicated
problem.

The spectrum of the deformed non-integrable
CP (n—1) SMs seems to be qualitatively the same as
that of the undeformed models and can not be studied
by perturbative methods. Due to the “nice” duality,
in the integrable CP(n—1) SMs with axion there
is a weak coupling region. In this region the basic
particles also form the bound state, which disappears
from the spectrum outside the perturbative region. It
is possible however that in a non-integrable QFT they
survive in the strong coupling (SM) regime. We hope
to return to this problem in a future publication.

This main paper (see JETP 129, Ne10) is organized
as follows. In section 2, we describe the basic CFTs,
which can be formulated in terms of 2n — 1 bosonic
fields, and their primary fields are the exponents of
these fields. We calculate the reflection amplitudes in
these CFTs which are important for the calculation of
UV asymptotics in perturbed CFTs. These amplitudes
serve also for identification of CFTs in different repre-
sentations. In particular, for justification of dual SM
representations.

In section 3, we explain the general properties of
deformed C'P (n — 1) SMs with fermion and write the
action of perturbed CFTs, constructed in section 2. We

1) For n > 2, both theories have non-topological classical so-
lutions, the role of which is not clear at the moment.
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conjecture that these QFTs provide a dual description
of deformed C'P (n — 1) SMs with fermion.

In section 4, we represent the action of dual QFT
in the form suitable for the perturbation theory in pa-
rameter b. We provide non-local integrals of motion
which form the Borel subalgebra of SU(n)q and gener-
ate SU(n)q symmetry of the scattering theory. We de-
scribe the spectrum and scattering theory of this QFT.

In section 5, we use the Bethe Ansatz approach to
derive the exact relations between the parameters of
action and scattering theory in this QFT. We calculate
the observables, which can be compared with the ob-
servables calculated using the dual SM description of
our QFT.

In section 6, we consider classical and quantum inte-
grable SMs on the deformed symmetric spaces. We dis-
cuss Ricci flows in these SMs and the relation between
the parameters of integrable SMs with the parameters
of their scattering theory. We calculate the observables
in integrable deformed CP (n — 1) SMs and show that
in the scaling (one loop) approximation they coincide
with the observables calculated in the Bethe Ansatz
approach.

In section 7, we consider the conformal limit of the
deformed C'P (n — 1) SMs. For simplicity of equations
we consider the case n = 3. We calculate the reflec-
tion amplitudes associated with this conformal SM and
show that they coincide with reflection amplitudes cal-
culated in section 2, i.e., these CFTs are dual. We use
these amplitudes to get the UV asymptotics of effective
central charge in the deformed C'P (n — 1) SMs on the
circle of length R.

In section 8, we study the second integrable per-
turbation of CFTs described in section 2. We study
the scattering theory of these QFTs and see that at
small and large values of the coupling constant b they
can be studied by perturbation theory in b and 1/b,
i.e., it has two different dual representations. In the
strong coupling regime they can be described by the
action with the SM part coinciding with the conformal
limit of the deformed C'P (n — 1) SMs and the poten-
tial part described by tachyon. After a simple analyti-
cal continuation in the coupling constant the SM part
of the actions become singular. These actions describe
integrable classical models but after the quantization
these QFTs are well defined only for discrete values of
coupling constant.

In section 9, we discuss the rational CFTs, which
are closely related with conformal SMs with singular
actions and the discrete values of coupling constant.
We show that these CFTs perturbed by proper fields
describe non-integrable deformed CP (n—1) SMs

669

with topological parameter and integrable deformed
CP (n—1) with fermion (axion). We consider more
general CFTs represented by the cosets Gy, X Gi/Gyi
and study their deformations by different fields in
different regions of integers m,(, and h (Coxeter num-
ber of G). We study their RG propertied and show
that these QFTs provide an independent description
of a large variety of SMs on the deformed symmetric
spaces. Finally, we give a simple inequality which
provides a necessary condition for a sigma model to
have “nice” duality.

The full text of this paper is published in the English
version of JETP.
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