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The problem of quantization of hydrodynamics be-
yond linear approximation is commonly considered in-
tractable. Nevertheless, nature confronts us with beau-
tiful quantum non-linear ideal fluids with experimen-
tally accessible precise quantization. Among them, two
quantum fluids stand out: superfluid helium and elec-
tronic fluid in the fractional quantum Hall state. In
both cases, the precise quantization of vortex circula-
tion in superfluid helium and the precise quantization
of electric transport in FQHE leave no doubts of the
quantum nature of these fluids.

The fundamental aspects of quantization of fluid
dynamics most clearly appear in ideal flows. These are
incompressible flows ∇· u = 0 of homogeneous inviscid
fluids. The problem of quantization is further special-
ized in chiral two-dimensional ideal flows which we con-
sider in the paper. These are 2D flows with extensive
vorticity: the mean vorticity

2Ω =
1

V

∫
ω dV, ω(r) = ∇×u, (1)

remains finite, as V → ∞. The chiral flows are distin-
guished by the holomorphic character of the quantum
states.

Two most perfect quantum fluids, rotating super-
fluid helium [1], and FQHE fall to the class of ideal
chiral flows (see [2, 3] for the correspondence between
FQHE and superfluid hydrodynamics). In the paper
we had shown how to quantize chiral flows and describe
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some, not immediately obvious, consequences of quan-
tization. The guidance for the quantization comes from
the intersection between quantum chiral hydrodynam-
ics and quantum two-dimensional gravity.

Classical ideal flows are characterized by the Hamil-
tonian and the Poisson structure

H =
ρA
2

∫
u2dV,

{ω(r), ω(r′)} = ρ−1
A (∇r ×∇r′)ω(r)δ(r − r′).

(2)

It is well known, that the Poisson structure is the
Lie–Poisson algebra of area preserving diffeomorphisms
SDiff. Hence flows of an ideal fluid are the actions of
area-preserving diffeomorphism SDiff, and should be
studied from a geometric standpoint, see, e. g., [4].

Formally the quantization amounts supplanting the
Poisson brackets by the commutator

{ , } → 1

i�
[ , ]

and identifying the Hilbert space with a representation
space of SDiff . The latter, however, is not well under-
stood. The difficulties appear in the regularization of
short-distance divergencies. A regularization must be
consistent with fundamental local symmetries of the
theory. The local “symmetry” of fluids is the relabeling
symmetry, or equivalently the invariance with respect
to re-parametrization of flows. We had shown that
the relabeling symmetry alone determines the universal
quantum corrections to the Euler equation. Relabeling
are diffeomorphisms in the manifold of Lagrangian co-
ordinates. Invariance with respect to diffeomorphisms
is also a guiding principle of quantum gravity. In the
paper, we described the correspondence between chiral
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flows and 2D gravity, and explained how this correspon-
dence yields to a unique short-distance regularization.
The result of the regularization is quantum corrections
to the Euler equation expressed in terms of the gravi-
tational anomaly.

We start by the notion of quantum stress. Consider
a traceless part of the momentum flux tensor

Π′
ij = ρA

(
uiuj − 1

2
u2δij

)
.

In the quantum case, the velocity ui is an operator.
We will be interested in expectation value of Π′

ij . The
cumulant of the bilinear product of velocities is the
(minus) quantum stress

−T ′
ij = ρA

(
〈〈uiuj〉〉 − 1

2
〈〈u2〉〉δij

)
.

The quantum stress corrects the Euler equation as

ρADtui +∇ip = ∇jT ′
ij . (3)

In this equation, all entries are assumed to be expec-
tation values ui → 〈ui〉, hence the equation could be
treated as classical. Also

Dt = ∂t + 〈u〉 · ∇
is the material derivative with respect to the expecta-
tion value of velocity and ρA is the mass density of the
fluid. The divergency of the quantum stress vanishes,
it yields to the corrections to hydrodynamics.

We write the Euler equation in the Helmholtz form
by taking the curl of (3)

ρADtω = εik∂k∇jT ′
ij . (4)

We see that unless the rhs of (4) vanishes, the ma-
jor property of classical hydrodynamics, the Helmholtz
law does not hold for the expectation value of vortic-
ity. We recall that the Helmholtz law Dtω = 0 states
that vorticity is frozen in the flow. Departure from the
Helmholtz law is the major result of the paper. De-
spite it the Kelvin theorem (conservation of vorticity
of a fluid parcel) is intact. The Kelvin theorem holds
when the divergence of the stress has no circulation
along a liquid contour∮

∇jTijdxi = 0

and it, indeed, vanishes.
In the paper, we expressed the stress in terms of

the expectation values of the vorticity. We present the
result in complex coordinates

T ′
ijdx

idxj =
1

4
[Tzz(dz)

2 + Tz̄z̄(dz̄)
2].

If we assume that vorticity is a smooth function and is
positive ω > 0, then we had shown that

Tzz =
�Ω

12π

(
∂2z logω −

1

2
(∂z logω)

2

)
. (5)

Then the quantum Helmholtz equation reads

ρADtω =
�Ω

48π
∇R×∇ω, (6)

where

R = −ω−1Δ logω. (7)

The reader may recognize that Tzz is the Schwarzian
of a Riemann surface with the metric

ds2 = ω|dz|2, (8)

and thatR in (7) is the curvature of that surface. These
relations are not accidental. We argued that the chiral
flow may be understood as evolving Riemann surface.
The surface which hosts the fluid is a complex manifold
equipped with a closed vorticity 2-form,

ωijdx
i ∧ dxi, ωij = ∂iuj − ∂jui.

Because vorticity of the chiral flow does not change the
sign

ω =
1

2
εijωij > 0,

the chiral flow gives the host surface a Kähler structure
with the Kähler form

ω dz ∧ dz̄,
and the Riemannian metric (8). The Kähler form,
the volume element of the surface is the vorticity in
the fluid volume. Adopting the language of quantum
gravity we identify the manifold of Lagrangian coordi-
nates with a target space and the host surface with a
world-sheet.

The coordinates of the tangent space of the surface
appear as Clebsch variables. We recall that Clebsch
variables parameterize vorticity as

ω = ∇λ1 ×∇λ2. (9)

It follows that the intersection of level lines of λ1 and
λ2 are position of vortices. Hence, vorticity

ω = det‖∂iλa‖,
is the Jacobian of the map

(x1, x2)→ (λ1, λ2)
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and
eai dx

i = dλa

are the vielbeins.
In these terms the diffeomorphisms in the space of

Clebsch variables which leave vorticity unchanged ap-
pear as relabeling of vortices. This is relabeling symme-
try or a diffeomorphism invariance of hydrodynamics.
In the literature the relabeling symmetry usually refers
to fluid atoms. In our approach, it is relabeling of vor-
tices. We want to keep this major symmetry intact
in quantization. This amounts that the short distance
cut-off must be kept uniform in Clebsch coordinates
and corresponds to the interval ds of the auxiliary sur-
face. The relation between Clebsch and Eulerian coor-
dinates

dλi = dxi/�[ω],

where
�[ω] = ω−1/2

is a mean distance between vortices suggests that the
short distance cut-off should be �[ω]. It is non-uniform.
It depends on the flow and on the position within the
flow.

Based on this principle we were able to obtain the
diffeomorphism-invariant regularization of the bilinear
of velocities uiuj. One way of doing this is to split
points

ui(r)uj(r)→ ui

(
r +

ε

2

)
uj

(
r − ε

2

)
and to take into account that the short distance cut-off
is the functional of the flow ε = �[ω].

We illustrate this idea in terms of the path inte-
gral approach to quantization. In this approach, one
typically integrates over pathlines of fluid parcels. In-
stead, we choose to integrate over vorticity and for this
purpose we need to know the measure on the space
of vorticity. In order to determine it, we invoke the
relation of the chiral flow to 2D quantum gravity de-
scribed above. Since vorticity is a metric we effectively
integrate over metrics. The measure on the space of
metrics has been established in quantum gravity [5].
It consists of the Fadeev–Popov determinant restor-
ing the re-parametrization invariance of the surface. In
quantum gravity, it is a source of the Liouville action.
In quantum hydrodynamics, it is a source of quantum
stress.

In order to prove that the measure on vorticity con-
figuration is the same as a measure of metrics, we em-
ploy the following procedure. We first assume that the
flow consists of a large, albeit a finite number of vor-
tices. Then the vorticity operator reads

ωk =

∫
e−ik·rω(r) dV,

ωk = Γ
∑
i≤Nv

e−
i
2kz

†
i e−

i
2 k̄zi ,

(10)

where Γ is a circulation of each vortex and zi is a com-
plex coordinate of a vortex. The operators acts in the
Bargmann state [6,7] of holomorphic polynomials of zi
and the conjugate coordinate z†i obey the Heisenberg
algebra

[zi, z̄j ] = (πnA)
−1δij ,

where
nA = (Γ/h)ρA

is the number of helium atoms. Then it follows that
vorticity operator obeys the sine-algebra [8]

[ωk, ωk′ ] = ie

(
k·k′
4πnA

)
ekk′ωk+k′ ,

ekk′ = 2Γ sin

(
k× k′

4πnA

)
.

(11)

This algebra is a finite-dimensional “approximation” of
the Lie algebra SDiff. The latter is obtained by sup-
planting the Poisson brackets by the Lie brackets. The
sine-algebra depends on two deformation parameters �
and nA. The limit � → 0 and nA → ∞ which keeps
the mass density ρA = hnA/Γ and is taken at a fixed k

brings back the Poisson structure (2). In order to ob-
tain the quantum corrections we need a different limit
when k × k′ increases with the same rate as nA. A
proper execution of this limit yields the result for the
quantum stress (5). The formula (5) essentially means
that the stress obeys the conformal Ward identity and
its moments are generators of the Virasoro algebra. Let
us represent the stress by the Laurent series about the
origin (the fixed point of the rotation)

Tzz(z) = −
∑
n

z−n−2Ln

and set ω = 2Ω. Then Ln generate the Virasoro alge-
bra (with the central charge c = 1)

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0.

Summing up, in the paper we present a consistent
scheme of quantization of chiral flows of the ideal 2D
fluid. The quantization is based on a geometric rela-
tion of chiral flows to two-dimensional quantum gravity
and is implemented by the gravitational anomaly. The
effect of the gravitational anomaly violates the major
property of classical hydrodynamics, the Helmholtz
law: vortices are no longer frozen into the flow. We
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show that quantum stress generates the Virasoro al-
gebra, the centrally extended algebra of holomorphic
diffeomorphisms. The result follows as the limit of
the finite-dimensional approximation of Lie algebra
of area-preserving diffeomorphisms SDiff yielding dif-
feomorphism invariant regularization of the advection
term in Euler equation. The main applications of this
theory are rotating superfluid and electronic systems
in the magnetic field in the regime of a fractional Hall
effect.

The full text of this paper is published in the English
version of JETP.
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