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Introduction: CDWs and their intrinsic de-
fects. Charge density waves (CDW) are spontaneous
periodic superstructures ∝ A exp(q0 · r+ ϕ) which are
ubiquitous in quasi-1D electronic systems, see the lat-
est review [1]. The translational degeneracy of the in-
commensurate CDW ground state allows for formation
of topological defects: local ones, like phase and am-
plitude solitons (see [2] for the literature review) and
extended ones, like planes of domain walls as solitonic
lattices [3,4], lines or loops of dislocations as phase vor-
tices [5–7]. Experimentally, their presence was identi-
fied by various methods; just mention the direct visua-
lization of solitons by the STM [8,9] and indications on
dislocations from the coherent X-ray microdiffraction
[10] and from reconstruction in mesa-junctions [11].

The motion of dislocations is allowed only as a mat-
ter conserving glide along the chains, in the direction of
the Burgers vector b = 2π(1, 0, 0). The transversal mo-
tion, the non conserving climb, is prohibited whatever
is the driving force coming from the local stress — in
a strong difference with respect to conventional vor-
tices. In CDWs, the climb may be allowed by the
condensation or liberation of normal carriers providing
the conversion between normal and collective currents.
Otherwise, even lacking the topological protection, the
pairs or rings of dislocations do not annihilate as in

* E-mail: brazov@lptms.u-psud.fr

the conventional xy model and the complex-field the-
ory but are stabilized by the matter (here the number
of condensed electrons) conservation law. The mini-
mal dislocation loops are the charge ±2e objects in a
form of ±2π solitons: in a discrete view of the quasi-1D
system, here the CDW at the defected chain gains or
looses one period with respect to surrounding chains.
These phase solitons were assumed to be seen experi-
mentally as lowest activation charge carriers (see [12]
and Refs. therein).

Describing the coexistence of electrons and defects
in static equilibrium, under strains and in the current
carrying state requires for a general nonlinear hydro-
dynamics for two fields — the phase and the electric
potential and for two fluids of electrons and defects.
This article suggests a contribution to this request.

Results and conclusions. At presence of topo-
logical defects the local deformations and velocities ωj ,
j = x, y, z, t, cannot be derivatives of the same phase
ϕ. Our key observation was an existence of a uniquely
defined and allowed for averaging phase χ which deriva-
tives are given as

∂tχ = 〈ωt〉+ 2πjd, ∂xχ = 〈ωx〉 − 2πnd ,

∂yχ = 〈ωy〉, ∂zχ = 〈ωz〉,
(1)

where nd is the concentration of defects — the mean
area of loops per volume (taking vorticity signs into
account).

We employed the local energy functional appropri-
ate to CDWs as described in [13]. Equations for the
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average phase χ and the potential Φ have been derived
as (

Δ̂−γ∂t
)
χ = Fpin+E−2γjd − ∂x(nn + 2nd), (2)

r20ΔΦ+ ∂xχ+ 2nd + nn = 0 , E = −∂xΦ, (3)

where Δ̂ = ∂2x + Δ⊥, Δ⊥ = αy∂
2
y + αz∂

2
z , αy,z are

anisotropy coefficients coming from the interchain cou-
pling of CDWs and r0 is the Tomas–Fermi radius of
the parent metal; the concentration nn of normal car-
riers will be neglected from now on. Eq. (2) shows that
the phase χ is driven, in addition to standard forces
Fpin + E, also by the current of defects and by the
longitudinal gradient of the total number of particles.
Eq. (2) shows that the density and the current of de-
fects contribute in the frame of the average phase χ,
contrarily to being obscure in the frame of local inde-
pendent distortions ωi.

Equations (2), (3) must be complemented by the
laws governing the distribution of defects. It was im-
portant to realize that the force driving the glide of
defect comes only from share strains Fd = 2Δ̂χ. In the
diffusion approximation, we get(

Δ̂− γ∂t
)
χ+ 2γbdnd,totΔ̂⊥χ+

+ 2(γDd + 1)∂xnd = Fpin + E, (4)

where bd and Dd = bdT are the mobility and the dif-
fusion coefficient of defects. The allowance for defects’
motion contributes additively to the transverse rigidity
∝ Δ̂⊥χ of the phase and to the effective field from the
gradient of defects’ concentration.

The derived equations can be generalized to take
into account isolated dislocation lines embedded to the
averaged ensemble of dislocation loops. For a static dis-
location directed in z and centered at (0, 0), the equa-
tions can yield

[r20α∂
4
y − ∂2x]χ− 2∂xnd = ∂xδ(x)Sgn(y). (5)

This equation was derived from Eqs. (2), (3) in the
electroneutrality approximation realizing that r0 is the
smallest length scale. Here, the conventional Lapla-
cian form for an anisotropic elastic media acquired a
nonanalytic dominating contribution of an anomalous
elasticity [6] coming from long range Coulomb forces.
The defects concentration is regulated by their depen-
dence on the chemical potential ζd which obeys the
equilibrium condition jd = 0 as

nd = n∞ sh
ζ

T
, jd ∝ αy∂

2
yχ− ∂xζd = 0. (6)

1

0

0 1–1

�

�

(Color online) Distributions around a dislocation centered at
(0, 0). ξ, η are dimensionless rescaled coordinates x, y. Vectors
and streamlines characterize the phase χ. The color indicates
the chemical potential ζ = ZT . Z changes from Z ≈ 0 at
large distances (green color) to a maximal value Z ≈ 2.5 near
the origin (red color) and then drops to zero (blue color)

Results of a numerical solution of the above equa-
tions are illustrated in Figure. The conventional ro-
tation of the phase following the coordinate angle at
large distances becomes near the core a nearly verti-
cal drop indicating the high x-gradient in accordance
with the rapidly growing Z = ζ/T . The enhancement
of Z up to Z ≈ 2.5 corresponding to increasing of
solitons’ concentration near the dislocation by a fac-
tor n(core)/n∞ ≈ 6.

In summary, we have derived general equations
for the multi-fluid hydrodynamics of plastic flows
with collective, electronic, and solitonic densities and
currents. As an application, we presented distributions
of fields around an isolated dislocation line in the
regime of nonlinear screening by the gas of phase
solitons.

The full text of this paper is published in the English
version of JETP.
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