РАСЧЕТ И СРАВНЕНИЕ ЭЛЕКТРОННЫХ, КОЛЕБАТЕЛЬНЫХ, ПОЛЯРИЗАЦИОННЫХ И МАГНИТНЫХ СВОЙСТВ ДВОЙНЫХ ПЕРОВСКИТОВ CaMnTi₂O₆ И CaFeTi₂O₆

Н. Д. Андрюшин ^{а,b*}, В. И. Зиненко^а, М. С. Павловский^а, А. С. Шинкоренко^а

^а Институт физики им. Л. В. Киренского — ФИЦ КНЦ Сибирского отделения Российской академии наук 660036, Красноярск, Россия

> ^b Сибирский федеральный университет 660041, Красноярск, Россия

Поступила в редакцию 22 мая 2019 г., после переработки 17 июня 2019 г. Принята к публикации 19 июня 2019 г.

В рамках теории функционала плотности были выполнены расчеты колебательных, поляризационных, магнитных и электронных свойств двойных перовскитов $CaMnTi_2O_6$ и $CaFeTi_2O_6$ с редким типом «столбикового» упорядочения катионов двухвалентных металлов. Расчет динамики кристаллической решетки для параэлектрической фазы $P4_2/nmc$ обоих соединений показал наличие сегнетоэлектрической неустойчивости только в $CaMnTi_2O_6$. Получено, что искажение структуры парафазы $CaMnTi_2O_6$ по собственному вектору нестабильной полярной моды приводит к структуре с пространственной группой $P4_2mc$. Вычисленное значение спонтанной поляризации для сегнетоэлектрической фазы $CaMnTi_2O_6$ составило $P_s = 25$ мкКл/см². В результате спин-поляризованного расчета получено, что основное состояние в кристалле $CaFeTi_2O_6$ является ферромагнитным, а в кристалле $CaMnTi_2O_6$ — антиферромагнитным. В рамках модели Гейзенберга и приближения среднего поля вычислены константы обменного взаимодействия и проведена оценка температуры фазового перехода для каждого соединения.

DOI: 10.1134/S0044451019120101

1. ВВЕДЕНИЕ

Современный прогресс в технологиях выращивания объемных кристаллов и тонких пленок привел к росту интереса к поиску и созданию новых перспективных материалов. Одним из направлений является поиск новых материалов с возможностью применения их магнитных, поляризационных и магнитоэлектрических свойств. Одними из наиболее перспективных материалов с такими свойствами являются перовскитоподобные соединения, в частности, двойные перовскиты AA'BB'O₆, содержащие ионы переходных или редкоземельных металлов. Эти материалы относятся к классу функциональных материалов из-за широкого разнообразия физических свойств, которыми они могут обладать в зависимости от состава и структуры. Исследование электронных, магнитных, сегнетоэлектрических и магнитоэлектрических свойств таких соединений привлекает значительный экспериментальный и теоретический интерес [1–5]. Различные типы упорядочения катионов могут приводить к изменению свойств в этих соединениях. Наиболее распространенным упорядочением катионов В и В' является упорядочение в структуре NaCl (шахматное упорядочение). Что касается катионов в позиции А и А', то в большинстве известных соединений реализуется так называемое «плоскостное» упорядочение, при котором один из параметров решетки структуры перовскита удваивается и катионы А, А' чередуются вдоль этого направления. В двойных перовскитах CaMnTi₂O₆ и CaFeTi₂O₆ реализуется редкий тип упорядочения катионов А, А', а именно «столбиковое» упорядочение, при котором катионы А, А' чередуются вдоль двух из трех направлений простой кубической решетки перовскита (рис. 1). Оба соединения кристаллизуются в тетрагональной структуре

 $^{^{\}ast}$ E-mail: and@iph.krasn.ru

Рис. 1. Структура двойного перовскита со «столбиковым» упорядочением для $CaMTi_2O_6$ (М — Fe, Mn)

с пространственной группой $P4_2/nmc$ с четырьмя молекулами в элементарной ячейке [6,7]. Эта структура искажена в результате «поворота» октаэдров $TiO_6 (a^+a^+c^-)$ (в обозначениях Глазера [8]) «идеальной» структуры столбикового упорядочения катионов А и А' с пространственной группой Р4/тт и с одной молекулой в элементарной ячейке. Существенное различие между соединениями $CaMnTi_2O_6$ и CaFeTi₂O₆ заключается в том, что CaMnTi₂O₆ при T = 630 К испытывает сегнетоэлектрический фазовый переход с достаточно большой величиной спонтанной поляризации [7], а CaFeTi₂O₆ остается параэлектриком вплоть до гелиевых температур [9]. Магнитные свойства CaMnTi₂O₆ и CaFeTi₂O₆ экспериментально исследованы недостаточно полно. Как следует из результатов работы [7], CaMnTi₂O₆ при $T_N = 10$ К испытывает переход в антиферромагнитное состояние, а в CaFeTi₂O₆ вплоть до температур 4.2 К магнитного порядка не обнаружено [10], хотя есть указания, что ниже этой температуры может наблюдаться переход в ферромагнитное состояние [9].

Электронные и магнитные свойства соединений CaMnTi₂O₆ и CaFeTi₂O₆ в рамках метода функционала плотности исследовались в работах [11, 12]. Что касается исследования динамики кристаллической решетки и структурной неустойчивости, то для CaFeTi₂O₆ такие исследования, по-видимому, не проводились, а для CaMnTi₂O₆ в работе [13] приводятся только результаты расчета неустойчивых мод колебаний в фазе P4/mmm. В настоящей работе проводятся расчет *ab initio* и сравнение структурных, колебательных, электронных, поляризационных и магнитных свойств упорядоченных двойных перовскитов $CaMnTi_2O_6$ и $CaFeTi_2O_6$ с целью возможного объяснения причины различия сегнетоэлектрических свойств этих соединений.

2. МЕТОД РАСЧЕТА

Расчеты проводились в программном пакете CRYSTAL в приближении молекулярных орбиталей [14, 15]. В работе использовался гибридный обменно-корреляционный функционал B3LYP, включающий в себя смешивание подходов теории функционала плотности и Хартри-Фока. Для описания ионов были использованы полноэлектронные базисные наборы: Са (86-511d3G), Ті (86-411d31G), Fe (86-411d41G), Mn (86-411d41G) и О (8-411G). Магнитным ионам задавалось высокоспиновое состояние: Fe²⁺ (4 неспаренных электрона, S = 2) и Mn^{2+} (5 неспаренных электронов, S = 5/2). При вычислении динамики решетки, а также зависимостей полной энергии от амплитуды искажений в обоих соединениях выбиралось ферромагнитное упорядочение магнитных моментов. Обратное пространство в расчетах разбивалось сеткой Монхорста-Пака на $8 \times 8 \times 8$ k-точек зоны Бриллюэна. Энергия в расчетах самосогласованного поля вычислялась с точностью до 10⁻⁸ энергии Хартри при релаксации структуры и до 10⁻¹¹ энергии Хартри в расчетах динамики кристаллической решетки.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Структурные, колебательные и поляризационные свойства

При столбчатом упорядочении катионов A, A' соединений $A_{1/2}A'_{1/2}BO_3$ со структурой перовскита симметрия кристалла понижается до тетрагональной с пространственной группой P4/mmm, объем элементарной ячейки увеличивается в два раза с увеличением параметров решетки в плоскости, перпендикулярной оси, в направлении которой образуются «столбики» одинаковых ионов A или A' (рис. 1).

Как отмечено во Введении, при искажении структуры P4/mmm фазы в кристаллах CaMnTi₂O₆ и CaFeTi₂O₆ за счет «поворотов» октаэдров TiO₆ $(a^+a^+c^-)$ может быть получена

		$CaFeTi_2O_6$			$CaMnTi_2O_6$		
Ион	Позиции	x/a	y/b	z/c	x/a	y/b	z/c
Ca	1d	0.5	0.5	0.5	0.5	0.5	0.5
${\rm Fe}/{ m Mn}$	1b	0	0	0.5	0	0	0.5
Ti	2f	0	0.5	0	0	0.5	0
01	4j	0.2472	0.2472	0	0.2481	0.2481	0
O ₂	2e	0	0	0.5	0	0	0.5

Таблица 1. Вычисленные параметры ячейки и координаты атомов для $CaFeTi_2O_6$ (a = 5.4360 Å, c = 3.8580 Å) и $CaMnTi_2O_6$ (a = 5.4505 Å, c = 3.8548 Å) в фазе P4/mmm

Таблица 2. Вычисленные диагональные компоненты тензора динамических зарядов в единицах заряда электрона

$CaFeTi_2O_6$				$CaMnTi_2O_6$			
Ион	Z_{xx}	Z_{yy}	Z_{zz}	Ион	Z_{xx}	Z_{yy}	Z_{zz}
Ca	2.41	2.41	2.42	Ca	2.38	2.38	2.36
Fe	2.65	2.65	2.89	Mn	2.69	2.69	2.68
Ti_1	6.53	6.91	6.56	Ti_1	6.54	6.87	6.63
Ti_2	6.91	6.53	6.56	Ti_2	6.87	6.54	6.63
O_1	-3.60	-2.89	-2.07	O_1	-3.60	-2.92	-2.02
O_2	-3.60	-2.89	-2.07	O_2	-3.60	-2.92	-2.02
O_3	-3.60	-2.89	-2.07	O_3	-3.60	-2.92	-2.02
O_4	-3.60	-2.89	-2.07	O_4	-3.60	-2.92	-2.02
O_5	-1.96	-2.16	-5.07	O_5	-1.94	-2.12	-5.11
O ₆	-2.16	-1.96	-5.07	O ₆	-2.12	-1.94	-5.11

наблюдаемая экспериментально в обоих соединениях фаза $P4_2/nmc$. Чтобы показать наличие соответствующих неустойчивых колебаний, были проведены расчеты динамики решетки для фазы P4/mmm соединений CaMnTi₂O₆ и CaFeTi₂O₆.

В табл. 1 приведены вычисленные параметры ячейки и координаты атомов соединений $CaMnTi_2O_6$ и $CaFeTi_2O_6$ в этой структуре. Следует отметить, что экспериментально данная структура не наблюдается. С вычисленными параметрами ячейки и координатами атомов в фазе P4/mmmбыли рассчитаны спектр колебаний кристаллической решетки и динамические заряды Борна. Результаты расчета приведены на рис. 2 и в табл. 2. Как видно на рис. 2, в обоих соединениях в фазе P4/mmm присутствуют неустойчивые моды колебаний, занимающие весь объем зоны Бриллюэна. Наиболее неустойчивые моды, имеющие примерно одинаковую для CaMnTi₂O₆ и CaFeTi₂O₆ величину мнимой частоты, относятся к центру и граничным точкам A, Z зоны Бриллюэна тетрагональной фазы P4/mmm. В центре зоны наиболее «мягкая» полярная мода симметрии Γ_3^- с частотами 266i см⁻¹, 242i см⁻¹ соответственно для CaMnTi₂O₆ и CaFeTi₂O₆. В граничных точках A, Z наиболее «мягкие» моды связаны с «поворотами» октаэдра TiO₆. В точке A зоны Бриллюэна фазы P4/mmmнаиболее «мягкой» модой является однократная

			$CaFeTi_2O_6$		$CaMnTi_2O_6$) ₆	
Ион	Позиции		x/a	y/b	z/c	x/a	y/b	z/c
Са	4d	Расчет Эксп. [6,7]	$0.25 \\ 0.25$	$0.25 \\ 0.25$	$0.2750 \\ 0.2754$	$0.25 \\ 0.25$	$0.25 \\ 0.25$	0.27417 0.27212
${ m Fe_1/Mn_1}$	2b	Расчет Эксп. [6,7]	$0.75 \\ 0.75$	$0.25 \\ 0.25$	$0.25 \\ 0.25$	$0.75 \\ 0.75$	$0.25 \\ 0.25$	$0.25 \ (0.25)^*$
${ m Fe_2/Mn_2}$	2a	Расчет Эксп. [6,7]	$0.75 \\ 0.75$	$0.25 \\ 0.25$	$0.75 \\ 0.75$	$0.75 \\ 0.75$	$0.25 \\ 0.25$	$0.75 \\ 0.75$
Ti	8e	Расчет Эксп. [6,7]	0 0	0 0	0 0	0 0	0 0	0 0
O_1	8g	Расчет Эксп. [6,7]	$0.25 \\ 0.25$	$0.5431 \\ 0.5437$	$0.4293 \\ 0.4343$	$0.25 \\ 0.25$	$0.543 \\ 0.538$	$0.4361 \\ 0.4442$
O_2	8g	Расчет Эксп. [6,7]	$0.25 \\ 0.25$	$0.0554 \\ 0.0543$	$0.0346 \\ 0.0362$	$0.25 \\ 0.25$	$0.0538 \\ 0.0549$	$0.0336 \\ 0.0344$
O ₃	8f	Расчет Эксп. [6,7]	$0.5561 \\ 0.5527$	$0.4439 \\ 0.4473$	$0.25 \\ 0.25$	$0.5513 \\ 0.5479$	0.4487 0.4521	$0.25 \\ 0.25$

Таблица 3. Рассчитанные параметры ячейки и координаты атомов для $CaFeTi_2O_6$ (a = 7.5449 Å, c = 7.6196 Å) и $CaMnTi_2O_6$ (a = 7.5921 Å, c = 7.6175 Å) в фазе $P4_2/nmc$

Примечание. Экспериментальные значения параметров ячейки для CaFeTi₂O₆ при температуре 300 K: a = 7.5157 Å, c = 7.5548 Å [6]; для CaMnTi₂O₆ при температуре 700 K: a = 7.5827 Å, c = 7.5922 Å [7]. Звездочкой отмечено среднее значение координаты Mn1, тогда как в работе [7] Mn1 был помещен в позицию 4c с координатой z/c = 0.2072 и с заселенностью 0.5.

мода симметрии A_4^+ , собственный вектор которой представляет собой линейную сумму собственных векторов мод M_3 $(a^+a^0a^0)$ и $(a^0a^+a^0)$ граничных точек М зоны Бриллюэна структуры перовскита $A_{1/2}A'_{1/2}BO_3$ (векторы $1/2(\mathbf{b}_2 + \mathbf{b}_3)$ и $1/2(\mathbf{b}_1 + \mathbf{b}_3)$ зоны Бриллюэна перовскита переходят в точку А зоны Бриллюена фазы P4/mmm). Частота этой моды имеет значения 289i см⁻¹, 300i см⁻¹ соответственно для CaMnTi₂O₆ и CaFeTi₂O₆. В точке Z наиболее «мягкими» модами также являются двукратно вырожденная мода симметрии Z_5^+ $((a^{-}a^{0}c^{0}), (a^{0}a^{-}c^{0}))$ и однократная мода симметрии Z_2 $(a^0a^0c^-)$; «поворотные» моды (в структуре перовскита это трехкратно вырожденная мода R_5 в граничной точке $1/2(\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3))$. Частоты этих мод 274i см⁻¹ (2), 272i см⁻¹ для CaMnTi₂O₆ и 2911 см⁻¹ (2), 2581 см⁻¹ для СаFeTi₂O₆. Искажение структуры по собственному вектору моды A_4^+ приводит к пространственной группе I4/mmmс двумя молекулами в элементарной ячейке, а искажение структуры по вектору моды Z₂ приводит к пространственной группе $P4_2/mcm$ также с двумя молекулами на элементарную ячейку. На рис. 3 показана зависимость энергии кристаллов CaMnTi₂O₆ и CaFeTi₂O₆ от амплитуды смещения ионов по собственным векторам мод A_4^+ и Z_2 (углы «поворота» октаэдра TiO₆). Как можно видеть на этом рисунке, есть существенная разница между CaMnTi₂O₆ и CaFeTi₂O₆ в зависимости энергии от искажения, связанного с модой $Z_2(a^0a^0c^-)$. В случае CaFeTi₂O₆ по сравнению с CaMnTi₂O₆ минимум энергии значительно «глубже» и соответствует большей величине искажения.

Суперпозиция искажений структуры по собственным векторам мод A_4^+ и Z_2 приводит к пространственной группе $P4_2/nmc$ с четырьмя молекулами в элементарной ячейке. Эта структура наблюдается экспериментально в CaMnTi₂O₆ и CaFeTi₂O₆. В табл. 3 приведены вычисленные в этой работе и экспериментальные значения параметров решетки и координат атомов соединений CaMnTi₂O₆ и CaFeTi₂O₆ в фазе $P4_2/nmc$. Как сле-

Рис. 2. Фононный спектр в фазе P4/mmm: $a - CaMnTi_2O_6$, $\delta - CaFeTi_2O_6$

Рис. 3. Зависимости изменения полной энергии от углов «поворота» октаэдров для $CaFeTi_2O_6$ и $CaMnTi_2O_6$ для искажений: $a - \psi = (a^+a^0c^0) + (a^0a^+c^0)$, $\delta - \varphi = (a^0a^0c^-)$

Таблица 4. Частоты колебательных мод в центре зоны Бриллюэна в фазе $P4_2/nmc$, классифицированные по
неприводимым представлениям. В таблице ${ m Mn}_{calc}$ соответствует вычисленным частотам в ${ m CaMnTi}_2{ m O}_6$, ${ m Mn}_{exp}$ –
данные эксперимента по комбинационному рассеянию света для ${ m CaMnTi_2O_6}$ [13], Fe $_{calc}$ — вычисленные частоть
в $CaFeTi_2O_6$

Симметрия	Mn_{calc}	Mn_{exp}	Fe_{calc}	Симметрия	Mn_{calc}	Fe_{calc}
	222	—	236		155	145
	246	-	276		178	185
A_{1g}	347	344	365	A_{1u}	242	252
-	399	395	427		415	404
	545	—	565		442	444
	563	595	578		507	503
	290		289		75i	0
	487		491		0	21
	505		514		174	178
	800		800		196	217
					249	271
A_{2g}				A_{2u}	274	283
					332	349
					360	370
					420	441
					486	475
					546	553
					620	629
	49	_	97		122	124
	177	—	182		146	138
	233	—	250		157	161
	272	279	284		206	214
B_{1g}	286	—	302	B_{1u}	435	438
	383	—	400		445	446
	498	—	508		490	494
	521	529	530			
	732	-	730			
	369	-	372		191	200
	500	_	510		281	303
	777	_	777		299	312
					351	364
B_{2g}				B_{2u}	364	378
					449	471
					545	552
					612	625
					627	638

дует из табл. 3, вычисленные и экспериментальные значения параметров ячейки и координат атомов для CaMnTi₂O₆ совпадают в пределах нескольких

Симметрия	Mn_{calc}	Mn_{exp}	Fe_{calc}	Симметрия	Mn_{calc}	Fe_{calc}
	129	_	142		0	0
	166	_	170		82	81
	202	_	211		115	119
	232	228	243		150	160
	260	_	282		156	160
	313	_	320		180	193
	351	_	360		185	201
	390	_	410		215	224
E_g	417	432	420	E_u	231	248
	490	483	498		248	262
	513	_	524		308	319
	734	_	729		343	357
	778	818	781		373	390
					434	440
					488	487
					492	495
					508	513
					539	544
					550	554

долей процента, а для CaFeTi₂O₆ только для параметра ячейки с имеется наибольшее различие порядка одного процента между вычисленным и экспериментальным значениями. В фазе $P4_2/nmc$ для рассматриваемых соединений были вычислены частоты колебаний кристаллической решетки. Для кристалла CaFeTi₂O₆ расчет проводился при экспериментальном значении параметра ячейки с. Результаты расчета для центра зоны Бриллюэна вместе с доступными экспериментальными данными представлены в табл. 4. Как следует из этой таблицы, в кристалле CaFeTi₂O₆ все моды колебаний, в том числе и полярная мода (хотя значение частоты этой моды аномально низкое), жесткие, а в кристалле CaMnTi₂O₆ в фазе $P4_2/nmc$ полярная мода A_{2u} остается «мягкой» с достаточно большим значением мнимой частоты. Известно, что в соединениях со структурой перовскита сегнетоэлектрическая неустойчивость в кубической фазе подавляется частично или полностью в искаженной фазе, связанной с «поворотом октаэдра». В случае рассматриваемых здесь соединений для CaMnTi₂O₆ поляр-

Рис. 4. Зависимость изменения полной энергии от амплитуды полярных искажений U в $CaMnTi_2O_6$

ная мода стабилизируется частично (в неискаженной фазе P4/mmm значение частоты моды Γ_3^- = = 266і см⁻¹, в фазе $P4_2/nmc$ значение частоты моды $A_{2u} = 75$ і см⁻¹), а для СаFeTi₂O₆ полярная мода стабилизируется полностью (в неискаженной фазе P4/mmm значение частоты моды Γ_3^- = = 242і см⁻¹, в фазе $P4_2/nmc$ значение частоты моды $A_{2u} = 21 \text{ см}^{-1}$). Стабилизация полярной моды в CaFeTi₂O₆ связана, как отмечено выше, с энергетически более выгодным и с большей величиной искажением $(a^0 a^0 c^-)$. Искажение структуры $CaMnTi_2O_6$ в фазе $P4_2/nmc$ по собственному вектору полярной моды A_{2u} приводит к пространственной группе Р42mc с четырьмя молекулами в элементарной ячейке. Именно эта структура наблюдается экспериментально в кристалле $CaMnTi_2O_6$ ниже сегнетоэлектрического фазового перехода при T = = 630 К. На рис. 4 показана зависимость изменения энергии CaMnTi₂O₆ от амплитуды смещений ионов по собственному вектору полярной моды A_{2u} .

Используя значение амплитуды смещений атомов, соответствующее минимуму энергии, и значения динамических зарядов Борна Z из табл. 2, мы вычислили величину спонтанной поляризации

$$P_s = \frac{1}{V} \sum_i Z_{zz}^i u_z^i$$

Рис. 5. Рассматриваемые магнитные конфигурации с учитываемыми обменными взаимодействиями: a — ферромагнитное упорядочение, δ — антиферромагнитное упорядочение C-типа, e — антиферромагнитное упорядочение C-типа, e — антиферромагнитное упорядочение G-типа

(V - объем элементарной ячейки), которая оказалась равной 25 мкКл/см², что очень хорошосогласуется с экспериментальным значением24 мкКл/см² [7].

Из расчетов было получено, что в фазе $P4_2/nmc$ средняя длина связи между ионами титана и кислорода Ti–O составляет 1.976 Å в кристалле CaMnTi₂O₆ и 1.978 Å в кристалле CaFeTi₂O₆. В фазе $P4_2mc$ кристалла CaMnTi₂O₆ наименьшее и наибольшее значения длины связи Ti–O составляют соответственно 1.897 Å и 2.084 Å. В работе [16] для CaMnTi₂O₆ сообщается о средней длине связи Ti–O в фазе $P4_2/nmc$ равной 1.964 Å, а в полярной фазе $P4_2mc$ наименьшее и наибольшее расстояния Ti–O составили соответственно 1.836 Å и 2.107 Å. Как видно, результаты расчета хорошо согласуются с экспериментальными данными.

3.2. Электронные и магнитные свойства

Для выяснения основного магнитного состояния оценки констант магнитного взаимодействия и температур фазового перехода из парамагнитного в магнитоупорядоченное состояние был проведен спин-поляризованный коллинеарный расчет четырех магнитных конфигураций [11] в фазе P42/nmc для $CaFeTi_2O_6$ и в фазе $P4_2mc$ для $CaMnTi_2O_6$. Эти четыре магнитные конфигурации схематически показаны на рис. 5. Величины магнитных моментов для ионов железа и марганца составили соответственно 3.7µ_B и 4.7µ_B. Разницы энергий четырех магнитных конфигураций для рассматриваемых соединений приведены в табл. 5 в расчете на одну формульную единицу. Как следует из таблицы, основному состоянию в CaMnTi₂O₆ соответствует антиферромагнитное упорядочение С-типа. Полярной структуре P4₂mc с такой магнитной конфигурацией Таблица 5. Вычисленные полные энергии различных магнитных конфигураций в расчете на одну формульную единицу. За нулевую энергию взята энергия ферромагнитного состояния

Конфигурация	СаFeTi ₂ O ₆ , $E - E_{FM}$, мэВ	$CaMnTi_2O_6,$ $E-E_{FM},$ мэВ
FM	0.000	0.000
$A ext{-}\operatorname{AFM}$	1.062	0.831
$C ext{-}AFM$	0.235	-4.746
G–AFM	2.447	-2.618

соответствует магнитная группа симметрии $P4'_2m'c$, что согласуется с результатами работы [16].

Расчет величин констант обменного взаимодействия J_1 , J_2 и J_3 (соответственно между ближайшими, вторыми и третьими соседями, как это показано на рис. 5) проводился с использованием классического гамильтониана Гейзенберга в виде

$$\mathcal{H} = -\frac{1}{2} \sum_{ij} J_{ij} S_i S_j,$$

где J_{ij} — константа обменного взаимодействия между *i*-м и *j*-м узлами, а S_i и S_j — эффективные значения спина соответственно на *i*-м и *j*-м узлах. Величины констант обменного взаимодействия для CaMnTi₂O₆ и CaFeTi₂O₆ приведены в табл. 6. Оценка температуры фазового перехода в магнитоупорядоченное состояния была проведена в приближении среднего поля. С учетом взаимодействия до третьих ближайших соседей магнитная система разбивается на четыре подрешетки, и в этом случае температура упорядочения определяется из системы четырех уравнений (1) [17]:

$$T_{1} = \frac{2(S+1)S}{3K} (2J_{1} + 4J_{2} + 8J_{3}),$$

$$T_{2} = \frac{2(S+1)S}{3K} (-2J_{1} + 4J_{2} - 8J_{3}),$$

$$T_{3} = \frac{2(S+1)S}{3K} (2J_{1} - 4J_{2} - 8J_{3}),$$

$$T_{4} = \frac{2(S+1)S}{3K} (-2J_{1} - 4J_{2} - 8J_{3}).$$
(1)

С использованием значений обменных констант из табл. 6 и значений спинов (для Mn S = 5/2, для Fe S = 2) были получены величины температур $T_N = 33$ K для антиферромагнитного фазового перехода (*C*-тип) в CaMnTi₂O₆ и $T_C = 10$ K ферромаг-

Таблица 6. Вычисленные константы обменного взаимодействия

	$CaFeTi_2O_6$	$CaMnTi_2O_6$
J_1 , мэВ	0.102	0.059
<i>J</i> ₂ , мэВ	0.025	-0.082
J_3 , мэВ	-0.009	-0.006

Плотность состояний

Рис. 6. Частичная электронная плотность состояний (на элементарную ячейку): $a - CaFeTi_2O_6$, $\delta - CaMnTi_2O_6$. На вставках более крупно показана область вблизи энергии Ферми

нитного фазового перехода в CaFeTi₂O₆. Полученная температура Кюри в кристалле CaMnTi₂O₆ составляет $T_C = -18$ К. Вычисленные величины температур фазового перехода примерно в три раза превышают экспериментальные величины $T_N = 10$ К для CaMnTi₂O₆ [7] и $T_C = 3$ К для CaFeTi₂O₆ [9], что неудивительно при использовании приближения среднего поля для систем с конкурирующими взаимодействиями.

Вычисленные частичные плотности электронных состояний для CaFeTi₂O₆ в ферромагнитной фазе и для CaMnTi₂O₆ в антиферромагнитной фазе С-типа представлены на рис. 6. Оба соединения являются диэлектриками с величиной запрещенной зоны 3 эВ для CaMnTi₂O₆ и 2.4 эВ для СаFeTi₂O₆. Особенностью электронной структуры обоих соединений является наличие на краю валентной зоны вблизи уровня Ферми узкой зоны, отделенной от основной части валентной зоны примерно на 0.3 эВ (вставки на рис. 6). Эта узкая зона в случае CaFeTi₂O₆ представляет собой сильно гибридизованные состояния *d*-электронов железа Fe1, Fe2 и *p*-электронов кислорода с малой долей *d*-электронов титана. В этом гибридизированном состоянии *d*-электроны железа имеют противоположное по отношению к основному состоянию направление магнитного момента. В случае CaMnTi₂O₆ узкая зона вблизи уровня Ферми также представляет собой сильно гибридизированное состояние. Однако, в отличие от CaFeTi₂O₆, в CaMnTi₂O₆ в этом состоянии гибридизируются *d*-электроны, как с положительным, так и с отрицательным магнитным моментом только одного сорта атома марганца, *d*-электроны титана также с положительным и с отрицательным магнитным моментом и р-электроны кислорода. Следует отметить, что для случая простых окислов титана со структурой перовскита (BaTiO₃, $PbTiO_3$) сильная гибридизация *d*-электронов титана с р-электронами кислорода способствует появлению в кубической фазе сегнетоэлектрической нестабильности [18]. Основной вклад в зону проводимости, как это видно на рис. 6, в обоих соединениях вносят пустые 3*d*-состояния титана с небольшими вкладами от пустых состояний остальных атомов.

4. ЗАКЛЮЧЕНИЕ

В рамках теории функционала плотности, реализованной в пакете CRYSTAL, были выполнены расчеты *ab initio* колебательных, поляризационных, магнитных и электронных свойств двойных перовскитов CaMnTi₂O₆ и CaFeTi₂O₆ с редким типом «столбикового» упорядочения катионов двухвалентных металлов. Расчет спектра колебаний решетки в упорядоченной фазе с пространственной группой P4/mmm показал наличие неустойчивых мод колебаний, занимающих весь объем зоны Бриллюэна. Искажение структуры по собственным векторам наиболее неустойчивых мод приводит к пространственной группе $P4_2/nmc$ с четырьмя моле-

кулами в элементарной ячейке, которая наблюдается экспериментально в обоих соединениях. В этой фазе, как следует из результатов расчета частот колебаний решетки в CaFeTi₂O₆, все частоты колебаний действительные, т.е. неустойчивая полярная мода подавляется за счет искажений, связанных с поворотом октаэдра TiO₆. В кристалле CaMnTi₂O₆ в фазе P4₂/nmc полярная мода остается неустойчивой и искажение по собственному вектору этой моды приводит к пространственной группе P42mc, наблюдаемой экспериментально. Вычисленное значение спонтанной поляризации $P_s = 25 \text{ мкKn/cm}^2$ для СаМпТі₂О₆ очень хорошо согласуется с наблюдаемым экспериментально $P_s = 24 \text{ мкKл/см}^2$. В результате спин-поляризованного расчета получено, что основное состояние в кристалле CaFeTi₂O₆ является ферромагнитным, а в кристалле CaMnTi₂O₆ — антиферромагнитным. В рамках модели Гейзенберга и приближения среднего поля вычислены константы обменного взаимодействия и оценены температуры фазового перехода.

Благодарности. Работа была выполнена с использованием оборудования центра коллективного пользования «Комплекс моделирования и обработки данных исследовательских установок мега-класса» НИЦ «Курчатовский институт», http://ckp. nrcki.ru/.

Финансирование. Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 18-02-00130-а).

ЛИТЕРАТУРА

- Y. Bai, L. Han, X. Liu, X. Deng et al., J. Sol. St. Chem. 217, 64 (2014).
- D. G. Franco, R. E. Carbonio, and G. Nieva, IEEE Trans. Magn. 49, 4594 (2013).
- G. Vaitheeswaran, V. Kanchana, and A. Delin, Appl. Phys. Lett. 86, 032513 (2005).
- D. Stoeffler and C. Etz, J. Phys.: Condens. Matter 18, 11291 (2006).
- S. Gong, P. Chen, and B. G. Liu, J. Magn. Magn. Mater. 349, 74 (2014).
- K. Leinenweber and J. Parise, J. Sol. St. Chem. 114, 277 (1995).
- A. Aimi, D. Mori, K. Hiraki et al., Chem. Mater. 26, 2601 (2014).

- A. M. Glazer, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28, 3384 (1972).
- X. Li, W. M. Xu, M. A. McGuire et al., Phys. Rev. B 98, 064201 (2018).
- N. Yao, A. Navrotsky, and K. Leinenweber, J. Sol. St. Chem. 123, 73 (1996).
- G. Gou, N. Charles, J. Shi et al., Inorg. Chem. 56, 11854 (2017).
- 12. H. Li, S. Liu, L. Chen et al., Physica E 69, 133 (2015).
- J. Ruiz-Fuertes, T. Bernert, D. Zimmer et al., Phys. Rev. B 96, 094101 (2017).
- 14. R. Dovesi, R. Orlando, A. Erba et al., Int. J. Quantum Chem. 114, 1287 (2014).

- R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, P. D'Arco, M. Llunell, M. Causà, and Y. Noël, CRYSTAL14 User's Manual, University of Torino, Torino (2014).
- J. Herrero-Martin et al., Phys. Rev. B 97, 235129 (2018).
- 17. Дж. Смарт, Эффективное поле в теории магнетизма, Мир, Москва (1968).
- K. M. Rabe, C. H. Ahn, and J. M. Triscone, *Physics of Ferroelectrics: A Modern Perspective*, Springer-Verlag, Berlin, Heidelberg (2007).