ФОНОННЫЙ СПЕКТР И СТРУКТУРНЫЕ ПРЕВРАЩЕНИЯ ПРИ ВЫСОКИХ ДАВЛЕНИЯХ В КРИСТАЛЛАХ ФТАЛОЦИАНИНА ВАНАДИЛА IV

К. П. Мелетов^{*}, А. В. Кузъмин, Р. П. Шибаева

Институт физики твердого тела Российской академии наук 142432, Черноголовка, Московская обл., Россия

> Поступила в редакцию 27 мая 2019 г., после переработки 28 июня 2019 г. Принята к публикации 1 июля 2019 г.

Изучены спектры комбинационного рассеяния света (КРС) и кристаллическая структура фталоцианина ванадила IV (VOPc) при нормальном и высоком давлениях. По данным рентгеноструктурного анализа исходный микрокристаллический порошок является смесью триклинной α -фазы (79%) и моноклинной β -фазы (21%) с симметрией соответственно $P\bar{1}$ и $P2_1/c$. Спектры КРС этих фаз подобны, при этом фононные моды β -фазы сдвинуты вверх по энергии. Определена барическая зависимость спектров α -фазы и показано, что в диапазоне давлений 2.3–3.4 ГПа имеются обратимые по давлению изменения: выше 3 ГПа некоторые фононные моды расщепляются, а коэффициенты барического сдвига практически всех мод уменьшаются. Наблюдаемая в спектрах КРС при высоком давлении особенность может быть связана с перестройкой мезмолекулярных взаимодействий в структуре кристаллов α -фазы. Измерена зависимость объема кристаллической ячейки α -фазы от давления до 4 ГПа и показано, что она является гладкой и монотонной функцией давления и хорошо описывается уравнением состояния Мурнагана (1). На основании полученных данных определены параметры Грюнайзена фононных мод VOPc.

DOI: 10.31857/S0044451020010095

1. ВВЕДЕНИЕ

Фталоцианин (Рс) представляет собой плоскую, π -сопряженную макромолекулу-гетероцикл, состоящую из 8 атомов азота и 32 атомов углерода, в центр которой может координироваться лиганд М или M^{IV}O, где М — атом четырехвалентного металла (химическая формула C₃₂H₁₆N₈M^{IV}O). Высокая стабильность Рс объясняет его широкое применение в различных областях науки, техники и медицины: нелинейная оптика, фотовольтаические устройства и новые материалы для солнечных батарей, жидкие кристаллы, красители, контрастные агенты для магнитно-резонансной томографии [1–4]. Оптические свойства, фононный спектр и структура нейтральных металлофталоцианинов достаточно хорошо изучены в многочисленных экспериментах и численных расчетах [5-7]. Исследованы также полиморфные превращения тонких пленок фталоцианинов при их отжиге, в частности методами рентгеноструктурного анализа (PCA) и резонансной спектроскопии комбинационного рассеяния света (КРС) изучен механизм перехода из α - в β -фазу в безметальном фталоцинанине H₂Pc [8–10]. Выполнены численные расчеты структуры и фононного спектра отрицательно заряженного (восстановленного) металлофталоцианина с учетом ян-теллеровского (ЯТ) взаимодействия и без него [11].

В последнее время активно синтезируются новые материалы на основе восстановленных форм фталоцианинов — молекулярные донорно-акцепторные комплексы. Комплексы имеют слоистую структуру, в которой слои металлофталоцианина чередуются со слоями донора — органическими молекулами различного типа [12–15]. Заметный интерес к таким комплексам обусловлен тем, что они могут обладать перспективными магнитными свойствами и металлической проводимостью, вызванной делокализацией электрона, перешедшего на макроцикл с молекулы донора [16, 17]. Электропроводность фталоцианина при высоком давлении (диэлектрик при нормальных условиях) изучалась в ранних работах, где

^{*} E-mail: mele@issp.ac.ru

было установлено значительное, до восьми порядков величины, уменьшение электрического сопротивления при давлении примерно 30 ГПа [18, 19].

Известно, что избыточный заряд на макроцикле приводит к заметному изменению фононного спектра металлофталоцианинов [20], поэтому особый интерес представляют фталоцианиновые комплексы с переносом заряда или комплексы на основе готовых анионов [M^{IV}OPc]. При восстановлении [M^{IV}OPc], вырожденные уровни заселяются дополнительными электронами и «включаются» ЯТ-взаимодействия первого рода: макроцикл Рс деформируется, вырождение снимается и образуется ЯТ-анион [M^{IV}OPc]ⁿ⁻.

Металлофталоцианины в кристаллической форме являются молекулярными кристаллами со слабым ван-дер-ваальсовым взаимодействием. По этой причине фононный спектр и кристаллическая структура металлофталоцианинов очень чувствительны к уменьшению межмолекулярных расстояний, в первую очередь расстояний между макроциклами соседних молекул. Исследование межмолекулярного взаимодействия акцептора-фталоцианина при высоком давлении может дать важную информацию, полезную для оптимизации синтеза донорно-акцепторных комплексов.

В настоящей работе изучено поведение микрокристаллов фталоцианина ванадила (VOPc) методами КРС и РСА при высоких давлениях. Для измерений использовался микрокристаллический порошок, состоящий из смеси триклинной α-фазы (79%) и моноклинной *β*-фазы (21%) с симметрией соответственно $P\bar{1}$ и $P2_1/c$. Определены спектры KPC α - и β -фазы и показано, что они практически идентичны, но фононные моды *β*-фазы имеют несколько большую частоту. Измерены спектры КРС афазы до давления 10 ГПа и определена барическая зависимость фононных мод. Установлено, что в диапазоне давлений 2.3-3.4 ГПа имеется обратимая по давлению особенность, связанная с расщеплением некоторых высокочастотных мод и уменьшением коэффициентов барического сдвига практически всех мод. Выполнен РСА-анализ порошков при высоких давлениях и определена барическая зависимость объема кристаллической ячейки α -фазы до давления 4 ГПа. Она является гладкой и монотонной функцией давления и хорошо описывается уравнением состояния Мурнагана

$$\left(\frac{V_0}{V}\right)^{B'} = 1 + P\frac{B'}{B_0},\tag{1}$$

где $B_0 = 8.5 \pm 0.9$ ГПа — объемный модуль, а $B' = \partial B_0 / \partial P = 5.6 \pm 0.6$. Показано, что особенность в барической зависимости фононных мод связана, возможно, с образованием водородной связи между атомом кислорода молекулы VOPc и периферическим атомом водорода связи С–Н изоиндольного кольца соседней молекулы. На основании полученных данных по KPC и PCA определены параметры Грюнайзена различных фононных мод VOPc.

2. ЭКСПЕРИМЕНТ

Все измерения проводились на микрокристаллических образцах VOPc, выделенных из коммерчески доступного порошка производства Acros Organics. Для измерений спектров КРС отбирался образец с характерным размером около 60 мкм и хорошей поверхностью. Спектры КРС измерялись в геометрии обратного рассеяния на установке, состоящей из спектрографа Acton SpectraPro-2500i с охлаждаемым до -70°C CCD Pixis2K и микроскопом Olympus. Для возбуждения КРС использовался непрерывный твердотельный дазер ($\lambda = 532$ нм) с диодной накачкой. Лазерный пучок фокусировался на образец при помощи объектива Olympus 50× в пятно диаметром примерно 1.3 мкм. Линия излучения лазера в рассеянном пучке подавлялась с помощью краевого фильтра ($\lambda = 532$ нм) с оптической плотностью 6 и полосой пропускания от +140 см⁻¹, а интенсивность лазерного возбуждения непосредственно перед алмазными наковальнями составляла примерно 250 мкВт. Измерения КРС при высоких давлениях проводились с помощью камеры с алмазными наковальнями типа Мао-Белла. Первичный рентгенофазовый анализ и качественная идентификация структуры исходных порошков при нормальных условиях проводились на порошковом дифрактометре Siemens-D500 с использованием СиК_а-излучения. РСА порошков при высоких давлениях выполнен на лабораторном дифрактометре Oxford Diffraction Gemini R (с использованием MoK_{α} -излучения), оснащенного двухкоординатным охлаждаемым ССД-детектором. Дифракционные эксперименты при высоких давлениях проводились на порошке VOPc с помощью камеры с алмазными наковальнями типа Бёлера. В качестве среды, передающей давление, использовалась смесь 4:1 метилового и этилового спиртов, а калибровка давления проводилась по спектральному положению R₁-линии люминесценции микрокристаллов рубина [21]. Компьютерная обработка дифрактограмм

Рис. 1. (В цвете онлайн) Рентгеновские спектры порошков фталоцианина ванадила при нормальных условиях. На нижнем спектре — исходная рентгенограмма порошка, а на верхних спектрах — результаты фазового анализа. Справа расположение молекул в элементарной ячейке в α- и β-фазах

и их интегрирование были выполнены с использованием программного пакета CrysAlis [22], полнопрофильный анализ проводился с использованием программы Profex [23].

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В нижней части рис. 1 приведен рентгеновский спектр, полученный от исходного порошка VOPс при нормальных условиях. Качественный фазовый анализ экспериментальной дифрактограммы позволил установить, что в образце присутствует смесь триклинной (α) и моноклинной (β) фаз. Структура монокристаллов α -фазы VOPc была описана в работах [24,25]. Сопоставление найденных нами параметров ячейки кристаллов VOPc с соответствующими параметрами α - и β -фаз кристаллов фталоцианина титанила TiOPc [26] показало, что кристаллы VOPc изоструктурны кристаллам TiOPc. Точные данные по структуре монокристаллов триклинной и моноклинной фаз фталоцианина титанила приведены в работе [26], поэтому мы могли взять координаты атомов моноклинной фазы TiOPc в качестве стартовых для уточнения структуры моноклинной фазы VOPc методом Ритвельда. Были уточнены параметры элементарной ячейки, позиции и ориентации молекул VOPc относительно кристаллографических осей для α - и β -фаз. При этом с целью фиксации формы молекулы VOPc были наложены жесткие ограничения на длины связей, валентные и двугранные углы в макроцикле металлофталоцианина.

По результатам рентгеноструктурного анализа удалось определить, что триклинная α -фаза является доминирующим компонентом в исходном порошке VOPc (79%). Содержание моноклинной β -фазы равно 21%. Теоретические спектры, рассчитанные по уточненным структурным данным двух фаз, приведены в средней и верхней частях рис. 1, уточненные структурные параметры и параметры полнопрофильной подгонки — в табл. 1. На рис. 1 справа изображено относительное расположение двух ближайших соседних молекул VOPc в элементарной ячейке, полученное в результате оптимизации структуры для α - и β -фаз. Важно отметить, что плоскости макроциклов в β -фазе расположе-

	$\alpha ext{-VOPc}$	β -VOPc
$a,\mathrm{\AA}$	12.195(1)	13.778(1)
$b, \mathrm{\AA}$	12.6500(5)	13.353(1)
$c, \mathrm{\AA}$	8.6202(4)	13.9898(3)
α	$96.271(4)^{\circ}$	90°
β	$95.382(5)^{\circ}$	$103.614(4)^{\circ}$
γ	$68.039(5)^{\circ}$	90°
$V, \mathrm{\AA}^3$	1323.97(1)	2501.6(2)
Z	2	4
Простр. гр.	$P\bar{1}$	$P2_1/c$

Таблица 1. Структурные параметры кристаллов α -и β -фаз

Параметры уточнения: R = 6.38 %, $R_p = 4.57 \%$, $R_{wp} = 5.85 \%$, $R_{exp} = 0.97 \%$, 5500 наблюдаемых параметров, 1498 отражений, 59 уточняемых параметров, угловой (2θ) интервал 5–60°, шаг по 2θ составляет 0.02°.

Рис. 2. Спектры КРС при нормальных условиях в области энергий $1000{-}1700~{\rm сm}^{-1}$ для $\alpha{-}$ и $\beta{-}{\rm фаз}$

ны ближе друг к другу таким образом, что расстояние между плоскостями макроциклов ($l_2 = 3.174$ Å) у этой фазы заметно меньше, чем в α -фазе ($l_2 = 3.235$ Å). Это означает, в частности, что ван-дер-ваальсово взаимодействие между макроциклами соседних молекул в β -фазе сильнее, что может привести к увеличению частот внутримолекулярных фононных мод.

Действительно, спектры КРС микрокристаллов VOPc, выделенных из исходного порошка, в подавляющем большинстве случаев отбора кристаллитов имеют вид, изображенный на рис. 2 внизу. В некоторых редких случаях отбора кристаллитов фононные полосы в спектрах КРС несколько сдвинуты вверх по энергии, хотя структура спектров практически одинакова (рис. 2, вверху). Поскольку основная масса кристаллитов (79%) принадлежит к α -фазе, нижний спектр на рис. 2 следует, вероятнее всего, отнести к ней. Частоты фононных мод на верхнем спектре рис. 2 (предположительно β -фаза) больше частот таких же мод на нижнем рисунке. Разность частот достигает 10 см⁻¹. Это связано с уменьшением расстояния и усилением взаимодействия между макроциклами в β -фазе.

Симметрия молекулы фталоцианина ванадила, как и других молекул нейтральных металлофталоцианинов, соответствует точечной группе C_{4v} . Полное число нормальных колебаний молекулы равно $58 \times 3 - 6 = 168$ и раскладывается в сумму неприводимых представлений $\Gamma_{vib} = 23A_1 + 19A_2 +$ $+21B_1+21B_2+42E$. Поскольку элементарная ячейка кристалла содержит две молекулы, полное число колебаний в кристалле удваивается и равно 348. Эти колебания в пространственной группе $P\bar{1}$ pacкладываются в сумму неприводимых представлений $\Gamma_{vib} = 174A_q + 174A_u$. Этим колебаниям отвечают межмолекулярные и внутримолекулярные фононные моды: самые низкочастотные из них относятся к 12 межмолекулярным акустическим и оптическим фононным модам, связанным с трансляционными и ротационными колебаниями жесткой молекулы в решетке. Подавляющее же большинство фононных мод кристалла является внутримолекулярными и связано с колебаниями атомов внутри молекулы [6]. Измерения спектров КРС фталоцианина ванадила проводились в диапазоне фононных частот от 550 до 1680 см⁻¹, отвечающих внутримолекулярным фононным модам.

На рис. 3 приведены спектры КРС α -фазы VOPc при высоком давлении в цикле измерений при его увеличении примерно до 10 ГПа. Спектры регистрировались как при увеличении, так и при уменьшении давления (на рис. 3 не приведен обратный ход давления); при этом исключена область частот, в которой расположена интенсивная фононная мода 1333.4 см⁻¹ от алмазных наковален. С ростом давления частоты всех фононных мод увеличиваются, при этом структура спектра остается неизменной вплоть до давления примерно 2.3 ГПа. При давлении 3.4 ГПа в спектрах КРС наблюдается расщепление некоторых фононных мод. При увеличении давления расщепление возрастает, а темп сдвига больпинства мод уменьшается.

На рис. 4 приведены барические зависимости фононных мод VOPc при давлении до 10 ГПа. Представлены данные для областей фононных частот

Рис. 3. Спектры КРС α -фазы фталоцианина ванадила в областях энергий $550{-}900~{\rm сm}^{-1}$ и $1450{-}1700~{\rm cm}^{-1}$ при давлении до $9~{\rm ГПa}$

Габлица 2. Параметры I	I рюнайзена	фононных	мод
lpha-фазы	VOPc		

$\Omega_i^0, \mathrm{cm}^{-1}$	$\partial \Omega_i / \partial P,$ см $^{-1} / \Gamma \Pi \mathrm{a}$		
	$P < 2.3 \ \Gamma \Pi \mathrm{a}$	$P>3.4\ \Gamma\Pi{\rm a}$	γ_i
590	1.4	1.3	0.0115
679.1	2.1	1.6	0.0067
751.7	1.7	1.4	0.0074
775.6	0.6	-0.4	0.0204
790.8	3.1	2.9	0.0039
837.9	4.0	3.5	0.0028
852.3	1.5	2.1	0.0074
883.9	3.8	2.6	0.0028
883.9	3.8	3.9	0.0028
1432.2	3.8	3.5	0.0018
1454.3	4.2	3.0	0.0016
1466	3.4	2.7	0.0019
1466	3.4	2.6	0.0019
1479.5	4.0	2.3	0.0016
1479.5	4.0	6.8	0.0016
1509.7	4.2	3.8	0.0015
1518.6	5.1	4.2	0.0012

Рис. 4. Барические зависимости фононных частот фталоцианина ванадила в областях энергий 580–920 см⁻¹ (*a*) и 1450–1560 см⁻¹ (*б*). Светлые символы – увеличение давления, темные — уменьшение давления. Пунктирные линии — аппроксимации экспериментальных данных линейной зависимостью в областях давлений меньше 2.3 ГПа и больше 3.4 ГПа

595–925 см⁻¹ (a) и 1430–1560 см⁻¹ (б). Видно, что барические зависимости фононных мод полностью обратимы по давлению. Они имеют особенности в области 2.3-3.4 ГПа, связанные с расщеплением отдельных фононных мод и с уменьшением коэффициентов барического сдвига практически всех мод. Значения частот фононов при нормальном давлении, барические коэффициенты фононных мод при P < 2.3 ГПа и P > 3.4 ГПа приведены в первой, второй и третьей колонках табл. 2. Из таблицы видно, что значения барических коэффициентов при P >> 3.4 ГПа уменьшаются для всех мод, а для моды 775.6 см⁻¹ коэффициент становится даже отрицательным. Фононные моды 883.9, 1466 и 1479.5 см⁻¹ расщепляются; при этом у одной из двух компонент расщепленной моды 1479.5 см⁻¹ барический коэффициент возрастает. Значения коэффициентов барического сдвига характерны для внутримолекулярных фононных мод и близки к таковым, например, для классического молекулярного кристалла нафталина [27]. Это объясняется в первую очередь тем, что обе молекулы содержат изоиндольные кольца, и значительное число наблюдаемых мод связано с колебаниями атомов углерода и водорода.

Особенности в барических зависимостях фононных мод обусловлены, возможно, фазовым переходом в области давлений 2.3–3.4 ГПа. Чтобы понять, связаны ли изменения в спектрах КРС с какими-либо изменениями в кристаллической структуре, мы провели серию рентгендифракционных экспериментов на исходном порошке VOPc в исследуемой об-

Рис. 5. Рентгеновские спектры α-фазы фталоцианина ванадила при давлении до 4.2 ГПа (a) и зависимость объема элементарной ячейки от давления (б). Светлые символы — экспериментальные данные, штриховая линия — аппроксимация уравнением состояния Мурнагана (1)

ласти давлений. На рис. 5 приведены порошковые рентгенограммы при давлении до 4.3 ГПа и экспериментальная зависимость объема элементарной ячейки от давления.

Отсутствие на порошковых спектрах при P == 0.55 ГПа пиков, характерных для β -фазы, позволяет утверждать, что уже при невысоком давлении остатки этой фазы в исходной порошковой смеси полностью переходит в а-фазу. Отметим, что этот переход отличается от известного перехода из моноклинной (C2/c) α -фазы в моноклинную $(P2_1/a)$ β-фазу в пленках фталоцианина H₂Pc в процессе их отжига при высокой температуре [8]. Кристаллическая структура порошков VOPc при дальнейшем увеличении давления не меняется и отвечает триклинной α-фазе. На основе серии рентгеновских спектров, полученных при разных давлениях, были уточнены параметры кристаллической решетки α -фазы VOPc и позиция молекулы фталоцианина в ячейке. Определена барическая зависимость объема элементарной ячейки (рис. 5, светлые символы), которая является гладкой и монотонной функцией давления и хорошо описывается уравнением Мурнагана (1).

Полученное значение объемного модуля B_0 характерно для молекулярных кристаллов и обусловлено их большой сжимаемостью, а большое значе-

ние B' объясняется быстрым увеличением объемного модуля с ростом давления. Для сравнения: объемный модуль самого твердого минерала алмаза составляет примерно 600 ГПа, в то время как для молекулярного кристалла нафталина $B_0 = 6.7$ ГПа и B' = 7.1 [28]. Используя полученное значение объемного модуля и данные по барическому сдвигу полос в спектрах КРС, можно определить значения параметров Грюнайзена γ_i для фононных мод фталоцианина VOPc:

$$\gamma_i = \frac{\partial \Omega_i}{\Omega_i} \left(\frac{\partial V}{V}\right)^{-1} = \frac{B_0}{\Omega_i^0} \left(\frac{\partial \Omega_i}{\partial P}\right)^{-1}, \qquad (2)$$

где Ω_i^0 — частоты фононных мод при нормальном давлении, а $\partial \Omega_i / \partial P$ — коэффициенты барического сдвига мод. Значения параметров Грюнайзена приведены в последней колонке табл. 2. Их величина типична для молекулярных кристаллов.

Сравнительный анализ уточненных позиций VOPc в структуре при различных давлениях показывает, что деформация фталоцианиновой подрешетки при сжатии кристаллов α -фазы происходит неравномерно. В частности, в области давлений P > 3 ГПа существенные изменения претерпевают величины относительных сдвигов ближайших соседних макроциклов в структуре. На рис. 6 показано, что в этой области давлений проис-

Рис. 6. (В цвете онлайн) Барическая зависимость вертикального сдвига макроциклов молекул фталоцианина относительно друг друга в α -фазе VOPc. Вертикальный сдвиг v скачкообразно увеличивается при P > 3 ГПа

Рис. 7. (В цвете онлайн) Сетка коротких контактов −СН···О в одномерных цепочках фталоцианинов в α-фазе VOPc

ходит скачкообразное смещение макроцикла одной молекулы фталоцианина относительно макроцикла другой молекулы. Характер этого смещения показан на правой вставке рис. 6; оно происходит в вертикальном направлении в плоскости рисунка на величину v = 0.72 Å. При таком сжатии длины коротких $-H\cdots O$ контактов между соседними молекулами фталоцианина сокращаются, что может привести в дальнейшем к образованию водородных связей при более высоких давлениях (рис. 7). Более плотная упаковка VOPc приводит к изменению частот маятниковых колебаний С-С-Н для тех изоиндольных колец, периферийные атомы водорода которых обращены к аксиальному кислороду ближайшей соседней молекулы, в то время как частоты этих колебаний для двух других изоиндольных колец не изменяются. Выявленные изменения приводят к расщеплению именно тех внутримолекулярных фононных мод, которые наблюдаются в наших спектрах КРС при высоком давлении [29]. Уменьшение коэффициентов барического сдвига фононных мод при P > 3 ГПа может быть также связано с образованием дополнительных водородных связей.

Таким образом, определена барическая зависимость спектров КРС α-фазы фталоцианина ванадила IV и показано, что в диапазоне давлений 2.3-3.4 ГПа имеется обратимая по давлению особенность: выше этого диапазона некоторые фононные моды расщепляются, а коэффициенты барического сдвига практически всех мод уменьшаются. Наблюдаемая особенность может быть объяснена уплотнением сетки межмолекулярных ван-дерваальсовых контактов при сжатии кристаллической решетки *а*-фазы VOPc. Барическая зависимость объема кристаллической ячейки α-фазы до 4 ГПа является гладкой и монотонной функцией давления и описывается уравнением Мурнагана (1). На основании полученных данных по КРС и РСА определены параметры Грюнайзена различных фононных мод VOPс.

Финансирование. Работа выполнена в рамках госзадания ИФТТ РАН при частичной финансовой поддержке программы РАН «Физика конденсированных сред и материалы нового поколения».

ЛИТЕРАТУРА

- D. Wöhrle, *Phthalocyanines: Properties and Applica*tions, ed. by C. C. Leznoff and A. B. P. Lever, Adv. Mater. 5, 942 (1993).
- D. Hohnholz, S. Steinbrecher, and M. Hanack, J. Mol. Struct. 521, 231 (2000).
- J. Robertson, A. Smith, J. Duignan et al., Appl. Phys. Lett. 78, 1183 (2001).
- J. Xue, S. Uchida, B. Rand et al., Appl. Phys. Lett. 85, 5757 (2004).
- B. J. Palys, D. M. W. van der Ham, W. Briels, and D. Feil, J. Raman Spectrosc. 26, 63 (1995).
- D. R. Tackley, G. Dent, and W. E. Smith, Phys. Chem. Chem. Phys. 2, 3949 (2000).

- D. R. Tackley, G. Dent, and W. E. Smith, Phys. Chem. Chem. Phys. 3, 1419 (2001).
- S. Heutz, S. M. Baliss, R. L. Middleton et al., J. Phys. Chem. B 104, 7124 (2000).
- S. Yim, S. Heutz, and T. S. Jones, J. Appl. Phys. 91, 3632 (2002).
- **10**. Н. Л. Левшин, С. Г. Юдин, Е. А. Крылова, А. Т. Златкин, ЖФХ **82**, 2135 (2008).
- J. Tobik and E. Tosatti, J. Phys. Chem. 111, 12570 (2007).
- D. V. Konarev, A. V. Kuzmin, M. A. Faraonov et al., Chem. - A Eur. J. 21, 1014 (2015).
- D. V. Konarev, M. A. Faraonov, A. V. Kuzmin et al., New J. Chem. 41, 6866 (2017).
- D. V. Konarev, A. V. Kuzmin, S. S. Khasanov et al., CrystEngComm. 20, 385 (2018).
- 15. D. V. Konarev, A. V. Kuzmin, S. S. Khasanov et al., Chem. — An Asian J. 13, 1552 (2018).
- 16. T. Inabe and H. Tajima, Chem. Rev. 104, 5503 (2004).
- D. E. C. Yu, M. Matsuda, H. Tajima et al., J. Mater. Chem. 19, 718 (2009).

- 18. J. Rimas Vaisnys and R. S. Kirk, Phys. Rev. 141, 641 (1966).
- 19. A. Onodera, N. Kawai, and T. Kobayashi, Sol. St. Comm. 17, 775 (1975).
- 20. А. В. Кузьмин, С. С. Хасанов, К. П. Мелетов, Р. П. Шибаева, ЖЭТФ 155, 1037 (2019).
- 21. A. Jayaraman, Rev. Sci. Instrum. 57, 1013 (1986).
- 22. Rigaku Oxford Diffraction (2018), CrysAlisPro Software system, version 1.171.39.46, Rigaku Corporation, Oxford, UK.
- 23. N. Döbelin and R. Kleeberg, J. Appl. Crystallogr. 48, 1573 (2015).
- 24. C. H. Griffiths, M. S. Walker, and P. Goldstein, Mol. Cryst. Liq. Cryst. 33, 149 (1976).
- 25. R. F. Ziolo, C. H. Griffiths, and J. M. Troup, J. Chem. Soc., Dalton Trans. 11, 2300 (1980).
- 26. W. Hiller, J. Strahle, W. Kobel, and M. Z. Hanack, Kristallogr. 159, 173 (1982).
- **27**. К. П. Мелетов, ФТТ **55**, 527 (2013).
- 28. S. N. Vaidya and G. C. Kennedy, J. Chem. Phys. 55, 987 (1971).
- 29. T. V. Basova, V. G. Kiselev, B.-E. Schuster et al., J. Raman Spectrosc. 40, 2080 (2009).