ПЕРЕРАСПРЕДЕЛЕНИЕ СТОХАСТИЧЕСКОЙ ЭНЕРГИИ ДЛЯ АНСАМБЛЯ ЗАРЯЖЕННЫХ ЧАСТИЦ В МАГНИТНОМ ПОЛЕ

О. С. Ваулина*

Объединенный институт высоких температур Российской академии наук 125412, Москва, Россия

> Московский физико-технический институт 141700, Долгопрудный, Московская обл., Россия

Поступила в редакцию 13 июня 2019 г., после переработки 10 июля 2019 г. Принята к публикации 12 июля 2019 г.

Представлены результаты численного и аналитического исследований влияния постоянного магнитного поля на перераспределение стохастической энергии для ансамбля заряженных частиц в электростатической ловушке. Моделирование выполнялось для кластерных систем частиц с кулоновским взаимодействием в широком диапазоне их параметров. Предложены условия энергетического баланса для заряженных частиц в системах с пространственно-неоднородными тепловыми источниками.

DOI: 10.31857/S0044451020010204

1. ВВЕДЕНИЕ

Исследования физических свойств и процессов энергетического обмена в неоднородных системах взаимодействующих частиц вызывает значительный интерес в различных областях науки и техники (физике плазмы, биологии, физике полимеров и т. д.) [1–7]. Особый интерес вызывает влияние внешних электрических и магнитных полей на стохастическое (тепловое) движение ансамбля заряженных частиц [8–12]. Данное обстоятельство отчасти связано с проблемами эффективности энергетических установок для управляемого термоядерного синтеза, а также с развитием плазменных методов переработки отработанного ядерного топлива (OЯT) и радиоактивных отходов [5–7].

Исследования теплового движения взаимодействующих пылевых частиц в протяженных и ограниченных ансамблях, формирующихся в газоразрядной плазме без магнитного поля, представлены в различных теоретических и экспериментальных работах [13–19]. Эксперименты по изучению динамики пылевых частиц в магнитном поле описаны в работах [20–23]. Влияние теплового движения ограниченного облака заряженных частиц на их динами-

Отдельный круг задач связан с условиями энергетического баланса в системах частиц с пространственно-неоднородными тепловыми источниками, которые обычно приводят к неравномерному распределению стохастической кинетической энергии в системе частиц. Основной источник неравномерного распределения стохастической кинетической энергии для ионов/электронов плазмы связан с ее неоднородными параметрами во внешних электрических полях [24, 25]. Что касается пылевых частиц в комплексной плазме, то помимо неоднородных условий на распределение их температур значительное влияние оказывают изменения их зарядов, вызванные случайной природой ионных и электронных токов, заряжающих пылевые частицы [26-31]. Источниками неравномерного нагрева системы пылевых частиц также могут являться неоднородное распределение температуры окружающего газа, лазерное излучение, используемое для диагностики, протекание химических реакций и т. д. Перераспределение стохастической энергии в системах с такими тепловыми источниками в отсутствие магнитного поля исследовалось теоретически для кластеров заряженных частиц [26,27], а также численно и экспериментально для протяженных квазидвумерных слоев пылевых частиц в плазме [31, 32].

ку в постоянных электрических и магнитных полях недавно исследовалось численно [11, 12].

^{*} E-mail: olga.vaulina@bk.ru

В перечисленных выше работах исследуемые механизмы перераспределения тепловой энергии в системах базировались на передаче стохастических колебаний отдельных частиц вблизи их равновесного положения за счет межчастичного взаимодействия. В настоящей работе представлены результаты исследований влияния постоянного магнитного поля на перераспределение стохастической энергии по степеням свободы в ансамбле заряженных частиц.

2. ОСНОВНЫЕ СООТНОШЕНИЯ

Уравнения движения для одной частицы с массой M и зарядом Q в постоянном электрическом поле ловушки $\mathbf{E} = [E_x, E_y, E_z]$ и в магнитном поле с индукцией $B = B_y$ (направленном по оси y) под воздействием случайной силы $\mathbf{F}_b = [F_{bx}, F_{by}, F_{bz}]$, которая является источником стохастической (тепловой) энергии частиц, могут быть представлены в виде

$$\frac{dV_y}{dt} = -\nu V_y - \omega_{ty}^2 y + \frac{F_{by}}{M},\tag{1}$$

$$\frac{dV_x}{dt} = -\nu V_x - \omega_{tx}^2 x + \omega_B V_z + \frac{F_{bx}}{M}, \qquad (2)$$

$$\frac{dV_z}{dt} = -\nu V_z - \omega_{tz}^2 z - \omega_B V_x + \frac{F_{bz}}{M}.$$
(3)

Здесь y, x, z — смещения частицы от ее равновесного положения, $V_y = dy/dt$, $V_x = dx/dt$, $V_z = dz/dt$, ν — коэффициент трения заряженных частиц из-за их столкновений с нейтралами окружающего газа, $\omega_{ty}(x,z) = (Q\alpha_{y(x,z)}/M)^{1/2}$ — характерная частота ловушки, $\omega_B = QB/M$ — циклотронная частота, $\alpha_{y(x,z)}$ — величина градиента внешнего электрического поля **E** по соответствующей степени свободы (y, x, z).

Исследование корней характеристического уравнения для системы уравнений (1)–(3) показывает, что данная система является устойчивой при всех $\nu > 0$ и $\omega_{ty(x,z)} > 0$ [12].

Рассмотрим условия энергетического баланса в системе, описанной уравнениями (2), (3). Примем во внимание, что в случае стохастического (теплового) движения частиц в ловушке $\langle F_{bx} \rangle = \langle F_{bz} \rangle \equiv 0$, $\langle xF_{bx} \rangle = \langle zF_{bz} \rangle \equiv 0$, $\langle xV_x \rangle = 0.5dx^2/dt \equiv 0$, $\langle zV_z \rangle = 0.5dz^2/dt \equiv 0$, $d\langle xz \rangle/dt = \langle xV_z \rangle + \langle zV_y \rangle \equiv 0$, $\langle V_xF_{bx} \rangle = \nu T_x^0$ и $\langle V_zF_{bz} \rangle = \nu T_z^0$, где T_x^0 , T_z^0 — температура тепловых источников для соответствующих степеней свободы (x, z) [26, 27]. Здесь и ниже угловые скобки обозначают усреднение по времени при $t \to \infty$.

В этом случае корреляторы смещений и скоростей в рассматриваемой системе (2), (3) могут быть представлены в виде [26,27] (см. Приложение)

$$\delta T_x + \delta T_z = 0, \tag{4}$$

$$-\nu(\delta T_x - \delta T_z) + 2\omega_B \langle V_x V_z \rangle M = 0,$$

$$-2\nu \langle V_x V_z \rangle M - (\omega_x^2 - \omega_z^2) \langle x V_z \rangle M -$$
(5)

$$\omega_B(T_r - T_r) = 0, \quad (6)$$

$$\nu \langle xV_z \rangle (\omega_{tx}^2 + \omega_{tz}^2) M - (\omega_{tx}^2 - \omega_{tz}^2) \langle V_x V_z \rangle M = 0, \quad (7)$$

где $T_x = M \langle V_x^2 \rangle$, $T_z = M \langle V_z^2 \rangle$ — удвоенная кинетическая энергия стохастического движения частиц по соответствующим степеням свободы в плоскости, ортогональной направлению магнитного поля **B**; $\delta T_x = T_x^0 - T_x$, $\delta T_z = T_z^0 - T_z$.

Решение системы уравнений (4)–(7) дает уравнение энергетического баланса в системе (2), (3), который возникает, когда $T_x^0 \neq T_z^0$, и приводит к перераспределению стохастической кинетической энергии по степеням свободы:

$$\delta T_x \equiv -\delta T_z = 0.5\omega_B^2 (T_x^0 - T_z^0) \times \\ \times \left\{ \nu^2 + \omega_B^2 + \frac{(\omega_{tx}^2 - \omega_{tz}^2)^2}{\omega_{tx}^2 + \omega_{tz}^2} \right\}^{-1}.$$
 (8)

Легко увидеть, что наибольшая интенсивность перераспределения энергии наблюдается при $\omega_{tx}^2 - \omega_{tz}^2 = 0$. Величина $\delta T_x \equiv -\delta T_z = 0$ в случае, когда $\omega_B = 0$ (B = 0), а также $\delta T_x \equiv -\delta T_z \to 0$ для $\nu^2 \gg \omega_B^2$. В противоположном случае, $\nu^2 \ll \omega_B^2$, дополнительная стохастическая энергия будет равномерно перераспределяться по степеням свободы, $T_x \cong T_z$.

Для случая $\alpha_y=\alpha_x=\alpha_z\equiv 0$ уравнение (8) име
ет вид

$$\delta T_x \equiv -\delta T_z = 0.5\omega_B^2 \frac{T_x^0 - T_z^0}{\nu^2 + \omega_B^2}.$$
 (9)

Отметим, что соотношение $\omega_B/\nu > 1$, или $\omega_B/\nu \gg 1$, легко реализуется в установках по разделению компонентов ОЯТ для ионов отработанного ядерного топлива [12]. Что касается пылевой плазмы, то в большинстве существующих экспериментов по изучению динамики пылевых частиц в магнитном поле *В* выполняется соотношение $\omega_B/\nu \ll 1$, поскольку используются достаточно крупные (тяжелые) частицы при небольшом значении приложенного поля, $B \leq 2500$ Гс [20–22]. Исключение составляют эксперименты, описанные в работе [23], где исследовалось влияние магнитных полей 4000–40000 Гс на плазменно-пылевые облака

ЖЭТФ, том **157**, вып. 1, 2020

в радиочастотном разряде для частиц диаметром от 0.1 мкм до 10 мкм; в качестве буферного газа использовался аргон с давлением $P \sim 0.01$ Торр. В рассматриваемых экспериментах при B = 40000 Гс значение ω_B будет сравнимо с величиной ν ($\omega_B \sim \nu$) для частиц диаметром d < 0.4 мкм. А в предположении водорода Н₂ в качестве буферного газа, соотношение $\omega_B \sim \nu$ будет наблюдаться для частиц диаметром d < 2 мкм. Здесь для оценок отношения ω_B/ν использовались соотношения для зарядового числа пылевых частиц $Z \approx (1.1 \pm 0.25) T_e$ [эВ]d [мкм], где T_e — температура электронов, принятая равной 3 эВ [4], и для коэффициента трения частиц $\nu \approx$ $\approx CP$ [Topp]/(ρ [г · см⁻³]d[мкм]), где ρ — плотность материала частиц, C — коэффициент, зависящий от типа буферного газа ($C \approx 2000$ для Ar и $C \approx 450$ для H₂) [33].

Отметим также, что для анализа физических свойств однородных структур заряженных частиц $(\alpha_y = \alpha_x = \alpha_z \equiv \alpha)$, которые можно характеризовать постоянной концентрацией n, обычно используется параметр неидеальности $\Gamma = Q^2 n^{1/3}/T$, отражающий отношение энергии взаимодействия между частицами системы к их температуре. При этом в линейном электрическом поле концентрация частиц n может быть получена из уравнения Пуассона: $n \cong 3\alpha/(4\pi Q)$, и соответственно для среднего межчастичного расстояния имеет место соотношение $l_p \cong (4\pi Q/3\alpha)^{1/3}$ [34]. Для оценки радиуса ограниченной структуры в первом приближении можно использовать соотношение $R \cong (3N/4\pi n)^{1/3}$, где N — число частиц.

В заключение раздела подчеркнем, что уравнения типа (1)–(3) могут использоваться для анализа движения центра масс любого ограниченного ансамбля частиц с попарным взаимодействием, а также для отдельной частицы в системе, состоящей из Nчастиц, когда влиянием межчастичного взаимодействия можно пренебречь ($\Gamma \ll 1$) [34].

3. РЕЗУЛЬТАТЫ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ

Численное исследование энергетического баланса в системах заряженных частиц с неоднородными тепловыми источниками выполнялось методом молекулярной динамики Ланжевена. Моделирование выполнялось для ансамблей, состоящих из N = 50, 500, 1000 частиц, находящихся в электростатической ловушке с параметрами $\alpha_y = \alpha_x = \alpha_z \equiv \alpha$. Техника интегрирования уравнений движения для взаимодействующих частиц в отсутствие магнитного поля подробно описана в работе [4]. Влияние магнитного поля на динамику движения частиц исследовалось численно в работах [11,12]. Отметим, что при наличии магнитного поля имеет место дополнительное условие для шага интегрирования, связанное с наличием циклотронной частоты ω_B , см. ниже.

Шаг интегрирования составлял от $(40\max[\omega_t;\omega_B;\nu])^{-1}$ Δt \cong до Δt \simeq \simeq $(100 \max[\omega_t; \omega_B; \nu])^{-1}$ в зависимости от начальных условий задачи. Время расчетов t_c после установления равновесия в моделируемых системах варьировалось от ~ $10^3/\min[\omega_t;\omega_B;\nu]$ до $10^4/\min[\omega_t;\omega_B;\nu]$. Температура тепловых источников (T^0_x, T^0_y, T^0_z) задавалась при помощи случайной силы $\mathbf{F}_b = [F_{bx}, F_{by}, F_{bz}]$ [4].

Расчеты проводились для систем частиц с кулоновским взаимодействием в широком диапазоне их параметров неидеальности: от $\Gamma \sim 0.1$ до $\Gamma \sim 100$. Значение параметра $\xi = \omega_t/\nu$ варьировалось примерно от 1 до 70, отношение ω_B/ν — примерно от 0.25 до 25. Во всех рассмотренных случаях моделируемые системы являлись устойчивыми. Функции распределения частиц по скоростям соответствовали распределению Максвелла. При $t \to \infty$ значения среднеквадратичного смещения центра масс системы от его начального положения составляли

$$\langle x^2 \rangle \cong \frac{2T_x}{NM\omega_t^2}, \quad \langle y^2 \rangle \cong \frac{2T_y}{NM\omega_t^2}, \quad \langle z^2 \rangle \cong \frac{2T_z}{NM\omega_t^2},$$

где $T_x = M \langle V_x^2 \rangle$, $T_y = M \langle V_z^2 \rangle$, $T_z = M \langle V_z^2 \rangle$. Парные корреляционные функции g(l) для ансамблей из N = 500 частиц с различными параметрами Г для случая $T_x \cong T_y \cong T_z$ показаны на рис. 1. В качестве нормировки величины g(l), представленной на этом рисунке, использовалось предположение однородной концентрации частиц, равной $n \cong 3\alpha/(4\pi Q)$.

Численные исследования показали, что вне зависимости от параметра неидеальности Γ и числа частиц N в моделируемых ансамблях результаты перераспределения энергии частиц по степеням свободы в плоскости, ортогональной магнитному полю (**B**), хорошо соответствуют предлагаемому аналитическому соотношению (9). Вдоль магнитного поля (в направлении y) стохастическая кинетическая энергия частиц не менялась и соответствовала температуре заданных тепловых источников, T_y^0 .

Отношение $\delta T/\Delta T$ (где $\delta T = |\delta T_x| \equiv |\delta T_z|, \Delta T = |T_x^0 - T_z^0|$), полученное путем численного моделирования для различных значений ω_B/ν для одной частицы (N = 1) и для центра масс ансамблей, состоящих из N = 500 и N = 1000 частиц, представлено на рис. 2 для различных значений Г. Таким об-

Рис. 1. Парная корреляционная функция $g(l/l_p)$ для ансамблей из N = 500 частиц с различными параметрами $\Gamma = 90$ (1), 9 (2), 0.9 (3), 0.09 (4). Здесь $l_p \simeq (4\pi Q/3\alpha)^{1/3}$

Рис. 2. Зависимости отношения $\delta T/\Delta T$ от ω_B/ν , где $\delta T = |\delta T_x| \equiv |\delta T_z|$, а $\Delta T = |T_x - T_z|$. Сплошная линия — уравнение (9); символы — результаты численного моделирования: $\circ - N = 1$; $\Delta - N = 1000$, $\Gamma \approx 10$; $\blacklozenge - N = 500$, $\Gamma \approx 70$

разом, при определенных условиях (с ростом B до значений $\omega_B \gg \nu$, см. разд. 2 и рис. 2) применение постоянного магнитного поля может быть использовано в качестве метода выравнивания стохастической кинетической энергии заряженных частиц в плоскости, ортогональной вектору **B**.

4. ЗАКЛЮЧЕНИЕ

Выполнено аналитическое и численное исследование влияния постоянного магнитного поля на перераспределение стохастической энергии для ансамбля заряженных частиц в электростатической ловушке. Моделирование выполнялось для кластерных систем частиц с кулоновским взаимодействием в широком диапазоне их параметров. Предложены соотношения для условий энергетического баланса для заряженных частиц в системах с пространственно-неоднородными тепловыми источниками. Данные соотношения проверены путем численного моделирования для кластеров с различным количеством частиц в широком диапазоне параметров анализируемых систем.

Численные исследования показали, что вне зависимости от параметра неидеальности Γ и числа частиц N в моделируемых системах перераспределение энергии по степеням свободы для центра масс ансамблей хорошо соответствует предлагаемым аналитическим соотношениям и зависит только от относительных значений параметров: ω_{tx}/ν , ω_{tz}/ν и ω_B/ν .

Таким образом, полученные результаты справедливы для частиц любой массы и зарядов, например, для случая пылевой плазмы, для ионов сепарируемого вещества ОЯТ и т. д., а также для ограниченных систем при любом типе попарных взаимодействий между заряженными частицами.

Финансирование. Работа частично поддержана Российским фондом фундаментальных исследований (проект № 18-38-20175), а также Программой Президиума РАН.

ПРИЛОЖЕНИЕ

Найдем корреляторы смещений и скоростей частицы для системы уравнений движения (2), (3)

$$\frac{dV_x}{dt} = -\nu V_x - \omega_{tx}^2 x + \omega_B V_z + \frac{F_{bx}}{M}, \qquad (A.1)$$

$$\frac{dV_z}{dt} = -\nu V_z - \omega_{tz}^2 z - \omega_B V_x + \frac{F_{bz}}{M}, \qquad (A.2)$$

принимая во внимание соотношения для корреляторов случайной силы \mathbf{F}_b : $\langle F_{bx} \rangle = \langle F_{bz} \rangle \equiv 0$, $\langle xF_{bx} \rangle = \langle zF_{bz} \rangle \equiv 0$, $\langle V_xF_{bx} \rangle = \nu T_x^0$ и $\langle V_zF_{bz} \rangle = \nu T_z^0$, где T_x^0 , T_z^0 — температуры тепловых источников для соответствующих степеней свободы (x, z) [26, 27]. Угловые скобки обозначают усреднение по времени при $t \to \infty$.

Учтем, что в состоянии равновесия все производные корреляторов смещений и скоростей частицы (при $t \to \infty$) равны нулю, а также что при движении частицы в ловушке по замкнутым траекториям

$$\langle xV_x \rangle = 0.5 \frac{dx^2}{dt} \equiv 0, \quad \langle zV_z \rangle = 0.5 \frac{dz^2}{dt} \equiv 0,$$

$$\frac{d\langle xz \rangle}{dt} = \langle xV_z \rangle + \langle zV_y \rangle \equiv 0.$$

Далее, умножим уравнение (A.1) на V_x , а уравнение (A.2) на V_z , и усредним результат по времени. Тогда сумма полученных уравнений даст

$$\delta T_x + \delta T_z = 0, \tag{A.3}$$

а их разность —

$$-\nu(\delta T_x - \delta T_z) + 2\omega_B \langle V_x V_z \rangle M = 0.$$
 (A.4)

Здесь $\delta T_x = T_x^0 - T_x, \, \delta T_z = T_z^0 - T_z.$

Затем умножим уравнение (А.1) на V_z , а уравнение (А.2) на V_x , усредним по времени и получим сумму:

$$-2\nu \langle V_x V_z \rangle M - (\omega_{tx}^2 - \omega_{tz}^2) \langle x V_z \rangle M - - \omega_B (T_x - T_z) = 0, \quad (A.5)$$

где $T_x = M \langle V_x^2 \rangle$, $T_z = M \langle V_z^2 \rangle$ — удвоенная кинетическая энергия стохастического движения частиц по соответствующим степеням свободы.

Далее, умножим уравнение (A.1) на z, а уравнение (A.2) на x, усредним по времени и найдем сумму:

$$\nu \langle x V_z \rangle (\omega_{tx}^2 + \omega_{tz}^2) M - (\omega_{tx}^2 - \omega_{tz}^2) \times \\ \times \langle V_x V_z \rangle M = 0. \quad (A.6)$$

ЛИТЕРАТУРА

- Photon Correlation and Light Beating Spectroscopy, ed. by H. Z. Cummins and E. R. Pike, Plenum, New York (1974).
- R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, Wiley Intersci., Chichester (1975).
- А. А. Овчинников, С. Ф. Тимашев, А. А. Белый, Кинетика диффузионно-контролируемых химических процессов, Химия, Москва (1986).
- 4. О. С. Ваулина, О. Ф. Петров, В. Е. Фортов, А. Г. Храпак, С. А. Храпак, Пылевая плазма (эксперимент и теория), Физматлит, Москва (2009).
- R. Aymar, P. Barabaschi, and Y. Shimomura, Plasma Phys. Control. Fusion 44, 519 (2002).

- 6. А. В. Тимофеев, Физика плазмы 33, 971 (2007).
- Н. А. Ворона, А. В. Гавриков, А. А. Самохин, В. П. Смирнов, Ю. С. Хомяков, Ядерная физика и инжиниринг 5, 944 (2014).
- J. I. Jiménez-Aquino, R. M. Velasco, and F. J. Uribe, Phys. Rev. E 77, 051105 (2008).
- L. J. Hou, Z. L. Mišković, A. Piel, and P. K. Shukla, Phys. Plasmas 16, 053705 (2009).
- B. Farokhi, M. Shahmansouri, and P. K. Shukla, Phys. Plasmas 16, 063703 (2009).
- О. С. Ваулина, Е. А. Лисин, Э. А. Саметов, ЖЭТФ 152, 1144 (2017).
- E. A. Sametov, R. A. Timirkhanov, and O. S. Vaulina, Phys. Plasmas 24, 123504 (2017).
- О. С. Ваулина, К. Г. Адамович, ЖЭТФ 133, 1091 (2008).
- 14. О. С. Ваулина, К. Г. Адамович, О. Ф. Петров,
 В. Е. Фортов, ЖЭТФ 134, 367 (2008).
- О. С. Ваулина, Е. А. Лисин, А. В. Гавриков,
 О. Ф. Петров, В. Е. Фортов, ЖЭТФ 137, 751 (2010).
- 16. O. S. Vaulina and E. A. Lisin, Phys. Plasmas 16, 113702 (2009).
- **17**. В. Е. Фортов, О. Ф. Петров, О. С. Ваулина, К. Г. Косс, Письма в ЖЭТФ **97**, 366 (2013).
- 18. G. A. Hebner, M. E. Riley, and K. E. Greenberg, Phys. Rev. E 66, 046407 (2002).
- O. S. Vaulina and I. E. Drangevski, Phys. Scripta 73, 577 (2006).
- 20. М. М. Васильев, Л. Г. Дьячков, С. Н. Антипов, О. Ф. Петров, В. Е. Фортов, Письма в ЖЭТФ 86, 414 (2007).
- 21. L. G. D'yachkov, O. F. Petrov, and V. E. Fortov, Contrib. Plasma Phys. 49, 134 (2009).
- 22. V. Yu. Karasev, E. S. Dzlieva, A. Yu. Ivanov, and A. I. Eikhval'd, Phys. Rev. E 74, 066403 (2006).
- 23. N. Sato, G. Uchida, and T. Kaneko, Phys. Plasmas 8, 1786 (2001).
- 24. А. В. Тимофеев, Б. Н. Швилкин, УФН 118, 273 (1976) [A. V. Timofeev and B. N. Shvilkin, Sov. Phys. Usp. 19, 149 (1976)].
- 25. Yu. P. Raizer, M. N. Shneider, and N. A. Yatsenko, *Radio-Frequency Capacitive Discharges*, CRC Press (1995).

- 26. O. S. Vaulina, Phys. Plasmas 24, 023705 (2017).
- 27. О. С. Ваулина, ЖЭТФ 151, 982 (2017).
- 28. O. S. Vaulina, Europhys. Lett. 115, 10007 (2016).
- 29. O. S. Vaulina, S. A. Khrapak, O. F. Petrov, and A. P. Nefedov, Phys. Rev. E 60, 5959 (1999).
- 30. R. A. Quinn and J. Goree, Phys. Rev. E 61, 3033 (2000).
- 31. O. Vaulina, S. Khrapak, A. A. Samarian, and O. F. Petrov, Phys. Scripta T 84, 292 (2000).
- 32. O. S. Vaulina, E. V. Vasilieva, O. F. Petrov, and V. E. Fortov, Phys. Scripta 84, 025503 (2011).
- **33**. Е. М. Лифшиц, Л. П. Питаевский, *Физическая ки*нетика, Наука, Москва (1979).
- **34**. О. С. Ваулина, Э. А. Саметов, ЖЭТФ **154**, 407 (2018).