СПИНОВОЕ СОСТОЯНИЕ ИОНОВ Co³⁺ В СЛОИСТОМ КОБАЛЬТИТЕ TbBaCo₂O_{5.5} В ОБЛАСТИ ПЕРЕХОДА МЕТАЛЛ–ИЗОЛЯТОР

Н. И. Солин^{*}, С. В. Наумов, В. А. Казанцев

Институт физики металлов им. М. Н. Михеева Уральского отделения Российской академии наук 620108, Екатеринбург, Россия

> Поступила в редакцию 19 июня 2019 г., после переработки 22 ноября 2019 г. Принята к публикации 10 декабря 2019 г., после доработки 13 февраля 2020 г.

Предложена схема изменений спинового состояния ионов Co^{3+} вблизи перехода металл-изолятор в слоистом кобальтите $\operatorname{TbBaCo_2O_{5.5}}$. В металлической фазе спиновому состоянию ионов Co^{3+} соответствует смесь с примерно одинаковым соотношением $\operatorname{HS}(t_{2g}^4 e_g^2, S=2)$ - и $\operatorname{LS}(t_{2g}^6 e_g^0, S=0)$ -состояний. Переход в неметаллическое состояние происходит вследствие переходов HS-состояния в LS-состояние в октаэдрах, и части LS-состояния в $\operatorname{IS}(t_{2g}^5 e_g^1, S=1)$ -состояние в пирамидах (вблизи $T_C \sim 280$ K). Предложенная схема согласуется с известными структурными данными кобальтитов $\operatorname{TbBaCo_2O_{5.5}}$. Переход происходит в широкой области температур $T \approx M_{MI} \pm 50$ K в согласии с данными линейного и объемного расширения. Исследования теплового расширения показывают сохранение LS/IS-состояния до T = 80 K.

DOI: 10.31857/S0044451020050089

1. ВВЕДЕНИЕ

Интерес к упорядоченным слоистым оксидам кобальта RBaCo₂O_{5+б} вызван в значительной степени обнаружением колоссального магнитосопротивления (MR) в дырочных манганитах лантана [1,2]. Хотя в них и не были обнаружены магниторезистивные свойства, сравнимые со свойствами дырочных манганитов, они привлекают большое внимание из-за их необычных магнитных, электрических свойств и фазовых переходов [3-15]. Движущей силой катионного упорядочения в перовскитах $R_{1-x}Ba_xCoO_{3-\delta}$ при x = 0.5 является значительное различие ионных радиусов редкоземельных ионов R^{3+} и Ba^{3+} , которое приводит к упорядочению катионов в виде чередования слоев с ионами редкоземельного R и щелочного металла Ва. Слоистые кобальтиты RBaCo₂O_{5+δ} имеют кристаллическую структуру перовскита, в которой слои RO и ВаО перемежаются слоями СоО2, расположенными перпендикулярно оси с. Вследствие слоистости они являются сильно анизотропными [3, 11]. В зависимости от содержания кислорода $0 \le \delta \le 1$ валент-

824

ное состояние кобальта меняется от Co^{2+} до Co^{4+} , ионы Со имеют разное окружение кислорода (октаэдры или пирамиды с квадратным основанием). В RBaCo₂O_{5.5} присутствуют только ионы Co³⁺, которые расположены в кристаллической решетке из равного числа октаэдров CoO₆ и квадратных пирамид CoO₅, а кислородные пирамиды и октаэдры, окружающие ионы Co³⁺, упорядочены [2].

Особый интерес вызывают необычные электронные, магнитные и структурные переходы в $\mathrm{RBaCo}_2\mathrm{O}_{5+\delta},\ \delta\ pprox\ 0.5.$ В них обнаружен ряд последовательных переходов: металл-изолятор (MI), парамагнитный (PM), ферромагнитный (FM), антиферромагнитный (AFM) [1–15]. В отличие от манганитов, переход MI в кобальтитах не связан с магнитным упорядочением, который, как и природа магнитосопротивления, является магнитоактивного (антиферромагследствием нитного) характера матрицы RMnO₃ в случае манганитов и слабомагнитного (парамагнитного) поведения RCoO₃ в случае кобальтитов. Колоссальному магнитосопротивлению благоприятствует существование FM-кластеров в AFM-матрице. В дырочных манганитах FM-кластеры связаны обменным взаимодействием с АFM-матрицей,

^{*} E-mail: solin@imp.uran.ru

что приводит к увеличению размера кластеров и высокому магнитосопротивлению (MR) [16, 17]. Увеличение размера магнитных кластеров (поляронов) при понижении температуры или в магнитном поле объясняет необычные транспортные свойства слоистых манганитов: переход металл–неметалл и высокие значения MR [18]. В слабомагнитной матрице кобальтитов наблюдается только коалесценция (слипание) кластеров [19] и невысокие значения магнитосопротивления. Свойствами матриц определяются новые для слоистых оксидов кобальта явления — однонаправленная анизотропия электросопротивления, обменное смещение [20, 21] и отсутствие обменного смещения в магниторезистивных дырочных манганитах.

Физика слоистых кобальтитов определяется сложным взаимодействием между зарядовыми, спиновыми, орбитальными и решеточными степенями свободы [1-5, 22]. Переход MI сопровождается аномальными изменениями параметров решетки, среднего расстояния кобальт-кислород d(Co-O) в октаэдрах и пирамидах [4, 6, 12, 13] и эффективного парамагнитного момента μ_{eff} [1, 2], которые определяются изменениями спиновых состояний Со³⁺. В зависимости от соотношений энергий внутриатомного обмена и кристаллического поля ионы Со³⁺ могут находиться в состояниях низкого, промежуточного или высокого спинов. Во многих кобальтитах разности энергий между спиновыми состояниями малы и легко преодолеваются изменениями температуры, приводящими к трансформации спинового состояния Со и к необычным структурным и фазовым переходам, в том числе переходам металл-изолятор [22].

В настоящее время нет единого мнения относительно спинового состояния Co³⁺ и происхождения перехода металл-изолятор в слоистых кобальтитах $RBaCo_2O_{5.5}$. Спиновое состояние ионов Co^{3+} даже в относительно простом соединении LaCoO₃ с 60-х гг. прошлого века до сих пор остается неясным и вызывает споры. Ситуация в редкоземельных слоистых кобальтитах RBaCo₂O_{5+ δ} при $\delta \approx 0.5$ является более сложной. Во-первых, ионы Со³⁺ в этих соединениях, в отличие от LaCoO₃, могут находиться в двух разных позициях (октаэдрического и пирамидального) кислородного окружения. Во-вторых, ионы Со³⁺ также могут находиться в трех разных спиновых состояниях: высокое (HS, S = 2), промежуточное (IS, S = 1) и низкое (LS, S = 0). Кроме того, на магнитные свойства кобальтита RBaCo₂O_{5+ δ} оказывает влияние парамагнитный редкоземельный ион \mathbb{R}^{3+} [3,4]. В зависимости от вида редкоземельного иона этот вклад может быть весьма заметным, что существенно влияет на определенное из магнитных измерений значение спинового момента Co³⁺.

В первых работах предполагалось, что ионы Со³⁺ при низких температурах находятся в LS/IS-состоянии, выше температуры перехода T_{MI} они эволюционируют к HS-состоянию Co³⁺ в обоих полиэдрах [1, 2]. По данным мягкой рентгеновской абсорбции и фотоэлектронной спектроскопии $GdBaCo_2O_{5.5}$ HS-состояние ионов Co^{3+} сохраняется и при $T < T_{MI}$ [23]. Анализ рентгеновских спектров поглощения в TbBaCo₂O_{5.5} не обнаружил изменения спинового состояния ионов Co³⁺ при *T_{MI}* [24]. Методы мессбауэровской спектроскопии $TbBaCo_2O_{5.5}$ предполагают переход IS \rightarrow HS для ионов кобальта в октаэдрах и сохранение HS-состояния для кобальта в пирамидах при увеличении температуры [25]. Таким образом, данные весьма противоречивы.

Одним из основных методов определения спинового состояния Со³⁺ являются магнитные методы [1, 2]. Сложностью магнитных методов для этих целей является трудность разделения вклада ионов Co³⁺ от РМ-вклада редкоземельных ионов R³⁺. Кроме того, исследования намагниченности не позволяют определить кислородное (октаэдрическое или пирамидальное) окружение ионов Co^{3+} . Предлагалось определить кислородное окружение и спиновое состояние ионов Со³⁺ из магнитных и структурных данных [4, 7]. Структурные данные GdBaCo₂O_{5.5} показали удлинение октаэдров и сжатие пирамид в металлической фазе [4]. Поскольку ионный радиус Со³⁺ увеличивается с увеличением спинового состояния, эти результаты можно было бы трактовать как увеличение спинового состояния ионов Со³⁺ в октаэдрах и уменьшение их в пирамидах. Однако спиновое состояние ионов Co^{3+} в GdBaCo₂O_{5.5} — это LS/IS-состояние ниже T_{MI} и HS/IS-состояние выше T_{MI} [7], не согласуется со структурными данными [7]. Авторы [4] полагают, что переход в металлическое состояние происходит вследствие изменения LS-состояния ионов Со³⁺ на HS-состояние только в октаэдрах без изменения IS-состояния в пирамидах. Такие же выводы о спиновом состоянии ионов Со³⁺ сделаны для PrBaCo₂O_{5.5} без учета PM-вклада ионов Pr³⁺ [13]. Авторы полагают, что сжатие в пирамидах может быть отнесено либо к стерическому эффекту, либо к образованию металлических связей [4, 13]. Эта модель нашла широкое признание, и многие исследователи придерживаются этой модели перехода металл–изолятор в $RBaCo_2O_{5+\delta}$.

ЖЭТФ, том 157, вып. 5, 2020

Однако были сомнения [26], что выводы [4] о спиновом состоянии Co³⁺ в GdBaCo₂O_{5,5} достоверны, так как использованный авторами [7] метод определения РМ-вклада ионов Gd³⁺ был некорректен (см. ниже). Кроме того, значения намагниченности образца [7] были аномально большие по сравнению с известными литературными данными [2,8]. В работе [26] был предложен метод определения РМ-вклада ионов Gd³⁺. Исследования намагниченности GdBaCo₂O_{5 5} в зависимости от температуры и напряженности магнитного поля показали, что парамагнитный вклад иона Gd³⁺ практически совпадает с вкладом свободного иона Gd³⁺ [26]. Из уточненных данных РМ-вклада ионов Gd³⁺ следует, что в GdBaCo₂O_{5+ δ} при $\delta \approx 0.5$ ниже T_{MI} ионы Co³⁺ также остаются в LS/IS-состоянии, выше T_{MI} они преобразуются в HS/LS-состояние [26]. Переход в металлическое состояние GdBaCo₂O_{5.5} происходит при увеличении спинового состояния ионов Со³⁺ в октаэдрах (переход из LS- в HS-состояние) и уменьшении их в пирамидах (переход из IS- в LS-состояние). Эти выводы согласуются со структурными данными рентгеновской синхротронной дифракции $GdBaCo_2O_{5,5}$ [4].

Данная работа посвящена определению спинового состояния ионов Со³⁺ в слоистом кобальтите TbBaCo₂O_{5+ δ} при $\delta \approx 0.5$. Хотя проведены обширные исследования магнитных свойств, измерения нейтронной и рентгеновской дифракции порошков TbBaCo₂O_{5.5}, нет однозначных выводов о спиновом состоянии Со³⁺ в этом соединении в области перехода металл-изолятор [2, 5, 6, 15, 23–25, 27]. В основном это обусловлено тем, что выводы сделаны на основе магнитных данных, не учитывающих РМ-вклад ионов Tb^{3+} [2,5]. В данной работе определение спинового состояния ионов Co³⁺ в TbBaCo₂O_{5.5} проведено с учетом РМ-вклада ионов Tb³⁺. Из наших исследований следует, что спиновые состояния ионов Co^{3+} в TbBaCo₂O_{5.5} и GdBaCo₂O_{5.5} вблизи перехода металл-изолятор идентичны. Ионы Co^{3+} находятся в LS/IS-состоянии ниже T_{MI} и в HS/LS-состоянии выше T_{MI} . Переход в квазиметаллическое состояние происходит при изменении LS-состояния на HS-состояние в октаэдрах и IS-состояния на LS-состояние в пирамидах в интервале $T \approx T_{MI} \pm 50$ К. Это предположение объясняет увеличение расстояния кобальт-кислород d(Co-O) в октаэдрах и уменьшение его в пирамидах TbBaCo₂O_{5.5} [6] за счет изменений ионных радиусов ионов Со³⁺ при изменениях их спинового состояния при переходе в металлическую фазу.

2. ОБРАЗЦЫ И МЕТОДИКИ ИССЛЕДОВАНИЙ

Поликристаллические образцы TbBaCo₂O_{5+δ} были синтезированы методом твердофазных реакций из порошков Tb_4O_7 (чистота 99.99%), Co_3O_4 (ч.д.а.) и ВаСО₃ (ос.ч.). Порошки необходимого состава перетирались, прессовались в таблетки и спекались при температуре 1150 °C в течение 24 ч, после чего таблетки охлаждались со скоростью 1°С/мин до комнатных температур. Определение содержания кислорода δ проводилось методом восстановления образца в атмосфере водорода. Приготовленный образец был однофазным с $\delta = 0.38$, имел орторомбическую структуру (пространственная группа Рттт, № 47) с параметрами элементарной ячейки a = 3.869(5) Å, b = 7.815(4) Å, c = 7.515(5) Å. Результаты согласуются с известными данными [28]. Для изменения содержания кислорода таблетки дополнительно отжигались в запаянных кварцевых ампулах при давлении кислорода 5 атм. В качестве источника кислорода применялось соединение Ag₂O. Коэффициенты линейного расширения были исследованы на кварцевом дилатометре ULVAC-SINKU RIKO (JAPAN) в температурном интервале от 77 до 550 К в динамическом режиме при скорости изменения температуры 2 °С/мин. Измерения намагниченности проведены на установке MPMS-5XL (QUANTUM DESIGN) при T = 10-400 К и вибрационном магнитометре фирмы Lake Shore (модель 7407 VSM) при T = 280-500 K в центре коллективного пользования ИФМ УрО РАН.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 приведена температурная зависинамагниченности M(T) поликристалла мость $TbBaCo_2O_{5.47(2)}$ в магнитном поле H = 1 кЭ. При уменьшении температуры ниже температуры Кюри $T_C = 279 \pm 2$ К намагниченность резко возрастает, достигает максимальных значений при $T_{max} \approx 263 \pm 1$ К, далее при $T \sim 220$ К резко уменьшается. Такое поведение M(T) в поликристалле ТbВаСо₂О_{5.50} на основе нейтронных исследований объясняется установлением скошенной FM-структуры ниже T_C с последующим переходом в неколлинеарное AFM-состояние [27]. Обычно полагают, что при $T = T_{max}$ происходит переход в AFM-состояние, хотя намагниченность сохраняется еще в течение 30-40 К. По-видимому, в интервале

Рис. 1. Температурная зависимость намагниченности TbBaCo₂O_{5.47} (1) при H = 1 кЭ. Сплошная линия 2 парамагнитный вклад ионов Tb³⁺. Вставка слева: температурная зависимость парамагнитной восприимчивости при низких температурах. Вставка справа: температурная зависимость намагниченности насыщения M_S и намагниченности при H = 50 кЭ поликристалла TbBaCo₂O_{5.47}

от $T = T_{max} \sim 260$ К до $T_N \sim 200$ К (рис. 1) происходит постепенный переход из скошенного FM-состояния в неколлинеарное AFM-состояние. На вставке на рис. 1 справа приведены температурные зависимости намагниченности насыщения M_S , полученные из экстраполяции M(H) до 50 кЭ, и значения намагниченности при 50 кЭ (PM-вклад ионов Tb³⁺ вычтен) при T = 300-200 К. Видно, что M_S уменьшается ниже T_{max} , FM-состояние существует в узкой области температур $T \approx 220-280$ К. Рост намагниченности ниже T = 200 К объясняется PM-вкладом редкоземельного иона Tb³⁺ (сплошная линия на рис. 1).

При низких температурах в интервале T = 10-60 К парамагнитная восприимчивость исследованного образца (вставка на рис. 1 слева) описывается законом Кюри–Вейса с парамагнитной температурой $\theta_{PM} \approx -11$ К и эффективным магнитным моментом $\mu_{eff} \approx 8.3\mu_B$, отличным от ожидаемого значения $\mu_{eff} = 9.72\mu_B$ для свободного иона Tb³⁺:

$$\chi \sim \mu_{eff}^2 / (T - \theta_{PM}). \tag{1}$$

Известно, что соединения редкоземельных ионов являются парамагнетиками Ван Флека, парамагнитные свойства их описываются законом Кюри–Вейса значениями μ_{eff} свободного иона (гл. 9 в работе [29]). Отрицательное значение $\theta_{PM} < 0$ характеризует наличие AFM-взаимодействий и согласуется с

АFМ-упорядочением ионов Tb^{3+} в $TbBaCo_2O_{5.5}$ ниже $\theta_N = 3.44$ K [15].

В настоящее время нет ясного понимания влияния РМ-вклада ионов \mathbb{R}^{3+} на магнитные свойства RBaCo₂O_{5+ δ}. В работах [1, 2, 5, 8, 11, 13, 14, 30] этот вклад не учитывался, в [3, 10, 15, 31] предполагается, что вклад ионов \mathbb{R}^{3+} совпадает с вкладом свободного иона. В работах [4, 7] РМ-вклад иона \mathbb{Gd}^{3+} определялся из исследований РМ-восприимчивости GdBaCo₂O_{5.5} при низких температурах:

$$\chi_{\rm Gd^{3+}}$$
 [ед. СГСМ/г/Э] = $1.92 \cdot 10^{-2}/(T+0.4)$. (2)

Этот метод не точный, так как на значение эффективного момента влияет присутствие магнитных ионов [29]. Значение μ_{eff} в (2), отличное от значения для свободного иона Gd³⁺, как и в нашем эксперименте для иона Tb³⁺ (вставка на рис. 1), обусловлено влиянием ионов Со, так как РМ-восприимчивость определяется вкладами ионов Со и R³⁺.

В работе [26] для определения РМ-вклада ионов Gd^{3+} было предложено использовать эффект насыщения намагниченности M(H) в магнитном поле при низких температурах. Предварительно было показано, что вклад ионов Со в намагниченность $\mathrm{GdBaCo}_2\mathrm{O}_{5.5}$ при T=10 К мал и полевая зависимость намагниченности при T=10 К¹⁾ описывается функцией Бриллюэна с параметрами для свободного иона Gd^{3+} при $\theta_{PM}=-1.4$ К:

$$M = N_A g \mu_B J B_S(x), \tag{3}$$

где $B_S(x)$ — функция Бриллюэна, N_A — число Авогадро, $x = g\mu_B J H/k(T - \theta_{PM})$, g — фактор Ланде, μ_B — магнетон Бора, J — суммарный магнитный момент, H — магнитное поле, k — постоянная Больцмана. При $x \ll 1$ из (3) РМ-вклад ионов Gd³⁺ определяется выражением [26]

$$\chi_{\rm Gd^{3+}}$$
 [ед. СГСМ/г/Э] = $1.57 \cdot 10^{-2}/(T+1.4)$. (4)

В данной работе предложенным в работе методом [26] определен РМ-вклад ионов Tb^{3+} из исследований намагниченности $\text{TbBaCo}_2\text{O}_{5.47}$ в интервале T = 10-150 К. На рис. 2a символами показаны экспериментальные значения намагниченности M(H) поликристалла $\text{TbBaCo}_2\text{O}_{5.47}$ при T = 10 К. В отличие от GdBaCo₂O_{5.52} [26], зависимость M(H)

¹⁾ Из данных работы [13] следует, что полевая зависимость намагниченности M(H) образца GdBaCo₂O_{5.5}, исследованного ранее в работах [4,7], хорошо описывается выражением (3) с параметрами для свободного иона Gd³⁺ при $\theta_{PM} = -1$ К.

Рис. 2. Полевые зависимости намагниченности поликристалла $TbBaCo_2O_{5.47}$ при T = 10 К (a) и при T =

сталла ${\rm TbBaCo_2O_{5.47}}$ при T=10 K (a) и при $T=20{-}150$ K (б). Символы — эксперимент, сплошные кривые — расчет

образца при T = 10 К не описывается выражением (3) для параметров иона Tb^{3+} ни при каких значениях θ_{PM} (сплошные кривые 1 и 2 рис. 2*a*). Результаты M(H) при T = 10 К объясняются тем, что TbBaCo₂O_{5.47} при T = 10 К не является чистым парамагнетиком, так как температура T = 10 К близка к температуре AFM-упорядочения $\theta_N = 3.44$ К ионов Tb³⁺ [15], в отличие от GdBaCo₂O_{5.5}, в котором упорядочение ионов Gd³⁺ выше T = 1.7 К не обнаружено [3,4,10].

На рис. 26 символами показаны экспериментальные значения M(H) при T = 20-150 K, которые определяются суммарным вкладом ионов Tb³⁺, Co³⁺ и 2–3 % Co²⁺. Из исследований намагниченности M(H) при T = 10-150 K установлено, что РМвосприимчивость ионов Co, как и в GdBaCo₂O_{5+ δ} [26], имеет тенденцию уменьшаться при понижении температуры, что характерно для AFM при $T \ll$ $\ll T_{AFM}$ [29]. Оценки показывают, что вклад ионов кобальта в намагниченность при T = 20 K составля-

Рис. 3. Температурная зависимость электросопротивления ho(T) поликристалла ${
m TbBaCo_2O_{5.52}}$. Вставка сверху: ho(T) вблизи $T_{MI}\sim 338\,$ К. Вставки снизу: 1ho(T) в области перехода из АFM-состояния в FM при H=0 (сплошная линия) и $H=15\,$ к \Im (символы); 2 — температурная зависимость магнитосопротивления при $H=15\,$ к \Im

ет не более $0.2\mu_B$. При температурах 20–50 К вклад иона Tb³⁺ сносно описывается выражением (3) с параметрами для иона Tb³⁺ равными J = 6, g = 1.5и $\theta_{PM} = -(8 \pm 2)$ К. При T = 75–150 К расчетные значения M(H) слегка отклоняются от экспериментальных значений, что связано с вкладом ионов Co³⁺ (рис. 26). Вклад ионов Tb³⁺ в парамагнитную восприимчивость определяется выражением, полученным из (3) при $x \ll 1$ (T > 300 К и $H \sim 10$ кЭ):

$$\chi$$
 [ед. СГСМ/моль/Э] = $C_M/(T - \theta_{PM})$ [K], (5)

где $C_M = N_A \mu_B^2 \mu_{eff}^2 / 3k = 11.82$ — постоянная Кюри для иона Tb³⁺ [32].

В нелегированных GdCoO₃ [33,34] и TbCoO₃ [35] в широкой области температур 300–10 К РМ-восприимчивость описывается выражением (5) с параметрами для свободных ионов Gd³⁺ и Tb³⁺ соответственно при $\theta_{PM} \approx -6$ К и $\theta_{PM} \approx -11$ К, что является косвенным подтверждением наших выводов. На рис. 1 линией 2 показан РМ-вклад ионов Tb³⁺ при H = 1 кЭ. Оценки показывают, что выше T_{MI} вклад ионов Tb³⁺ в намагниченность TbBaCo₂O_{5.5} является преобладающим, и вклад ионов Co³⁺ составляет менее 14 % от общей намагниченности, что почти в два раза меньше, чем в GdBaCo₂O_{5.5} [26].

На рис. 3 приведена температурная зависимость электросопротивления TbBaCo₂O_{5.52} при T = 100-400 K, типичная для слоистых кобальтитов [1, 2]. Она имеет полупроводниковый характер: $\rho(T)$ монотонно убывает при увеличении температуры и в интервале температур 100–250 К электросопротивление описывается активационным выражением

$$\rho(T) \sim \exp(-\Delta E/kT)$$

с энергией активации $\Delta E \approx 40$ мэВ. В области перехода из AFM- в ФМ-состояние ($T \approx 200-250$ K) происходит небольшой изгиб электросопротивления. В магнитном поле этот изгиб сдвигается в сторону низких температур. В этой же области температур обнаружено необычное для кобальтитов высокое магнитосопротивление

$$MR_0 = [\rho(H = 15 \text{ k}\Im) - \rho(H = 0)] / \rho(H = 0) \approx -12\%$$

(нижние вставки на рис. 3). Аналогичные поведения $\rho(T)$ и MR₀ обнаружены в GdBaCo₂O_{5.5} [4, 26]. Результаты объясняются тем, что подвижность носителей заряда в AFM-состоянии меньше по сравнению с подвижностью в FM-состоянии, а магнитное поле расширяет температурный интервал существования FM-состояния в сторону низких температур и уменьшает область существования AFM-состояния [4]. Ниже $T \approx T_C \approx 280$ К линейная зависимость $\log \rho \sim 1/T$ меняется, происходит резкое уменьшение $\rho(T)$, а при T = 330-338 К происходит скачок электросопротивления (верхняя вставка рис. 3), связанный, полагаем, с особенностями изменения спинового состояния Co^{3+} . Выше $T_{MI} \approx 338$ К образец переходит в слабо зависящее от температуры состояние электросопротивления с $\rho \sim 2 \cdot 10^{-3}$ Ом·см (верхняя вставка рис. 3). Знак производной электросопротивления $d\rho/dT$ остается отрицательным, что свидетельствует о полупроводниковом характере $\rho(T)$ в исследованном интервале температур до 400 К.

На рис. 4 (левая ось) приведена температурная зависимость экспериментальных значений обратной РМ-восприимчивости $\chi_{exp}^{-1}(T)$ для образца $TbBaCo_2O_{5.52}$, измеренной в магнитном поле H == 10 кЭ. В интервале T = 500-350 К наблюдается линейная зависимость $\chi_{exp}^{-1}(T)$, небольшой скачок ниже $T_{MI} \approx 340$ K, далее явно нелинейная зависимость $\chi_{exp}^{-1}(T)$. Оцененное из закона Кюри–Вейса значение μ_{eff} /Co $\approx 7.55 \mu_B$ близко к данным работы [5], но оно слишком высокое, чтобы быть отнесенным к спиновому состоянию Со³⁺. Для выделения вклада ионов Со³⁺ из общей намагниченности образца с помощью выражения (5) был вычтен вклад ионов Tb^{3+} и пересчитана величина $\chi^{-1}(T)$ для ионов кобальта (правая ось на рис. 4). Учет вклада ионов Tb³⁺ более чем в шесть раз увеличивает значения $\chi^{-1}(T)$ в металлической фазе. В

Спиновое состояние ионов Со³⁺...

Рис. 4. а) Температурная зависимость парамагнитной восприимчивости $\chi_{exp}^{-1}(T)$ (1) поликристалла $\mathrm{TbBaCo_2O_{5.52}}$ (левая ось). На правой оси приведены значения $\chi^{-1}(T)$ (2) с вычетом вклада иона Tb^{3+} . б) Температурные зависимости эффективного момента μ_{eff}/Co (1) и температуры $\theta_C(\theta_N)$ (2) — сплошные линии, символами со штриховой линией указаны дифференциальные значения $\mu_{eff}^{diff}/\mathrm{Co}$ и $\theta_C(\theta_N)$

интервале температур 500-380 К обратная восприимчивость $\chi^{-1}(T)$ линейно зависит от температуры. Ниже $T \approx 380$ К наблюдается нелинейная часть $\chi^{-1}(T)$: до $T \approx 350$ К происходит медленное изменение $\chi^{-1}(T)$, в области $T_{MI} \approx 345$ –335 К происходит резкий скачок $\chi^{-1}(T)$, далее монотонное нелинейное уменьшение $\chi^{-1}(T)$ при понижении температуры. Похожее изменение наклона $\chi^{-1}(T)$ при приближении к T_{MI} обнаружено и в кристаллах $EuBaCo_2O_{5+\delta}$ (рис. 2 в работе [1]). В интервале температур 500-380 К РМ-восприимчивость описывается законом Кюри-Вейса с температурой Нееля $\theta_N = -(155 \pm 10 \text{ K})$ и с $\mu_{eff}/\text{Co} = 3.28 \pm 0.1 \mu_B$, ниже T_{MI} в небольшом интервале температур, 325–280 К, значениями $\mu_{eff}/{\rm Co} = 1.40 \pm 0.05 \mu_B$ и $\theta_C = 283 \pm 2~{\rm K}$ соответственно (сплошные линии μ_{eff} и $\theta_C(\theta_N)$ на рис. 4б).

В области температур 380–280 К практически нельзя выделить линейный участок на зависимости $\chi^{-1}(T)$. Фактически это означает, что переход сопровождается изменениями $\mu_{eff}(T)$ с температурой. Для определения этого предположения в ин-

ЖЭТФ, том 157, вып. 5, 2020

тервале температур 300-400 К были выделены линейные участки $\chi^{-1}(T)$ и для каждого участка из закона Кюри-Вейса были определены дифференциальные значения μ_{eff} и $\theta_C(\theta_N)$. На рис. 46 символами показаны температурные зависимости определенных таким образом дифференциальных значений μ_{eff}^{diff} и $\theta_C(\theta_N)$. Видно, что переход металлизолятор происходит в широком интервале температур (около 280-380 K) при изменении от максимальных $\mu_{eff}/{\rm Co} = 3.28 \pm 0.10 \mu_B$ при $T = 500\text{--}380~{\rm K}$ до минимальных значений $\mu_{eff}^{diff}/{
m Co} \approx 0.5 \mu_B$ при $T_{MI}\,\approx\,340$ К и увеличении до $\mu_{eff}^{diff}/{\rm Co}\,\approx\,1.6\mu_B$ при $T \sim 280$ К. Поведение $\theta_C(T)$ имеет аналогичный вид: в интервале $T \approx 400-340$ К значение θ_C плавно увеличивается от $\theta_N \approx -150$ K до $\theta_C \sim +320$ K, далее слабо уменьшается до $\theta_C \approx +280$ К. В области линейного поведения $\chi^{-1}(T)$ значения μ_{eff} и μ_{eff}^{diff} совпадают.

В металлическом состоянии (T = 400-500 K) значению $\mu_{eff}/\text{Co} \approx 3.28 \pm 0.10\mu_B$ из всех возможных состояний ионов Co^{3+} (рис. 46) ближе всех соответствует смесь $\text{HS}(t_{2g}^4 \ e_g^2, S = 2)$ и $\text{LS}(t_{2g}^6 \ e_g^0, S = 0)$ состояний с $\mu_{eff}/\text{Co} = 3.43\mu_B$ с одинаковым соотношением 1:1. Ниже T_{MI} вблизи T_C (T = 280-325 K) значение $\mu_{eff}/\text{Co} = 1.40 \pm 0.05\mu_B$ означает, что только до одной четверти ионов Co^{3+} находятся в $\text{IS}(t_{2g}^5 \ e_g^1, S = 1)$ -состоянии, остальные ионы находятся в LS-состоянии. Преобладание доли LS-состояния вблизи T_{MI} тbBaCo₂O_{5.5} обнаружено и в работе [15]. Рентгеновские и нейтронные исследования TbBaCo₂O_{5.5} также предсказывают существование LS/IS-состояния ионов Co^{3+} ниже T_{MI} [6,27].

Наши магнитные данные не позволяют определить вид кислородного окружения ионов Co³⁺. Структурные исследования TbBaCo₂O_{5.5} показали увеличение длины связи кислород-кобальт d(Co-O)в октаэдрах и уменьшение ее в пирамидах в металлической фазе [27], что можно трактовать как увеличение ионного радиуса Со³⁺ в октаэдрах и его уменьшение в пирамидах. На основе наших магнитных и структурных данных [27] заключаем, что переход в неметаллическое состояние, как и в GdBaCo₂O_{5.5} [26], происходит вследствие изменения HS-состояния на LS-состояние в октаэдрах. В пирамидах только часть (примерно четверть) ионов Co³⁺ переходят из LS-состояния в промежуточное IS-состояние, остальные все еще остаются в LS-состоянии (при $T \approx T_C$).

Обычно предполагается, что ниже T_{MI} в GdBaCo₂O_{5.5} существует смесь ионов Co⁺³ примерно с одинаковым соотношением IS- и LS-состояний

[1, 2, 4, 7, 13]. Частично это верно, но, по-видимому, это предположение больше относится к температурам $T \ll T_{MI}$ [3, 10]. Спонтанная намагниченность GdBaCo₂O_{5.5} без двойниковой структуры, определенная из экстраполяции намагниченности с высоких полей, плавно растет при охлаждении от $M_S \sim 0.3 \mu_B/{
m Co}$ при $T = T_C \approx 280$ K до $M_S \sim$ $\sim 0.6 \mu_B/{
m Co}$ при $T \approx 200$ К (см. рис. 22 и 24 в работе [3]). При T = 1.8 К в магнитном поле выше 300 кЭ она достигает значений $M_S \sim 1\mu_B/{
m Co}$, что соответствует одинаковому соотношению 1:1 LS/IS-спиновых состояний Co^{3+} при $T \rightarrow 0$ [10]. В GdBaCo₂O_{5.5} с двойниковой структурой при охлаждении ниже $T_C \approx 270$ K спонтанная намагниченность плавно растет до $M_S \sim 0.5 \mu_B/{
m Co}$ при T = 78 K (см. рис. 3 [10]). Из-за двойниковой структуры кристаллов половина IS (S = 1) спинов параллельна, в то время как другая половина противоположна приложенному полю, что приводит к моменту насыщения $M_S \approx 0.5 \mu_B / \text{Co} [3, 10].$

Из вставки к рис. 1 видно, что спонтанная намагниченность плавно растет от $M_S \sim 0.11 \mu_B/\text{Co}$ при $T = T_C \approx 280$ К до $M_S \sim 0.23 \mu_B/\text{Co}$ при $T \approx \approx 260$ К. Фактически значение $M_S \sim 0.11 \mu_B/\text{Co}$ при T = 280 К соответствует LS/IS-состоянию ионов Co³⁺ в соотношении 0.7:0.3 при $T \approx 280$ К, полученному выше из подгонки $\chi^{-1}(T)$ законом Кюри–Вейса. Однако максимальное значение $M_S \sim 0.25 \mu_B/\text{Co}$ заметно меньше ожидаемого значения около $1 \mu_B/\text{Co}$ для LS/IS-состояния в соотношении 1:1 из-за двойниковой и неколлинеарной FM-структуры кристалла TbBaCo₂O_{5.52}.

В связи со сказанным выше представляет интерес зависимости спинового состояния Co^{3+} от вида редкоземельного иона R^{3+} . Используя известные результаты PM-восприимчивости кобальтитов RBaCo₂O_{5.5}, где R = Pr, Nd, Sm, Gd, Tb, Dy, Ho [1,2,7,11–14], мы оценили возможные спиновые состояния ионов Co^{3+} вблизи перехода металл–изолятор с учетом PM-вклада ионов R^{3+} . Для простоты предполагали, что PM-вклад совпадает с вкладом свободного иона R^{3+} [3]. Из этих оценок можно предположить, что во всех указанных кобальтитах ниже T_{MI} ионы Co^{3+} находятся в IS/LS-состоянии. В металлической фазе во всех этих кобальтитах, кроме кобальтитов с $R = Ho, Pr^{2}$, ионы Co^{3+} находятся в HS/LS-состоянии.

 $^{^{2)}}$ Из данных работы [13] следует, что в $\rm PrBaCo_2O_{5.50}$ при учете PM-вклада в металлической фазе ионы $\rm Co^{3+}$ находятся в HS/IS-состоянии в соотношении 1:1.

Рис. 5. Температурная зависимость объемного расширения $\Delta V/V$ монокристалла $\mathrm{TbBaCo}_{1.96}\mathrm{O}_{5+\delta}$. На вставках приведены температурные зависимости линейного расширения $\Delta L/L$ (вдоль и поперек оси *c*, при нагревании и охлаждении образца) вблизи T_{MI} и коэффициента линейного расширения $\alpha(T)$ вдоль направления [120]

Одновременно со спиновым переходом наблюдается аномальное расширение решетки (рис. 5). Измерения теплового расширения проведены на монокристалле TbBaCo_{1.96}O_{5+ δ} вдоль трех направлений параллеленипеда с размерами около $3 \times 3 \times 2.5$ мм³. Одна ось параллеленипеда перпендикулярна оси *с* и совпадает с направлением роста монокристалла [120], две другие оси направлены вдоль оси *с*.

На рис. 5 символами показана температурная зависимость объемного $\Delta V/V$ -расширения вблизи $T \approx T_{MI} \pm 100$ К. В металлической фазе (400–500 К) коэффициент объемного расширения $\alpha_V(T) = 1/V \cdot dV/dT$ выше, чем в диэлектрической фазе ($T < T_C$): соответственно $3.9 \cdot 10^{-5}$ К⁻¹ и $3.2 \cdot 10^{-5}$ К⁻¹. Отклонения $\Delta V/V(T)$ от линейной зависимости решетки (сплошные линии) происходят при $T \approx T_{MI} \pm 40$ К и указаны стрелками. Отметим немонотонное (S-образное) отклонение объема решетки $\Delta V/V(T)$ от линейной зависимости в области перехода: выше $T \approx 300$ К объем решетки уменьшается, вблизи $T \approx T_{MI} \pm 10$ К он резко увеличивается, далее снова уменьшается. Линейное расширение $\Delta L/L(T)$ вблизи T_{MI} также показывает немоно-

тонное (S-образное) поведение (верхняя вставка на рис. 5). Видна аналогия между $\Delta V/V(T)$ и $\mu_{eff}^{diff}(T)$ на рис. 46. По-видимому, результаты теплового расширения отражают факт различного температурного изменения спинового состояния ионов Со³⁺ в разных полиэдрах вблизи перехода металл-изолятор. Линейное расширение $\Delta L/L(T)$ имеет анизотропный характер (вставка на рис. 5 слева). При переходе в металлическое состояние решетка расширяется вдоль оси с и сжимается вдоль направления [120], перпендикулярного оси с. Расширение решетки $\Delta L/L$ вдоль оси *c* и сжатие ее перпендикулярно оси *c*, увеличение объема $\Delta V/V$ при переходе в металлическую фазу качественно согласуются с нейтронными данными [5,6]. Кривые линейного и объемного расширения, полученные при нагреве и охлаждении, демонстрируют гистерезисное поведение, подтверждая, что превращение металл-изолятор является переходом первого рода.

На температурной зависимости коэффициента линейного расширения $\alpha(T) = 1/L \cdot dL/dT$ ТbBaCo_{1.96}O_{5+ δ} наблюдаются ярко выраженный пик при $T = T_{MI} \approx 338$ –340 К и слабо выраженная аномалия при $T_N \approx 190$ К (нижняя вставка на рис. 5). Видна хорошая корреляция между коэффициентом линейного расширения $\alpha(T)$ и эффективным магнитным моментом $\mu_{eff}(T)$ (рис. 4 δ). Коэффициент линейного расширения $\alpha(T)$ отклоняется от линейной температурной зависимости (сплошные линии), обусловленной обычным тепловым расширением решетки, в интервале $T \approx 380$ –290 К, т.е. в интервале изменения спинового состояния Co³⁺ от температуры.

Аномалия $\alpha(T)$ при $T_N \approx 190$ К почти на два порядка меньше по сравнению $\alpha(T)$ при T_{MI} , что исключает возможность ее объяснения изменением спинового состояния ионов Co³⁺ вблизи этой температуры. С учетом магнитных данных (рис. 1) можно предположить, что она, возможно, обусловлена магнитострикционными явлениями при переходе из скошенного FM-состояния в неколлинеарное AFM-состояние. Тепловое расширение TbBaCo_{1.96}O_{5+ δ} подтверждает сохранение LS/IS-состояния ионов Co³⁺ при низких температурах, по крайней мере, до T = 80 K.

Путем экстраполяции теплового расширения ниже и выше температуры перехода оценено увеличение объема элементарной ячейки при переходе металл–изолятор на величину $\Delta V/V \approx 2 \cdot 10^{-4}$ при T_{MI} . Приблизительно такие же значения $\Delta V/V$ получены для поликристалла GdBaCo₂O_{5.5} [36]. Результаты исследований теплового расширения на монокристалле TbBaCo_{1.96}O_{5+ δ} подтверждают, что изменения спинового состояния Co³⁺ происходят в пирокой области температур $T \approx T_{MI} \pm (40{-}50)$ K. Резкие изменения физических свойств, таких как $\rho(T)$ (рис. 3), $\chi^{-1}(T)$ (рис. 4), $\alpha(T)$, $\Delta L/L$ и $\Delta V/V$ (рис. 5), происходят только в небольшом интервале температур $T = T_{MI} \pm 10$ K, где происходит скачок $\chi^{-1}(T)$ и μ_{eff} .

В заключение отметим, что в некоторых работах [5, 12, 37, 38] рассматривается влияние орбитального упорядочения на переход металл–изолятор в слоистых кобальтитах. Эксперименты по нейтронной дифракции TbBaCo₂O_{5+ δ} при $\delta \approx 0.5$ [37] и рентгеновской дифракции GdBaCo₂O_{5.5} [38] показывают, что в низкотемпературной фазе вследствие орбитального упорядочения спиновые состояния ионов Co³⁺ различаются и ионы находятся в двух разных октаэдрах и двух разных пирамидах. Предполагается, что в низкотемпературной фазе TbBaCo₂O_{5+ δ} при $\delta \approx 0.5$ и T = 260 K в октаэдрах ионы Co³⁺ находятся в LS-состоянии, в пирамидах одна половина ионов находится в HS-, а другая половина — в LS-состоянии [37].

Увеличение μ_{eff} /Со примерно от $0.5\mu_B$ до $1.5\mu_B$ при понижении температуры от T_{MI} до T_C как в TbBaCo₂O_{5+ δ}, $\delta \approx 0.5$ (см. рис. 4), так и в GdBaCo₂O_{5.5}, $\delta \approx 0.5$ (см. рис. 5 в [26]) мы трактовали как увеличение доли IS-состояния от нескольких процентов до 20-25% в IS/LS-состоянии пирамид. Эти же результаты $\mu_{eff}/\text{Co}(T)$ можно было трактовать как увеличение доли HS- в HS/LSсостоянии пирамид, только доля HS-состояний было бы примерно в два раза меньше. В предположении модели орбитального упорядочения переход в низкотемпературное изоляторное состояние происходит из HS-состояния в LS-состояние ионов Co³⁺ в октаэдрах. В пирамидах половина ионов Со³⁺ остается в LS-состоянии, а другая половина должна переходить в HS-состояние. Эта модель не согласуется с нашими и известными данными [15] измерений парамагнитной восприимчивости, так как в низкотемпературной фазе значение эффективного момента должно быть в два раза больше, порядка μ_{eff} /Co $\approx 2.5\mu_B$. С другой стороны, в работе [15] утверждается, что магнитный момент на ион Со³⁺ увеличивается от 1.22µ_B до 2.8µ_B при увеличении магнитного поля от 1 до 50 кЭ. Обоснование предлагаемой модели и, в частности, наличие HS-состояния в низкотемпературной фазе, требуют дополнительных исследований.

4. ЗАКЛЮЧЕНИЕ

Основными методами определения спинового состояния ионов Со³⁺ в слоистых кобальтитах RBaCo₂O_{5.5} вблизи перехода металл-изолятор являются магнитные и структурные исследования. Однако не всегда из этих исследований следуют однозначные выводы о спиновых состояниях ионов Со³⁺. В основном это обусловлено тем, что выводы сделаны на основе магнитных данных, некорректно учитывающих РМ-вклад ионов R³⁺. В данной работе из исследований намагниченности в широком интервале температур TbBaCo₂O_{5.5} было установлено, что РМ-вклад ионов Tb³⁺ определяется выражением закона Кюри-Вейса с параметрами для свободного иона Tb³⁺ при $\theta_{PM} = -8 \pm 2$ K. С учетом РМ-вклада ионов Tb³⁺ спиновые состояния ионов Co³⁺ в TbBaCo₂O_{5.5} и GdBaCo₂O_{5.5} идентичны. Ионы Co^{3+} выше T_{MI} находятся в HS/LS-состоянии, ниже T_{MI} — в LS/IS. Переход в металлическое состояние происходит при переходе LS-состояния в HS-состояние ионов Co³⁺ в октаэдрах и при переходе из IS-состояния в LS-состояние ионов Со³⁺ в пирамидах в согласии со структурными данными расширения октаэдров и сжатия пирамид. Переход металл-изолятор происходит в широком интервале температур $T \approx T_{MI} \pm (40 -$ 50) К и при изменении спиновых состояний ионов Со³⁺ в согласии с данными объемного и линейного расширения. Гистерезисное поведение линейного и объемного расширения показывает, что превращение металл-изолятор в этом соединении является переходом первого рода. Измерения теплового расширения демонстрируют сохранение LS/IS-cocтояния ионов Co^{3+} до T = 80 K.

Благодарности. Авторы благодарны А. В. Королеву и Д. А. Шишкину за проведение магнитных измерений, а также А. В. Телегину за плодотворные обсуждения.

Финансирование. Работа выполнена в рамках государственного задания ФАНО России (тема «Спин» Г.р. № АААА-А18-118020290104-2) и частично при поддержке Российского фонда фундаментальных исследований (проект № 20-02-00461).

ЛИТЕРАТУРА

 C. Martin, A. Maignan, D. Pelloquin et al., Appl. Phys. Lett. **71**, 1421 (1997).

- A. Maignan, C. Martin, D. Pelloquin et al., J. Sol. St. Chem. 142, 247 (1999).
- A. A. Taskin, A. N. Lavrov, and Yoichi Ando, Phys. Rev. B 71, 134414 (2005).
- C. Frontera, J. L. García-Muñoz, A. Llobet et al., Phys. Rev. B 65, 180405(R) (2002).
- Y. Moritomo, T. Akimoto, M. Takeo et al., Phys. Rev. B 61, 13325 (R) (2000).
- H. Kusuya, A. Machida, Y. Moritomo et al., J. Phys. Soc. Jpn. 70, 3577 (2001).
- M. Respaud, C. Frontera, J. L. García-Muñoz, M. A. Aranda, B. Raquet, J. M. Broto, H. Rakoto, M. Goiran, A. Llobet, and J. Rodríguez-Carvajal, Phys. Rev. B 64, 214401 (2001).
- S. Roy, M. Khan, Y. Q. Guo et al., Phys. Rev. B 65, 064437 (2002).
- F. Fauth, E. Suard, V. Caignaert et al., Phys. Rev. B 66, 184421 (2002).
- Z. X. Zhou, S. McCal., C. S. Alexander et al., Phys. Rev. B 70, 024425 (2004).
- H. D. Zhou and J. B. Goodenough, J. Sol. St. Chem. 177, 3339 (2004).
- E. Pomjakushina, K. Conder, and V. Pomjakushin, Phys. Rev. B 73, 113105 (2006).
- C. Frontera, J. L. García-Muñoz, A. E. Carillo et al., Phys. Rev. B 74, 054406 (2006).
- 14. Y. Diaz-Fernandez, L. Malavasi, and M. C. Mozzati, Phys. Rev. B 78, 144405 (2008).
- M. Baran, V. I. Gatalskaya, R. Szymczak et al., J. Phys.: Condens. Matter 15, 8853 (2003).
- **16**. Э. Л. Нагаев, УФН **166**, 833 (1996).
- 17. E. Dagotto, New J. Phys. 7, 67 (2005).
- 18. N. I. Solin, J. Magn. Magn. Mater. 401, 677 (2016).
- В. А. Рыжов, А. В. Лазута, В. П. Хавронин и др., ФТТ 56, 74 (2014).
- 20. Н. И. Солин, С. В. Наумов, С. В. Телегин и др., Письма в ЖЭТФ 104, 44 (2016).

- Н. И. Солин, С. В. Наумов, С. В. Телегин и др., ЖЭТФ 152, 321 (2019).
- 22. Н. Б. Иванова, С. Г. Овчинников, М. М. Коршунов и др., УФН 179, 837 (2009).
- 23. Z. Hu, Hua Wu, T. C. Koethe et al., New J. Phys. 14, 123025 (2012).
- 24. M. Hidaka, M. Soejima, R. P. Wijesundera et al., Phys. Stat. Sol. (b) 243, 1813 (2006).
- M. Kopcewicz, D. D. Khalyavin, I. O. Troyanchuk et al., J. Phys. Condens. Matter 14, 9007 (2002).
- 26. Н. И. Солин, С. В. Наумов, С. В. Телегин, Письма в ЖЭТФ 107, 206 (2018).
- 27. M. Soda, Y. Yasui, T. Fujita et al., J. Phys. Soc. Jpn.
 72, 1729 (2003).
- 28. E. Rautama, M. Karppinen, J. Sol. St. Chem. 83, 1102 (2010).
- **29**. С. В. Вонсовский, *Магнетизм*, Наука, Москва (1971).
- 30. T. I. Arbuzova, S. V. Telegin, S. V. Naumov et al., Sol. St. Phenom. 215, 83 (2014).
- 31. S. Kolesnik, B. Dabrowski, O. Chmaissem et al., Phys. Rev. B 86, 1064434 (2012).
- 32. Дж. Смарт, Эффективное поле в теории магнетизма, Мир, Москва (1968).
- **33**. В. А. Дудников, Д. А. Великанов, Н. В. Казак и др., ФТТ **54**, 74 (2012).
- **34**. Н. Б. Иванова, Н. В. Казак, С. R. Michel и др., ФТТ **49**, 2027 (2007).
- 35. A. Muñoz, M. Martínez-Lope, J. A. Alonso et al., Eur. J. Inorg. Chem. 2012, 5825 (2012).
- 36. К. Р. Жданов, М. Ю. Каменева, Л. П. Козеева и др., ФТТ 52, 1570 (2010).
- 37. V. P. Plakhty, Y. P. Chernenkov, S. N. Barilo et al., Phys. Rev. B 71, 214407 (2005).
- 38. M. García-Fernandez, V. Scagnoli, U. Staub et al., Phys. Rev. B 78, 054424 (2008).