© 2020

ВЕРОЯТНОСТНАЯ ТЕЛЕПОРТАЦИЯ ОДИНОЧНОГО КУБИТА: ОБНАРУЖЕНИЕ НОВОГО *W*-КЛАССА СОСТОЯНИЙ

С. Адхикари*

Технологический университет Дели 110042, Дели, Индия

Поступила в редакцию 28 августа 2019 г., после переработки 28 августа 2019 г. Принята к публикации 15 октября 2019 г.

(Перевод с английского)

PROBABILISTIC TELEPORTATION OF A SINGLE QUBIT: UNEARTHING NEW W-CLASS OF STATES

Satyabrata Adhikari

Предложен вероятностный протокол для телепортации одного кубита через трехкубитные *W*-состояния с использованием двухкубитного измерительного базиса. Показано, что при правильном выборе параметра исходного состояния можно добиться очень высокой вероятности успеха протокола. Получено условие успешного выполнения протокола телепортации, что определяет новый класс трехкубитных *W*-состояний, используемых в качестве исходного состояния. Построены операторы, которые можно использовать для экспериментальной проверки условия телепортации. Эта проверка необходима для определения применимости данного трехкубитного состояния для протокола. Также численно определено количество запутанности, содержащейся в найденном *W*-классе общих состояний. Кроме того, показано, что общие состояния *W*-класса, используемые в протоколе телепортации, можно приготовить в ЯМР-эксперименте.

DOI: 10.31857/S0044451020090011

1. ВВЕДЕНИЕ

Запутанность является квантовомеханическим свойством, не имеющим аналогов в классической физике [1]. Она служит мощным средством квантовой обработки информации, поскольку в рамках законов квантовой механики без запутанности было бы невозможно осуществить переход квантового состояния (квантовую телепортацию) [2]. Квантовая телепортация оказывается незаменимым инструментом для квантовых вычислений [3] и квантовых коммуникаций [4]. В 1993 г. в работе [5] был предложен протокол телепортации, ставший революционной идеей в области квантовых коммуникаций. В работе [5] было показано, что информация, зашифрованная в одиночном кубите, может пере-

даваться удаленному получателю через двухкубитное максимально запутанное состояние, совместно используемое отправителем и получателем, с помощью двух классических битов информации. Протоколы квантовой телепортации имеют решающее значение не только для развития квантовой теории информации, но и для совершенствования квантовых технологий. Протокол телепортации может быть детерминированным [5] или вероятностным [6], т.е. кубит может телепортироваться с единичной вероятностью или с некоторой ненулевой вероятностью меньше единицы. Если кубит можно телепортировать между двумя удаленными друг от друга местами с единичной точностью и единичной вероятностью, то это называется идеальной телепортацией. В первоначальном протоколе идеальная телепортация одного кубита была достигнута с помощью

^{*} E-mail: satyabrata@dtu.ac.in

общего чистого двухкубитного максимально запутанного состояния. Однако если общее состояние не является максимально запутанным, то существуют протоколы, с помощью которых можно телепортировать кубит с единичной точностью, но с некоторой вероятностью меньше единицы [7].

Существуют некоторые другие протоколы, такие как протокол телепортации с использованием портов [8], в котором неизвестное квантовое состояние должно быть телепортировано в один из нескольких портов на удаленном сайте, симметричный протокол многосторонне управляемой телепортации [9], в котором изучалась телепортация произвольного лвухкубитного запутанного состояния с использованием двух состояний Гринбергера – Хорна – Цайлиндера (ГХЦ) [10], и протокол идеальной управляемой телепортации [11], в котором в качестве общего исходного состояния использовалось трехкубитное запутанное состояние. В работе [12] изучалась телепортация неизвестных кудитных состояний через чисто квантовые каналы с немаксимальным рангом Шмидта. Таким образом, общее запутанное состояние играет важнейшую роль в архитектуре протоколов телепортации. Экспериментальная реализация квантовой телепортации была успешно продемонстрирована на примере фотонных [13] и атомных [14] кубитов.

В протоколе телепортации кубита в качестве исходного состояния можно также использовать двухкубитное смешанное запутанное состояние [15]. В работе [16] изучалась квантовая телепортация оптических кубитов с использованием в качестве квантового канала гибридной запутанности с эффектами декогерирования. Однако можно видеть, что достижение отметки единичной точности невозможно ни в одном протоколе телепортации, использующем в качестве общего исходного состояния смешанные двухкубитные запутанные состояния, поэтому их нельзя рассматривать в качестве надежной основы для идеальной телепортации.

Было обнаружено, что неизвестные трехкубитные запутанные ГХЦ-состояния можно использовать в качестве квантовых каналов при некоторой схеме телепортации, которая была также осуществлена экспериментально [17,18]. Реализация адиабатического протокола квантовой телепортации для идеальной телепортации с тремя кубитами была исследована в работе [19]. Также было получено [20], что для идеальной телепортации одно- и двухкубитного состояний можно использовать максимально запутанное пятикубитное состояние, предложенное в работе [21].

Помимо ГХЦ-состояний существует еще один класс трехкубитных состояний, называемый W-классом. Эти два класса трехкубитных запутанных состояний неэквивалентны по отношению к стохастическим локальным операциям и классическим коммуникациям (ЛОКК) [22]. Следует отметить важное обстоятельство, что если отследить один кубит из трехкубитного состояния ГХЦ-класса, то редуцированное двухкубитное состояние окажется состоянием с нулевым дискордом [23], в то время как для случая трехкубитного состояния W-класса ситуация иная. Отличие состоит не только в том, что они могут использоваться в качестве квантового канала при телепортации, но также в том, что если отследить один кубит из трехкубитного состояния W-класса, то редуцированное двухкубитное смешанное состояние будет запутанным. В работе [24] было показано, что трехкубитное W-состояние может служить удобным общим исходным состоянием при квантовой защищенной передаче информации. В работе [25] разработан протокол квантовой телепортации с использованием W-состояния в качестве общего квантового канала, однако для восстановления неизвестного состояния в этом протоколе требуется нелокальное действие. Существует еще один протокол телепортации, использующий W-состояние в качестве исходного, однако он работает с точностью телепортации меньше единицы [26].

В 2006 г. Агравал и Пати в работе [27] доказали существование трехкубитных состояний W-класса, которые можно использовать в качестве общего исходного состояния для достижения идеальной телепортации однокубитного состояния. Этот протокол основан на трехкубитном проекционном измерении фон Неймана и двух классических битах передачи информации, однако такое измерение трудно осуществить экспериментально. Это побуждает пересмотреть данный протокол телепортации с точки зрения возможности использования двухкубитных проекционных измерений фон неймановского типа вместо трехкубитных. В данной работе показана возможность разрешения проблемы, отмеченной в протоколе телепортации Агравала – Пати, за счет использования двухкубитного базиса проекционного измерения вместо трехкубитного. Для этого предложен вероятностный протокол телепортации, в котором можно выбирать параметр исходного состояния таким образом, чтобы повышать вероятность успешной работы протокола. В этом смысле его можно считать протоколом почти идеальной телепортации. Статья имеет следующую структуру. В разд. 2 пересмотрен протокол телепортации одиночного кубита Агравала – Пати. В разд. 3 предложен протокол телепортации и получены условия телепортации одиночного кубита с единичной точностью и вероятностью близкой к единице. В разд. 4 обсуждается реализация предложенного протокола почти идеальной телепортации. В разд. 5 численно определяется количество запутанности используемого в протоколе телепортации общего трехкубитного состояния *W*-класса, а также его экспериментальное осуществление. В разд. 6 обсуждается приготовление общих трехкубитных *W*-состояний в ЯМР-эксперименте. В разд. 7 приведены основные выводы.

2. ПЕРЕСМОТР ПРОТОКОЛА АГРАВАЛА–ПАТИ ДЛЯ ИДЕАЛЬНОЙ ТЕЛЕПОРТАЦИИ ОДИНОЧНОГО КУБИТА

Протокол идеальной телепортации одиночного кубита, изученный Агравалом и Пати, отличается от первоначального протокола тем, что в качестве общего исходного состояния в нем используется трехкубитное состояние W-класса. Более того, было показано, что существует особый класс трехкубитных W-состояний, который можно использовать в качестве исходного состояния для идеальной телепортации одиночного кубита. В данном разделе эта схема телепортации будет пересмотрена с учетом некоторых интересных фактов.

2.1. Протокол телепортации Агравала-Пати

Рассмотрим телепортируемое однокубитное состояние вида:

$$|\psi\rangle_x = \alpha|0\rangle + \beta|1\rangle, \quad |\alpha|^2 + |\beta|^2 = 1.$$
(1)

Предположим, что чистое трехкубитное исходное состояние, принадлежащее к $W\mbox{-}\kappa\mbox{-}$

$$|W(\lambda_0, \lambda_2, \lambda_3)\rangle_{ABC} = \lambda_0 |100\rangle + \lambda_2 |001\rangle + \lambda_3 |010\rangle.$$
(2)

Условие нормировки для состояния $|W(\lambda_0,\lambda_2,\lambda_3)\rangle_{ABC}$ имеет вид

$$|\lambda_0|^2 + |\lambda_2|^2 + |\lambda_3|^2 = 1.$$
(3)

Далее предполагается, что кубиты «x», «A» и «B» принадлежат отправителю Алисе, а оставшийся кубит находится у получателя Боба. Система, состав-

ленная из четырех кубитов, описывается тензорным произведением $|\psi\rangle_x$ и $|W\rangle_{ABC}$ и выражается в виде

$$\begin{split} |\Phi\rangle_{xABC} &= |\psi\rangle_x \otimes |W\rangle_{ABC} = \\ &= \alpha\lambda_0|0100\rangle + \alpha\lambda_3|0010\rangle + \alpha\lambda_2|0001\rangle + \\ &+ \beta\lambda_0|1100\rangle + \beta\lambda_3|1010\rangle + \beta\lambda_2|1001\rangle = \\ &= \frac{1}{2}[|M_1^+\rangle_{xAB} \otimes (\alpha|0\rangle_c + \beta|1\rangle_c) + |M_1^-\rangle_{xAB} \otimes \\ &\otimes (\alpha|0\rangle_c - \beta|1\rangle_c) + |M_2^+\rangle_{xAB} \otimes (\beta|0\rangle_c + \alpha|1\rangle_c) + \\ &+ |M_2^-\rangle_{xAB} \otimes (\beta|0\rangle_c - \alpha|1\rangle_c)], \quad (4) \end{split}$$

где векторы трехкубитных состояний $|M_1^+\rangle_{xAB}$, $|M_1^-\rangle_{xAB}$, $|M_2^+\rangle_{xAB}$ и $|M_2^-\rangle_{xAB}$ записываются как

$$\begin{split} |M_1^+\rangle_{xAB} &= \lambda_0 |010\rangle + \lambda_3 |001\rangle + \lambda_2 |100\rangle, \\ |M_1^-\rangle_{xAB} &= \lambda_0 |010\rangle + \lambda_3 |001\rangle - \lambda_2 |100\rangle), \\ |M_2^+\rangle_{xAB} &= \lambda_0 |110\rangle + \lambda_3 |101\rangle + \lambda_2 |000\rangle), \\ |M_2^-\rangle_{xAB} &= \lambda_0 |110\rangle + \lambda_3 |101\rangle - \lambda_2 |000\rangle). \end{split}$$
(5)

Для осуществления идеальной телепортации векторы трехкубитных состояний $|M_1^+\rangle_{xAB}$, $|M_1^-\rangle_{xAB}$, $|M_2^+\rangle_{xAB}$ и $|M_2^-\rangle_{xAB}$ должны быть взаимно ортогональны, однако легко показать, что $\langle M_1^+|M_1^-\rangle \neq 0$ и $\langle M_2^+|M_2^-\rangle \neq 0$. Поскольку векторы трехкубитного состояния попарно неортогональны, необходимо наложить условие ортогональности.

Трехкубитные векторы $|M_1^+\rangle_{xAB}$, $|M_1^-\rangle_{xAB}$, $|M_2^-\rangle_{xAB}$ и $|M_2^-\rangle_{xAB}$ взаимно ортогональны, если

$$|\lambda_0|^2 + |\lambda_3|^2 = |\lambda_2|^2.$$
 (6)

При выполнении условия (6) Алиса может осуществить измерение состояния $|\Phi\rangle_{xABC}$ с помощью трехкубитного измерительного базиса

$$B = \{ |M_1^+\rangle_{xAB}, |M_1^-\rangle_{xAB}, |M_2^+\rangle_{xAB} | M_2^-\rangle_{xAB} \}.$$

В зависимости от результатов измерения Алиса посылает Бобу два классических бита информации, после чего Боб применяет соответствующую однокубитную унитарную операцию для завершения протокола телепортации.

2.2. Геометрическая интерпретация условия идеальной телепортации

Используя условие ортогональности (6) в нормировке (3), получаем

$$|\lambda_2|^2 = \frac{1}{2}.$$
 (7)

Из условий (6) и (7) имеем

$$|\lambda_0|^2 + |\lambda_3|^2 = \frac{1}{2}.$$
 (8)

Выражение (8) задает необходимое условие идеальной телепортации одиночного кубита по протоколу Агравана–Пати с использованием состояния *W*-класса вида (2) в качестве исходного состояния.

Поскольку λ_0 и λ_3 являются комплексными параметрами, можно всегда принять $\lambda_0 = u \exp(i\theta_1)$ и $\lambda_3 = v \exp(i\theta_2)$, где u, v — действительные переменные, а θ_1, θ_2 — фазы. Тогда уравнение (8) принимает вид

$$u^2 + v^2 = \frac{1}{2}. (9)$$

Геометрически это представляет собой окружность с центром в точке (0,0) и радиусом $1/\sqrt{2}$. В центре окружности параметры λ_0 и λ_3 равны нулю, поэтому состояние $|001\rangle$ лежит в центре окружности. Интересно отметить, что для идеальной телепортации по протоколу Агравала – Пати применимы все состояния, лежащие на окружности. Без потери общности можно выбрать

$$u = \frac{1}{\sqrt{2+2n}}, \quad v = \frac{\sqrt{n}}{\sqrt{2+2n}}$$

где n — любое действительное число. Тогда трехкубитные состояния W-класса, используемые в качестве исходного состояния в протоколе Агравала–Пати, принимают вид

$$\left| W\left(\frac{e^{i\theta_1}}{\sqrt{2+2n}}, \frac{1}{\sqrt{2}}, \frac{\sqrt{n}e^{i\theta_2}}{\sqrt{2+2n}}\right) \right\rangle_{ABC} = \frac{e^{i\theta_1}}{\sqrt{2+2n}} |100\rangle + \frac{1}{\sqrt{2}}|001\rangle + \frac{\sqrt{n}e^{i\theta_2}}{\sqrt{2+2n}}|010\rangle.$$
(10)

Если выбрать параметр n так, чтобы выполнялось одно из условий

$$u^2 + v^2 < \frac{1}{2} \tag{11}$$

или

$$u^2 + v^2 > \frac{1}{2},\tag{12}$$

то трехкубитные состояния лежат внутри или снаружи окружности и поэтому неприменимы в качестве исходного состояния для идеальной телепортации.

3. ПРОТОКОЛ ПОЧТИ ИДЕАЛЬНОЙ ТЕЛЕПОРТАЦИИ ОДИНОЧНОГО КУБИТА С ЧИСТЫМ ТРЕХКУБИТНЫМ ИСХОДНЫМ СОСТОЯНИЕМ И ДВУХКУБИТНЫМ ИЗМЕРИТЕЛЬНЫМ БАЗИСОМ

В данном разделе предложен протокол, в котором для достижения идеальной телепортации одиночного кубита вместо трехкубитного проекционного измерения необходимо двухкубитное измерение состояния Белла. Кроме того, показано, что существуют отличные от предложенных в работе [27] состояния W-класса, которые можно использовать для почти идеальной телепортации одиночного кубита.

Начнем протокол телепортации с предположения, что отправитель Алиса хочет передать некоторую информацию, зашифрованную в однокубитном состоянии (1), путем телепортации этого кубита получателю Бобу. По-прежнему считается, что Алиса и Боб совместно используют исходное состояние (2). Хотя используемое в протоколе исходное состояние принадлежит к W-классу, будет показано, что этот класс отличается от W-состояний, задаваемых выражением (10).

3.1. Протокол почти идеальной телепортации одиночного кубита

Рассмотрим составную систему из четырех кубитов, которую можно выразить в виде тензорного произведения одиночного телепортируемого кубита (1) и трехкубитного исходного состояния (2). Следовательно, четырехкубитное состояние можно выразить как

$$\begin{split} |\Phi\rangle_{xABC} &= |\psi\rangle_x \otimes |W\rangle_{ABC} = \\ &= \alpha\lambda_0|0100\rangle + \alpha\lambda_3|0010\rangle + \alpha\lambda_2|0001\rangle + \\ &+ \beta\lambda_0|1100\rangle + \beta\lambda_3|1010\rangle + \beta\lambda_2|1001\rangle = \\ &= \frac{1}{2}[|N_1^+\rangle_{xAB} \otimes (\alpha|0\rangle_c + \beta|1\rangle_c) + |N_1^-\rangle_{xAB} \otimes \\ &\otimes (\alpha|0\rangle_c - \beta|1\rangle_c) + |N_2^+\rangle_{xAB} \otimes (\beta|0\rangle_c + \alpha|1\rangle_c) + \\ &+ |N_2^-\rangle_{xAB} \otimes (\beta|0\rangle_c - \alpha|1\rangle_c)], \quad (13) \end{split}$$

где трехкубитные векторы $|N_1^+\rangle_{xAB}$, $|N_1^-\rangle_{xAB}$, $|N_2^+\rangle_{xAB}$ и $|N_2^-\rangle_{xAB}$ записываются следующим образом:

$$|N_{1}^{+}\rangle_{xAB} = (\lambda_{0}|01\rangle + \lambda_{2}|10\rangle) \otimes |0\rangle + \lambda_{3}|00\rangle \otimes |1\rangle,$$

$$|N_{1}^{-}\rangle_{xAB} = (\lambda_{0}|01\rangle + \lambda_{2}|10\rangle) \otimes |0\rangle + \lambda_{3}|00\rangle \otimes |1\rangle,$$

$$|N_{2}^{+}\rangle_{xAB} = (\lambda_{0}|11\rangle + \lambda_{2}|00\rangle) \otimes |0\rangle + \lambda_{3}|10\rangle \otimes |1\rangle,$$

$$|N_{2}^{-}\rangle_{xAB} = (\lambda_{0}|11\rangle - \lambda_{2}|00\rangle) \otimes |0\rangle + \lambda_{3}|10\rangle \otimes |1\rangle.$$

(14)

Для осуществления измерения на своих кубитах Алиса должна построить проекторы F и I - F, где

$$F = \frac{I_{xAB} + I_{xA} \otimes (\sigma_z)_B}{2}.$$

Под действием проектора Fчетырехкубитное состояние $|\Phi\rangle_{xABC}$ принимает вид

 $=|\Psi^{(1)}\rangle_{xAC}\otimes|0\rangle_B,\quad(15)$

где вектор трехкубитного состояния $|\Psi^{(1)}\rangle_{xAC}$ задается как

$$\begin{split} |\Psi^{(1)}\rangle_{xAC} &= \frac{1}{2} [|P_1^+\rangle_{xA} \otimes (\alpha|0\rangle_c + \beta|1\rangle_c) + |P_1^-\rangle_{xA} \otimes \\ &\otimes (\alpha|0\rangle_c - \beta|1\rangle_c) + |P_2^+\rangle_{xA} \otimes (\beta|0\rangle_c + \alpha|1\rangle_c) + \\ &+ |P_2^-\rangle_{xA} \otimes (\beta|0\rangle_c - \alpha|1\rangle_c)]. \end{split}$$
(16)

Векторы $|P_1^+\rangle_{xA}, |P_1^-\rangle_{xA}, |P_2^+\rangle_{xA}, |P_2^-\rangle_{xA}$ определяются следующим образом:

$$|P_{1}^{+}\rangle_{xA} = \lambda_{0}|01\rangle + \lambda_{2}|10\rangle,$$

$$|P_{1}^{-}\rangle_{xA} = \lambda_{0}|01\rangle - \lambda_{2}|10\rangle,$$

$$|P_{2}^{+}\rangle_{xA} = \lambda_{0}|11\rangle + \lambda_{2}|00\rangle,$$

$$|P_{2}^{-}\rangle_{xAB} = \lambda_{0}|11\rangle - \lambda_{2}|00\rangle.$$

(17)

Вероятность оказаться в состоянии $|\Psi^{(1)}\rangle_{xAC} \otimes |0\rangle_B$ под действием измерения с проектором F равна

$$P^{(1)} = |\lambda_0|^2 + |\lambda_2|^2.$$
(18)

С другой стороны, если Алиса действует на свой кубит проектором I-F, то четырехкубитное состояние $|\Phi\rangle_{xABC}$ имеет вид

$$|\Upsilon^{(2)}\rangle_{xACB} = ((I - F) \otimes I_C)|\Phi\rangle_{xABC} =$$
$$= |\Psi^{(2)}\rangle_{xAC} \otimes |1\rangle_B, \quad (19)$$

где вектор трехкубитного состояния $|\Psi^{(2)}\rangle_{xAC}$ выражается как

$$|\Psi^{(2)}\rangle_{xAC} = \lambda_3(\alpha|0\rangle + \beta|1\rangle)_x \otimes |0\rangle_A \otimes |0\rangle_C.$$
 (20)

Вероятность перехода в состояние $|\Psi^{(2)}\rangle_{xAC}\otimes|1\rangle_B$ равна

$$P^{(2)} = |\lambda_3|^2. \tag{21}$$

Из выражения (20) очевидно, что, если Алиса осуществляет проекционное измерение с проектором I - F, то состояние нельзя телепортировать и, следовательно, протокол нарушается.

Чтобы сделать протокол телепортации почти идеальным, можно выбрать малую величину параметра λ_3 в общем состоянии и пренебречь членом второго порядка λ_3^2 . Таким образом, можно достичь почти нулевой вероятности оказаться в состоянии $|\Psi^{(2)}\rangle_{xAC} \otimes |1\rangle_B$. Другими словами, вероятность P_1 может практически достигать единицы и, следовательно, телепортация по протоколу становится почти идеальной. Теперь рассмотрим случай, когда Алиса действует проектором F. В этом сценарии двухкубитные векторы $|P_1^+\rangle_{xA}$, $|P_1^-\rangle_{xA}$, $|P_2^+\rangle_{xA}$ и $|P_2^-\rangle_{xA}$ должны быть взаимно ортогональны, однако оказывается, что по-крайней мере для одной из пар векторов это условие не выполняется. Поэтому необходимо наложить условие ортогональности. Трехкубитные векторы $|P_1^+\rangle_{xAB}$, $|P_1^-\rangle_{xAB}$, $|P_2^+\rangle_{xAB}$ и $|P_2^-\rangle_{xAB}$ являются взаимно ортогональными, если

$$|\lambda_0|^2 = |\lambda_2|^2.$$
 (22)

При выполнении условия (22) Алиса осуществляет измерение состояния Белла на двух кубитах «x» и «A» и посылает результат Бобу, используя два классических бита. На последнем шаге протокола для восстановления исходного кубита (1) Боб, в зависимости от результата измерения Алисы, действует соответствующим оператором Паули на свой кубит.

3.2. Геометрическая интерпретация условия почти идеального протокола телепортации

При помощи условия ортогональности (22) нормировка (3) сводится к выражению:

$$2|\lambda_0|^2 + |\lambda_3|^2 = 1, \tag{23}$$

где величина $|\lambda_3|$ очень мала.

Таким образом получается условие (23), которое является необходимым для почти идеальной телепортации одиночного кубита в протоколе с использованием в качестве исходного состояния W-класса (2).

Теперь условие почти идеальной телепортации (23) можно выразить в виде

$$\frac{|\lambda_0|^2}{\left(1/\sqrt{2}\right)^2} + \frac{|\lambda_3|^2}{1^2} = 1.$$
 (24)

Выбирая $\lambda_0 = u \exp(i\eta_1)$ и $\lambda_3 = v \exp(i\eta_2)$, записываем уравнение (24) следующим образом:

$$\frac{u^2}{\left(1/\sqrt{2}\right)^2} + \frac{v^2}{1^2} = 1,$$
(25)

где u, v — действительные переменные, η_1, η_2 — фазы, причем v очень мало.

Геометрически уравнение (25) задает эллипс с центром в точке (0,0), в котором лежит состояние [001). Длины большой и малой осей эллипса равны соответственно 1 и $1/\sqrt{2}$. Можно видеть, что трехкубитные состояния *W*-класса, используемые в качестве исходных для модифицированного протокола идеальной телепортации, лежат на периметре эллипса.

Если выбрать значения действительных переменных u и v так, чтобы выполнялось одно из условий

 $\frac{u^2}{\left(1/\sqrt{2}\,\right)^2} + \frac{v^2}{1^2} < 1\tag{26}$

или

$$\frac{u^2}{\left(1/\sqrt{2}\right)^2} + \frac{v^2}{1^2} > 1,\tag{27}$$

то трехкубитные состояния лежат внутри или снаружи эллипса и поэтому неприменимы в качестве исходного состояния для идеальной телепортации в модифицированном протоколе.

3.3. Новый класс общих трехкубитных W-состояний для телепортации одиночного кубита

В данном разделе приведен настоящий вид класса общих трехкубитных *W*-состояний для модифицированного протокола телепортации одиночного кубита. Без потери общности можно выбрать

$$u = \frac{\sqrt{m}}{\sqrt{2+2m}}, \quad v = \frac{\sqrt{2}}{\sqrt{2+2m}},$$

где m — любое большое действительное число. Тогда общие трехкубитные состояния W-класса в модифицированном протоколе можно представить в следующем виде:

$$\left| W_s \left(\sqrt{\frac{m}{2+2m}} e^{i\eta_1}, \sqrt{\frac{m}{2+2m}}, \sqrt{\frac{2}{2+2m}} e^{i\eta_2} \right) \right\rangle_{ABC} = \frac{1}{\sqrt{2+2m}} \times \left[\sqrt{m} (e^{i\eta_1} |100\rangle + |001\rangle) + \sqrt{2} e^{i\eta_2} |010\rangle \right]. \quad (28)$$

3.4. Сравнение предлагаемого протокола телепортации с протоколом Агравала – Пати

Теперь можно сравнить модифицированный протокол телепортации с протоколом Агравала – Пати. Оба протокола предназначены для телепортации одиночного кубита с использованием общего состояния W-класса, однако между ними имеются существенные различия по следующим пунктам. 1. Протокол телепортации Агравала – Пати явля-

1. протокол телепортации Агравала – пати является детерминированным, в то время как в данной работе предлагается вероятностный протокол с высокой вероятностью успеха.

2. Для успешного выполнения протокола Агравала – Пати необходимо трехкубитное измерение, а для предлагаемого протокола требуется двухкубитное измерение состояния Белла, в котором Алиса осуществляет проекционное измерение *F*. Как правило, двухкубитные измерения легче реализовать экспериментально, чем трехкубитные. Далее необходимо отметить важное обстоятельство, что для выполнения данного протокола телепортации требуется разделить четыре запутанных состояний Белла. В этом отношении удачно, что эта задача была решена экспериментально на основе линейных оптических элементов [28, 29].

3. Было получено, что в данном протоколе общие состояния W-класса, применимые для идеальной телепортации одиночного кубита, лежат на периметре эллипса с центром в точке (0,0) и длинами большой и малой осей соответственно 1 и $1/\sqrt{2}$, а в протоколе Агравала – Пати такие состояния лежат на окружности радиусом $1/\sqrt{2}$ с центром в точке (0,0).

4. Периметр эллипса, на котором лежат трехкубитные состояния W-класса для идеальной телепортации в данном протоколе, равен $\sqrt{3}\pi$, в то время как длина окружности, на которой лежат такие состояния в протоколе Агравала – Пати, равна $\sqrt{2}\pi$. Поэтому в данном случае можно сделать вывод, что, по сравнению с протоколом Агравала – Пати, в предлагаемом протоколе содержится больше трехкубитных состояний W-класса.

4. РЕАЛИЗАЦИЯ УСЛОВИЯ ТЕЛЕПОРТАЦИИ

В данном разделе получены условия идеальной телепортации для протокола Агравала – Пати и почти идеальной телепортации данного протокола через пересечения [30] двухкубитных редуцированных состояний. Двухкубитные редуцированные состояния получаются за счет отслеживания одного кубита из трехкубитных состояний W-класса, задаваемых выражениями (10) и (28), соответственно. Таким путем будет показано, что условие идеальной/почти идеальной телепортации для обсуждаемого выше протокола может осуществляться экспериментально.

Рассмотрим трехкубитное состояние, заданное в каноническом виде:

$$\begin{split} |\Omega\rangle &= \lambda_0 |000\rangle + \lambda_1 e^{i\varphi} |100\rangle + \\ &+ \lambda_2 |101\rangle + \lambda_3 |110\rangle + \lambda_4 |111\rangle, \end{split}$$
(29)

где коэффициенты λ_i — неотрицательные действительные числа, удовлетворяющие условию $\lambda_0^2 + \lambda_1^2 + \lambda_2^2 + \lambda_3^2 + \lambda_4^2 = 1$.

Для трехкубитного состояния $|\Omega\rangle$ имеются следующие инварианты относительно локальных унитарных преобразований [31]:

$$\lambda_0 \lambda_4 = \frac{\sqrt{\tau_{ABC}}}{2},$$

$$\lambda_0 \lambda_2 = \frac{C_{AC}}{2},$$

$$\lambda_0 \lambda_3 = \frac{C_{AB}}{2},$$

$$|\lambda_2 \lambda_3 - e^{i\varphi} \lambda_1 \lambda_4| = \frac{C_{BC}}{2}.$$
(30)

Поскольку нас интересуют состояния W-класса и нужно, чтобы все пересечения двухкубитного состояния были ненулевыми, λ_4 принимается равным нулю. Далее без потери общности можно также считать $\lambda_1 = 0$. При таком выборе параметров λ_1 и λ_4 канонический вид трехкубитного состояния сводится к состоянию W-класса, которое задается следующим образом:

$$|W_s(\lambda_0, \lambda_2, \lambda_3)\rangle = \lambda_0 |000\rangle + \lambda_2 |101\rangle + \lambda_3 |110\rangle.$$
 (31)

Для состояния *W*-класса $|W_s(\lambda_0, \lambda_2, \lambda_3)\rangle$ инварианты (30) также сводятся к уравнениям:

$$2\lambda_0\lambda_2 = C_{AC},$$

$$2\lambda_0\lambda_3 = C_{AB},$$

$$2\lambda_2\lambda_3 = C_{BC}.$$

(32)

Решив уравнения (32), можно выразить параметры λ_0 и λ_3 через λ_2 следующим образом:

$$\lambda_0 = \frac{C_{AB}}{C_{BC}} \lambda_2, \quad \lambda_3 = \frac{C_{AB}}{C_{AC}} \lambda_2. \tag{33}$$

4.1. Протокол телепортации Агравала – Пати

В работе [32] изучено необходимое и достаточное условие возможности применения детерминированного преобразования ЛОКК чистых трехкубитных состояний. Операция ЛОКК $\sigma_x \otimes I \otimes I$ преобразует состояние $|W_s(\lambda_0, \lambda_2, \lambda_3)\rangle$ вида (31) к состоянию $|W(\lambda_0, \lambda_2, \lambda_3)\rangle_{ABC}$, задаваемому выражением (2). Это означает, что

$$|W(\lambda_0, \lambda_2, \lambda_3)\rangle_{ABC} =$$

= $(\sigma_x \otimes I \otimes I)|W_s(\lambda_0, \lambda_2, \lambda_3)\rangle_{ABC} =$
= $\lambda_0|100\rangle + \lambda_2|001\rangle + \lambda_3|010\rangle.$ (34)

Для протокола Агравала – Пати $\lambda_2 = 1/\sqrt{2}$. Следовательно, параметры λ_0 и λ_3 , определяемые по формулам (33), можно переписать в виде

$$\lambda_0 = \frac{C_{AB}}{\sqrt{2}C_{BC}}, \quad \lambda_3 = \frac{C_{AB}}{\sqrt{2}C_{AC}}.$$
 (35)

В данном случае условие идеальной телепортации (8) можно выразить через пересечения C_{AB} , C_{BC} , C_{AC} следующим образом:

$$\frac{1}{C_{AB}^2} = \frac{1}{C_{BC}^2} + \frac{1}{C_{AC}^2}.$$
(36)

Соотношение (36) можно записать как

$$C_{AB}^2 = \frac{1}{2} H(C_{BC}^2, C_{AC}^2), \qquad (37)$$

где

$$H(C_{BC}^2, C_{AC}^2) = \frac{1}{C_{BC}^2} + \frac{1}{C_{AC}^2}$$

обозначает среднее гармоническое величин C^2_{BC} и C^2_{AC} .

Соотношение между средним гармоническим и средним геометрическим определяется неравенством

$$H(C_{BC}^2, C_{AC}^2) \le G(C_{BC}^2, C_{AC}^2), \tag{38}$$

где $G(C_{BC}^2, C_{AC}^2) = C_{BC} C_{AC}$ обозначает среднее геометрическое.

Из формул (37) и (38) получаем

$$C_{AB}^2 \le \frac{1}{2} G(C_{BC}^2, C_{AC}^2) \Rightarrow C_{AB}^2 \le \frac{1}{2} C_{BC} C_{AC}.$$
 (39)

Условие равенства достигается при $C_{BC} = C_{AC}$, поэтому неравенство (39) сводится к следующему равенству:

$$C_{AB}^2 = \frac{1}{2}C_{AC}^2 = \frac{1}{2}C_{BC}^2.$$
 (40)

В частном случае (40) параметры $\lambda_0, \lambda_2, \lambda_3$ равны

$$\lambda_0 = \frac{1}{2}, \quad \lambda_2 = \frac{1}{\sqrt{2}}, \quad \lambda_3 = \frac{1}{2}.$$
 (41)

В результате получаются следующие общие трехкубитные состояния *W*-класса, применимые для протокола телепортации Агравала – Пати:

$$\left| W\left(\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}\right) \right\rangle_{ABC} = \frac{1}{2} |100\rangle + \frac{1}{\sqrt{2}} |001\rangle + \frac{1}{2} |010\rangle.$$
 (42)

4.2. Предлагаемый протокол телепортации

Условие почти идеальной телепортации для предлагаемого в работе протокола (22) можно выразить через пересечения редуцированных двухкубитных состояний следующим образом:

$$C_{AB} = C_{BC}.\tag{43}$$

Трехкубитное общее состояние W-класса, применимое для идеальной телепортации одиночного кубита по предлагаемому протоколу, имеет вид $|W_s(\lambda_0, \lambda_2, \lambda_3)\rangle$, где параметры состояния выражаются через пересечения C_{AB} и C_{AC} следующим образом:

$$\lambda_0^2 = \lambda_2^2 = \frac{C_{AC}^2}{2C_{AC}^2 + C_{AB}^2},$$

$$\lambda_3^2 = \frac{C_{AB}^2}{2C_{AC}^2 + C_{AB}^2}.$$
(44)

Необходимо отметить, что почти идеальная телепортация достигается при малой величине параметра λ_3 , поэтому пересечение C_{AB} должно быть очень мало.

4.3. Обсуждение

В работе [33] было показано, что существуют разлагаемые через матрицы Паули операторы O_1 , O_2 и O_3 , которые можно использовать для классификации трехкубитных чистых состояний. Экспериментальная классификация этих состояний была получена в работе [34]. Операторы O_1 , O_2 и O_3 можно определить следующим образом [33]:

$$O_1 = 2(\sigma_x \otimes \sigma_x \otimes \sigma_z),$$

$$O_2 = 2(\sigma_x \otimes \sigma_z \otimes \sigma_x),$$

$$O_2 = 2(\sigma_z \otimes \sigma_x \otimes \sigma_x).$$

(45)

Квадраты средних значений этих операторов по состоянию $|W_s(\lambda_0,\lambda_2,\lambda_3)\rangle$ равны

$$C_{AB}^{2} = \frac{\langle O_{1} \rangle_{W_{s}}^{2}}{4},$$

$$C_{AC}^{2} = \frac{\langle O_{2} \rangle_{W_{s}}^{2}}{4},$$

$$C_{BC}^{2} = \frac{\langle O_{3} \rangle_{W_{s}}^{2}}{4}.$$
(46)

Следовательно, пересечения C_{AB} , C_{BC} и C_{CA} редуцированных двухкубитных состояний, полученных из трехкубитных состояний W_s -класса, можно получить экспериментально. Таким образом, условие

идеальной телепортации (36) для протокола Агравала – Пати и условие (43) для предлагаемого протокола реализуются экспериментально. Для любого заданного общего состояния W-класса можно легко проверить экспериментально его применимость для идеальной/почти идеальной телепортации одиночного кубита по протоколу Агравала – Пати или по протоколу, предложенному в данной работе.

5. ЧИСЛЕННАЯ ОЦЕНКА ТРЕХКУБИТНОЙ ЗАПУТАННОСТИ С ПОМОЩЬЮ ТРИ-*π* МЕРЫ

В данном разделе проведена численная оценка количества запутанности в трехкубитных состояниях W-класса, применимых в предложенном протоколе телепортации, на основе три- π меры. Мера, используемая для численной оценки трехкубитной запутанности через отрицательность, называется три- π мерой [35]. Ее можно определить следующим образом:

$$\pi_{ABC} = \frac{\pi_A + \pi_B + \pi_C}{3},$$
 (47)

где π_A , π_B , π_C обозначают остаточную запутанность,

$$\pi_{A} = N_{A(BC)}^{2} - N_{AB}^{2} - N_{AC}^{2},$$

$$\pi_{B} = N_{B(CA)}^{2} - N_{BC}^{2} - N_{BA}^{2},$$

$$\pi_{C} = N_{C(AB)}^{2} - N_{CA}^{2} - N_{CB}^{2}.$$
(48)

Для любого чистого трехкубитного состояния было показано [35], что

$$N_{A(BC)} = C_{A(BC)}, N_{B(CA)} = C_{B(CA)},$$

$$N_{C(AB)} = C_{C(AB)}.$$
(49)

Следовательно, выражения для остаточной запутанности (48) сводятся к формулам

$$\pi_A = C_{A(BC)}^2 - N_{AB}^2 - N_{AC}^2,$$

$$\pi_B = C_{B(CA)}^2 - N_{BC}^2 - N_{BA}^2,$$

$$\pi_C = C_{C(AB)}^2 - N_{CA}^2 - N_{CB}^2.$$
(50)

Теперь необходимо показать, что три- π мера, характеризующая количество запутанности трехкубитных состояний W-класса, подходит для предлагаемого протокола телепортации, т. е. может быть определена экспериментально. Для этого будет предложен экспериментальный метод численного определения величин $C^2_{A(BC)}$, $C^2_{B(CA)}$, $C^2_{C(AB)}$, N^2_{AB} , N^2_{AC} и N^2_{CA} .

5.1. Определение величин $C^2_{A(BC)}, \, C^2_{B(CA)}$ и $C^2_{C(AB)}$

Запутанность τ_{ABC} для трех кубитов A, B, C можно определить соотношением

$$C_{C(BA)}^2 = \tau_{ABC} + C_{CA}^2 + C_{CB}^2, \tag{51}$$

где $C_{C(AB)}$ задает пересечение между кубитом C и парой кубитов B, A, взятых вместе, а C_{AB} , C_{CA} , C_{CB} обозначают пересечения редуцированных двухкубитных состояний ρ_{AB} , ρ_{BC} , ρ_{AC} . Для состояний W-класса $\tau_{ABC} = 0$ и, таким образом, соотношение (51) сводится к выражению

$$C_{C(BA)}^2 = C_{AC}^2 + C_{BC}^2.$$
 (52)

Аналогичные соотношения можно записать для $C^2_{B(CA)}, C^2_{A(BC)}$:

$$C_{B(CA)}^2 = C_{BC}^2 + C_{BA}^2, (53)$$

$$C_{A(BC)}^2 = C_{AB}^2 + C_{AC}^2. (54)$$

Для трехкубитных состояний W-класса $|W_s(\lambda_0, \lambda_2, \lambda_3)\rangle$ соотношения (52), (53) и (54) можно выразить через средние значения операторов O_1 , O_2 , O_3 в следующем виде:

$$C_{A(BC)}^{2} = \frac{1}{4} (\langle O_{1} \rangle_{W_{s}}^{2} + \langle O_{2} \rangle_{W_{s}}^{2}),$$

$$C_{B(CA)}^{2} = \frac{1}{4} (\langle O_{1} \rangle_{W_{s}}^{2} + \langle O_{3} \rangle_{W_{s}}^{2}),$$

$$C_{C(AB)}^{2} = \frac{1}{4} (\langle O_{2} \rangle_{W_{s}}^{2} + \langle O_{3} \rangle_{W_{s}}^{2}).$$
(55)

Таким образом, пересечения $C^2_{A(BC)}$, $C^2_{B(CA)}$, $C^2_{C(AB)}$ можно получить экспериментально.

5.2. Определение отрицательности для двухкубитных редуцированных состояний

Для определения отрицательности двухкубитных редуцированных состояний снова рассмотрим трехкубитное состояние $|W_s\rangle_{ABC}$, определяемое выражением (31). Они описываются матрицами плотности

$$ho_{AB} = \operatorname{Tr}_{C}(|W_{s}\rangle_{ABC}\langle W_{s}|,$$

 $ho_{BC} = \operatorname{Tr}_{A}(|W_{s}\rangle_{ABC}\langle W_{s}|, \quad \rho_{CA} = \operatorname{Tr}_{B}(|W_{s}\rangle_{ABC}\langle W_{s}|$
и, следовательно, равны

$$N_{AB} = \sqrt{\lambda_{2}^{4} + 4\lambda_{0}^{2}\lambda_{3}^{2} - \lambda_{2}^{2}},$$

$$N_{BC} = \sqrt{\lambda_{0}^{4} + 4\lambda_{2}^{2}\lambda_{3}^{2} - \lambda_{0}^{2}},$$

$$N_{CA} = \sqrt{\lambda_{3}^{4} + 4\lambda_{2}^{2}\lambda_{0}^{2} - \lambda_{3}^{2}}.$$
(56)

Класс трехкубитных состояний, применимых для телепортации одиночного кубита по предлагаемому протоколу, задается выражением (31), параметры состояния в котором определяются по формулам (44). Подставляя (44) в выражение (56), можно получить отрицательности двухкубитных состояний в следующем виде:

$$N_{AB} = N_{BC} = \frac{C_{AC} \left(\sqrt{C_{AC}^2 + 4C_{AB}^2} - C_{AC} \right)}{2C_{AC}^2 + C_{AB}^2},$$

$$N_{CA} = \frac{\sqrt{C_{AB}^4 + 4C_{AC}^4} - C_{AB}^2}{2C_{AC}^2 + C_{AB}^2}.$$
(57)

Из уравнения (46) следует, что отрицательности N_{AB} , N_{BC} , N_{CA} из формул (57) также можно получить экспериментально.

5.3. Определение три- π меры запутанности

Теперь при помощи три- π меры запутанности можно определить количество запутанности в состояниях W_s -классов, применимых для телепортации одиночного кубита по модифицированному протоколу. Три- π мера для численной характеризации таких состояний равна

$$\pi_{ABC} = 4(C_{AB}^2 - N_{AB}^2) + 2(C_{AC}^2 - N_{AC}^2), \quad (58)$$

где N_{AB} и N_{AC} определяются из выражения (57).

Поскольку меры двухкубитной запутанности N_{AB} и N_{AC} можно выразить через пересечения C_{AB} и C_{AC} , а из выражений (46) следует, что эти меры определяются экспериментально, три- π мера запутанности также может быть получена экспериментально.

6. РЕАЛИЗАЦИИ УСЛОВИЯ ИДЕАЛЬНОЙ ТЕЛЕПОРТАЦИИ В ЯМР-ЭКСПЕРИМЕНТЕ

Общий вид чистого трехкубитного состояния задается следующим образом:

$$\begin{split} |\Theta\rangle_{ABC} &= \cos\alpha |000\rangle + \sin\alpha\cos\beta\sin\gamma |001\rangle + \\ &+ \sin\alpha\sin\beta |010\rangle + \sin\alpha\cos\beta\cos\gamma\cos\delta |100\rangle + \\ &+ e^{i\phi}\sin\alpha\cos\beta\cos\gamma\sin\delta |111\rangle, \end{split}$$
(59)

где четыре параметра $\alpha \in [0, \pi/2], \beta \in [0, \pi/2], \gamma \in [0, \pi/2], \delta \in [0, \pi/2]$, а значение относительной фазы лежит в пределах $0 \le \delta \le 2\pi$.

Данное трехкубитное состояние можно построить в ЯМР-эксперименте с использованием однокубитного вентиля вращения, нескольких контролирующих двухкубитных вентилей вращения и вентилей СNOT, трехкубитного вентиля Тоффоли и контроль-контролирующего вентиля фазы [36].

При выборе значений $\alpha = \pi/2$ и $\delta = \phi = 0$ канонический вид общего трехкубитного состояния (59) сводится к состоянию *W*-класса вида

$$|W\rangle_{ABC} = \cos\beta\sin\gamma|001\rangle + \sin\beta|010\rangle + + \cos\beta\cos\gamma|100\rangle.$$
(60)

6.1. Приготовление общего запутанного состояния для протокола Агравала–Пати в ЯМР-эксперименте

Приготовление общего запутанного состояния является необходимой задачей для осуществления любого протокола телепортации. В протоколе Агравала – Пати использовалось трехкубитное состояние W-класса, которое можно приготовить в ЯМР-эксперименте, выбирая соответствующие значения параметров β и γ . Трехкубитное состояние W-класса вида (60) можно использовать в качестве исходного состояния в протоколе Агравала – Пати при условии

$$\cos\beta\sin\gamma = \frac{1}{\sqrt{2}}.\tag{61}$$

Используя условие (61), для общего исходного состояния протокола телепортации Агравала – Пати в ЯМР-эксперименте можно построить следующее состояние *W*-класса:

$$|W^{AP}\rangle_{ABC} = \frac{\sqrt{2\cos^2\beta - 1}}{\sqrt{2}}|100\rangle + \frac{1}{\sqrt{2}}|001\rangle + \\ +\sin\beta|010\rangle, \quad \beta \in \left(0, \frac{\pi}{4}\right]. \quad (62)$$

6.2. Приготовление общего запутанного состояния для предлагаемого протокола в ЯМР-эксперименте

В предлагаемом протоколе используются трехкубитные *W*-состояний другого класса, которые также можно приготовить в ЯМР-эксперименте.

W-класс трехкубитных состояний вида (28) можно использовать в качестве исходного состояния в предлагаемом протоколе при условии

$$\operatorname{tg} \gamma = 1, \quad \text{r. e.} \quad \gamma = \frac{\pi}{4}. \tag{63}$$

Следовательно, эти состояния можно приготовить в ЯМР-эксперименте, выбрав значение параметра $\gamma = \pi/4$. Таким образом, данный *W*-класс можно выразить в виде

$$|W^{M}\rangle_{ABC} = \frac{\cos\beta}{\sqrt{2}}|100\rangle + \frac{\cos\beta}{\sqrt{2}}|001\rangle + \\ +\sin\beta|010\rangle, \quad \beta \in \left(0, \frac{\pi}{2}\right). \quad (64)$$

Для почти идеальной телепортации величину β можно выбрать вблизи нуля. Сравнивая диапазон параметра β в уравнениях (62) и (64), можно снова сделать вывод, что набор трехкубитных состояний *W*-класса, используемых в данном протоколе телепортации, больше, чем в протоколе Агравала – Пати.

7. ВЫВОДЫ

В заключение отметим, что обсуждена схема протокола для почти идеальной телепортации одиночного кубита, в которой в качестве общего квантового состояния используются трехкубитные состояния W-класса, отличающегося от предложенного Агравалом и Пати. Показано, что обнаруженный класс содержит больше состояний, лежащих на периметре эллипса с центром в точке (0,0). В отличие от протокола Агравала-Пати, в котором используется трехкубитный измерительный базис, в предложенном протоколе необходим двухкубитный базис. Условия данной схемы телепортации и протокола Агравала-Пати выражены через пересечения редуцированного двухкубитного состояния, полученного отслеживанием одного кубита из исходного трехкубитного состояния W-класса. Показано, что, поскольку величины пересечений редуцированного двухкубитного состояния можно получить экспериментально, условия телепортации также можно проверить в эксперименте. Эта проверка позволяет определить, можно ли использовать данное трехкубитное состояние для обоих протоколов. Кроме того, показано, что для численной оценки количества запутанности общих трехкубитных состояний W-класса в предложенном протоколе можно использовать три- π меру запутанности, а также обсуждается ее экспериментальная реализация. Наконец, обсуждается способ приготовления общих трехкубитных состояний W-класса для обоих протоколов в ЯМР-эксперименте.

ЛИТЕРАТУРА

- R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).
- S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, Nat. Photon. 9, 641 (2015).
- M. Baur, A. Fedorov, L. Steffen, S. Filipp, M. P. da Silva, and A. Wallraff, Phys. Rev. Lett. 108, 040502 (2012).
- 4. N. Gisin and R. Thew, Nat. Photon. 1, 165 (2007).
- C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).
- W. L. Li, C. F. Li, and G. C. Guo, Phys. Rev. A 61, 034301 (2000).
- P. Agrawal and A. K. Pati, Phys. Lett. A 305, 12 (2002).
- S. Ishizaka and T. Hiroshima, Phys. Rev. Lett. 101, 240501 (2008); D. P. Garcia, Phys. Rev. A 87, 040303(R) (2013).
- F.-G. Deng, C.-Y. Li, Y.-S. Li, H.-Y. Zhou, and Y. Wang, Phys. Rev. A 72, 022338 (2005).
- M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, Amer. J. Phys. 58, 1131 (1990).
- X.-H. Li and S. Ghose, Phys. Rev. A 90, 052305 (2014).
- L. Neves, M. A. Solis-Prosser, A. Delgado, and O. Jimenez, Phys. Rev. A 85, 062322 (2012).
- D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Nature **390**, 575 (1997).
- 14. M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, Nature 429, 737 (2004).
- F. Verstraete and H. Verschelde, Phys. Rev. Lett. 90 097901 (2003); M. L. Hu, Eur. Phys. J. D 64, 531 (2011).
- 16. H. Jeong, S. Bae, and S. Choi, Quant. Inf. Proc. 15, 913 (2016).
- 17. B. S. Shi, Y. K. Jiang, and G. C. Guo, Phys. Lett. A 268, 161 (2000).

- 18. D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett. 82, 1345 (1999).
- 19. S. Oh, Y.-P. Shim, J. Fei, M. Friesen, and X. Hu, Phys. Rev. A 87, 022332 (2013).
- 20. S. Muralidharan and P. K. Panigrahi, Phys. Rev. A 77, 032321 (2008).
- 21. I. D. K. Brown, S. Stepney, A. Sudbery, and S. L. Braunstein, J. Phys. A 38, 1119 (2005).
- 22. W. Dur, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314 (2000).
- 23. A. Datta, A. Shaji, and C. M. Caves, Phys. Rev. Lett. 100, 050502 (2008).
- **24.** J. Joo, J. Lee, J. Jang, and Y.-J. Park, arXiv: quant-ph/0204003.
- 25. V. N. Gorbachev, A. A. Rodichkina, and A. I. Trubilko, Phys. Lett. A **310**, 339 (2003).
- J. Joo, Y.-J. Park, S. Oh, and J. Kim, New J. Phys. 5, 136 (2003).
- 27. P. Agrawal and A. Pati, Phys. Rev. A 74, 062320 (2006).
- 28. M. Pavicic, Phys. Rev. Lett. 107, 080403 (2011).
- J. A. W. van Houwelingen, N. Brunner, A. Beveratos, H. Zbinden, and N. Gisin, Phys. Rev. Lett. 96, 130502 (2006); J. A. W. van Houwelingen, A. Beveratos, N. Brunner, N. Gisin, and H. Zbinden, Phys. Rev. A 74, 022303 (2006).
- 30. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
- 31. G. Torun and A. Yildiz, Phys. Rev. A 89, 032320 (2014).
- 32. H. Tajima, Ann. Phys. 329, 1 (2013).
- 33. C. Datta, S. Adhikari, A. Das, and P. Agrawal, Eur. Phys. J. D 72, 157 (2018).
- 34. A. Singh, H. Singh, K. Dorai, and Arvind, Phys. Rev. A 98, 032301 (2018).
- 35. Y. C. Ou and H. Fan, Phys. Rev. A 75, 062308 (2007).
- 36. S. Dogra, K. Dorai, and Arvind, Phys. Rev. A 91, 022312 (2015).