А. К. Журавлев*

Институт физики металлов им. М. Н. Михеева Уральского отделения Российской академии наук 620108, Екатеринбург, Россия

> Поступила в редакцию 17 марта 2020 г., после переработки 13 апреля 2020 г. Принята к публикации 14 апреля 2020 г.

Систематическая непертурбативная схема вычисления энергии основного состояния адаптирована для исследования систем сильнокоррелированных электронов на решетке. Она включает в себя метод вычисления кумулянтов гамильтониана и использующий *t*-разложение способ построения по ним последовательных приближений к энергии основного состояния. Схема применена к моделям бесспиновых фермионов и Хаббарда, и предложен способ преодоления проблем, обнаруженных при предыдущих попытках использовать ее для исследования модели Хаббарда.

DOI: 10.31857/S0044451020090114

1. ВВЕДЕНИЕ

Проблема изучения свойств квантовых систем с сильным взаимодействием между электронами является одной из самых сложных в теоретической физике конденсированного состояния. Как правило, аналитических методов исследования здесь оказывается недостаточно, и приходится прибегать к численным. Но и при этом возникают серьезные сложности. Прямая точная диагонализация наталкивается на проблему экспоненциального роста размерности гильбертова пространства с ростом размера системы и поэтому ограничена лишь малыми кластерами даже при использовании алгоритма Ланцоша [1]. Квантовый метод Монте-Карло [2] может быть применен для систем большего размера, однако для фермионов при низких температурах его точность невелика из-за так называемой проблемы знака [3]. Изощренная методика диагонализации с отбрасыванием высокоэнергетических состояний — ренормализационная группа с матрицей плотности (DMRG) [4] — дает прекрасные результаты для энергии основного состояния одномерных фермиевских систем, но сталкивается с трудностями при применении к двух- и трехмерным [5].

На этом фоне сохраняется определенный интерес к построению регулярных разложений [6], притягательной особенностью которых является относительная простота вычисления их членов. К сожалению, разложение по степеням константы связи обычно дает расходящийся ряд [7]. Но существуют и другие регулярные методы: хорошо известно, например, высокотемпературное разложение в статистической физике [8]. Менее известно так называемое *t*-разложение [9], которое мы сейчас кратко изложим. Пусть даны гамильтониан \hat{H} и нормированное на единицу затравочное состояние $|\phi_0\rangle$. Введем вспомогательную функцию

$$E(t) = \frac{\langle \phi_0 | \hat{H} e^{-Ht} | \phi_0 \rangle}{\langle \phi_0 | e^{-\hat{H}t} | \phi_0 \rangle} .$$
(1)

Тогда, если состояние $|\phi_0\rangle$ имеет ненулевое перекрытие с основным состоянием $|\psi_0\rangle$, то для энергии основного состояния E_0 справедливо

$$E_0 = \lim_{t \to \infty} E(t) \ . \tag{2}$$

Определим моменты

$$\mu_m = \langle \phi_0 | \hat{H}^m | \phi_0 \rangle \tag{3}$$

(m = 0, 1, 2, ...) и кумулянты [10]

$$I_{m+1} = \mu_{m+1} - \sum_{p=0}^{m-1} \begin{pmatrix} m \\ p \end{pmatrix} I_{p+1}\mu_{m-p} \qquad (4)$$

^{*} E-mail: zhuravlev@imp.uran.ru

(во избежание недоразумений отметим, что в работах [6,11,12] величины I_m были названы связанными моментами (connected moments)). Тогда функцию (1) можно записать [9] в виде степенного ряда по параметру t:

$$E(t) = \sum_{m=0}^{\infty} \frac{I_{m+1}}{m!} (-t)^m .$$
 (5)

Для нахождения энергии основного состояния многоэлектронной системы нужно, во-первых, вычислить несколько первых кумулянтов I_m и, во-вторых, оценить по ним значение предела (2). В данной работе представлен вариант достижения обеих указанных целей для моделей бесспиновых фермионов и Хаббарда как типичных примеров систем сильнокоррелированных электронов на решетке.

2. ВЫЧИСЛЕНИЕ КУМУЛЯНТОВ

Привлекательной особенностью применения данной методики к изучению систем электронов является возможность относительно дешевого вычисления кумулянтов (без экспоненциального роста требований к компьютерным ресурсам с ростом размера системы) для затравочных векторов специального вида. Если затравочный вектор $|\phi_0\rangle$ имеет вид

$$|\phi_0\rangle = \prod_i c_i^{\dagger} |\texttt{vac}\rangle \tag{6}$$

 $(c_i^{\dagger}$ — оператор рождения электронов, $|vac\rangle$ — состояние без электронов), то многооператорные средние, входящие в выражение (3), можно вычислить, используя известную технику спариваний, подробное описание которой можно увидеть, например, в примечании переводчика к гл. 2 книги [13].

Кроме того, кумулянты в данном случае можно вычислять не только по формуле (4), но и по более удобной:

$$I_n = \langle \phi_0 | \hat{H}^n | \phi_0 \rangle_c , \qquad (7)$$

где индекс «c» означает, что при спаривании остаются только связанные слагаемые, т. е. те, в которых нет групп операторов \hat{H} , не соединенных между собой спаривательными линиями [14].

3. ВЫЧИСЛЕНИЕ ПРЕДЕЛА $E(t \to \infty)$

В реальной ситуации о функции E(t) известно следующее: первые несколько членов ее разложения в ряд по t; то, что она является монотонно убывающей, так как

$$\frac{dE}{dt} = -\langle \phi_0 | \hat{H}^2 | \phi_0 \rangle + \langle \phi_0 | \hat{H} | \phi_0 \rangle^2 < 0, \qquad (8)$$

и то, что $dE(t)/dt \to 0$ при $t \to \infty$.

В работах [9,11,12] предложены несколько способов вычисления предела (2) с использованием данной информации. Очевидная идея применить диагональную аппроксимацию Паде для E(t), т.е. заменить эту функцию отношением полиномов одинаковых степеней, оказывается малоудовлетворительной: здесь функция хорошо приближается в некоторой области с началом в t = 0, размер которой растет с ростом порядка аппроксиманта, но за пределами этой области (где и находится нужная там точка $t = \infty$) точность приближения низкая. Гораздо более точные результаты получаются, если делать аппроксимацию Пале не для самой функции E(t), а для ее производной $E'(t) \equiv dE(t)/dt$ [9], поскольку для этой функции мы знаем ее значение на бесконечности, $E'(\infty) = 0$. При этом искомую энергию основного состояния Е₀ можно получить из выражения

$$\int_{0}^{\infty} E'(t) dt = E(\infty) - E(0) = E_0 - I_1 .$$
 (9)

Остается лишь найти удовлетворительный способ интерполяции функции E'(t) между ее известными значениями $E'(0) = -I_2$ и $E'(\infty) = 0$. Взяв E'(t)в виде паде-аппроксимации [L/M], т.е. отношения полиномов степеней L и M, получаем окончательную формулу метода D-Паде (термин взят из работы [12]):

$$E_0^{DP[L/M]} = I_1 + \int_0^\infty \frac{P_L(t)}{Q_M(t)} dt.$$
 (10)

Для того чтобы интеграл в (10) не был бесконечным, мы должны использовать для E'(t) только аппроксиманты, в которых $M \ge L+2$. Таким образом, последовательность приближений будет начинаться членом $E_0^{DP[0/2]}$, для которого можно вывести явную формулу:

$$E_0^{DP[0/2]} = I_1 - \frac{2I_2^2}{\sqrt{3I_3^2 - 2I_2I_4}} \times \left(\frac{\pi}{2} - \operatorname{arctg} \frac{I_3}{\sqrt{3I_3^2 - 2I_2I_4}}\right). \quad (11)$$

Поскольку функция E'(t) всегда отрицательна, следует контролировать выполнение этого условия при построении для нее паде-аппроксиманта. Если он имеет полюс, то интеграл (10) можно вычислить в смысле главного значения, но к достоверности полученного результата следует относиться осторожно; если же он меняет знак, обращаясь в нуль при некотором t_0 , то имеет смысл брать интеграл (10) в пределах $[0;t_0]$.

Несколько позже [11,15] было предложено искать E(t) в виде суммы затухающих экспонент:

$$E(t) = E_0 + \sum_j A_j \exp(-b_j t)$$
, (12)

что приводит к следующей последовательности приближений для энергии основного состояния, называемой разложением по связным моментам (connectedmoments expansion, CMX) [15]:

$$E_0^{CMX(n)} = I_1 - \begin{pmatrix} I_2 & \dots & I_n \end{pmatrix} \times \\ \times \begin{pmatrix} I_3 & \dots & I_{n+1} \\ \vdots & \dots & \vdots \\ I_{n+1} & \dots & I_{2n-1} \end{pmatrix}^{-1} \begin{pmatrix} I_2 \\ \vdots \\ I_n \end{pmatrix} .$$
(13)

Данная формула применима только при выполнении условия $\operatorname{Re}(b_j)>0$ (изящный способ определения коэффициентов b_j изложен в работе [16]). Метод СМХ был с успехом протестирован на задаче вычисления энергии основного состояния молекулы водорода [11]. Однако при попытках применить его к решеточным многоэлектронным моделям возникли проблемы: при некоторых значениях параметров моделей выражение (13) становилось сингулярным [17–19].

Для лучшего понимания условий применимости CMX-метода разложим затравочное состояние $|\phi_0\rangle$ по собственным состояниям гамильтониана,

$$|\phi_0\rangle = \sum_{n=0}^{\infty} a_n |\psi_n\rangle, \qquad (14)$$

с $\hat{H}|\psi_n\rangle = E_n|\psi_n\rangle$. Тогда функцию E(t) можно переписать в виде

$$E(t) = \frac{\int_{E_0}^{E_{max}} Ee^{-Et}\rho(E) dE}{\int_{E_0}^{E_{max}} e^{-Et}\rho(E) dE} , \qquad (15)$$

где

$$\rho(E) = \sum_{n} |a_n|^2 \delta(E - E_n).$$

Дифференцируя функцию (15), легко убедиться, что асимптотика функции E'(t) при $t \to \infty$ зависит

от характера спектра собственных значений гамильтониана $\hat{H}.$ Рассмотрев два предельных случая, получаем, что

1) $E'(t) \propto -1/t^2$ для непрерывного спектра с постоянной плотностью состояний $\rho(E)$;

2) $E'(t) \propto -e^{-\Delta t}$ для дискретного спектра, в котором Δ — щель между основным и первым возбужденным состояниями.

Поскольку в СМХ-методе функции E(t) и E'(t)имеют вид суммы затухающих экспонент, естественно ожидать, что этот метод можно успешно применять во втором случае. Поэтому и не было проблем для молекулы водорода [11], поскольку ее спектр дискретен. Аналогичная ситуация должна иметь место для решеточных моделей в диэлектрической фазе с большой щелью Δ .

4. РАСЧЕТЫ ДЛЯ КОНКРЕТНЫХ МОДЕЛЕЙ

Для того чтобы прояснить сильные и слабые стороны описанной методики, применим ее к двум многоэлектронным моделям, для которых известны точные решения.

4.1. Модель бесспиновых фермионов

Одномерная модель бесспиновых фермионов,

$$\hat{H} = \hat{W} + \hat{V} ,
\hat{W} = -w \sum_{i} c_{i}^{\dagger} c_{i+1} + c_{i+1}^{\dagger} c_{i},
\hat{V} = v \sum_{i} n_{i} n_{i+1}$$
(16)

(i -номер узла в цепочке), при половинном заполнении эквивалентна точно решаемой XXZ-модели со спином 1/2 [20]. При v = 2w здесь имеет место переход металл-диэлектрик с образованием щели Δ между основным и первым возбужденным состояниями, растущей с ростом v.

Возьмем в качестве затравочного вектор, в котором фермионы и дырки чередуются:

$$|\phi_0\rangle = |\bullet\circ\bullet\circ\bullet\circ\ldots\bullet\circ\rangle.$$

Покажем, как с помощью техники спариваний можно вычислить кумулянт I_2 . Поскольку $\hat{V}|\phi_0\rangle = 0$, входящие в $\langle \phi_0 | \hat{H}^2 | \phi_0 \rangle$ слагаемые, начинающиеся или оканчивающиеся оператором \hat{V} , будут автоматически равны нулю, следовательно,

$$I_2 = \langle \phi_0 | \hat{W} \hat{W} | \phi_0 \rangle_c.$$

Введя обозначение $\langle \ldots \rangle_0 \equiv \langle \phi_0 | \ldots | \phi_0 \rangle$, получаем

$$I_{2} = w^{2} \sum_{ij=1}^{N} \langle c_{i}^{\dagger} c_{i+1} c_{j}^{\dagger} c_{j+1} \rangle_{0} + \langle c_{i+1}^{\dagger} c_{i} c_{j}^{\dagger} c_{j+1} \rangle_{0} + \langle c_{i}^{\dagger} c_{i+1} c_{j}^{\dagger} c_{j+1} c_{j} \rangle_{0} =$$

$$= w^{2} \sum_{i=1}^{N} \langle c_{i}^{\dagger} c_{i} \rangle_{0} \langle c_{i+1} c_{i-1}^{\dagger} \rangle_{0} + \langle c_{i+1}^{\dagger} c_{i+1} \rangle_{0} \langle c_{i} c_{i}^{\dagger} \rangle_{0} + \langle c_{i}^{\dagger} c_{i} \rangle_{0} \langle c_{i+1} c_{i+1}^{\dagger} \rangle_{0} + \langle c_{i+1}^{\dagger} c_{i+1} \rangle_{0} \langle c_{i} c_{i+2}^{\dagger} \rangle_{0} =$$

$$= w^{2} (0 + N/2 + N/2 + 0) = w^{2} N, \quad (17)$$

где N — число узлов в цепочке. Аналогичным образом (часть громоздких аналитических выкладок

выполнена с помощью систем компьютерной алгебры) получены несколько первых кумулянтов:

$$I_{1} = 0, \quad I_{2} = w^{2}N, \quad I_{3} = w^{2}vN,$$

$$I_{4} = (-6w^{4} + w^{2}v^{2})N,$$

$$I_{5} = (-28w^{4}v + w^{2}v^{3})N,$$

$$I_{6} = (160w^{6} - 86w^{4}v^{2} + w^{2}v^{4})N,$$

$$I_{7} = (1704w^{6}v - 220w^{4}v^{3} + w^{2}v^{5})N,$$

$$I_{8} = (-9520w^{8} + 10736w^{6}v^{2} - 510w^{4}v^{4} + w^{2}v^{6})N,$$

$$I_{9} = (-181184w^{8}v + 52464w^{6}v^{3} - 1116w^{4}v^{5} + w^{2}v^{7})N.$$
(18)

По этим данным можно явно выписать несколько первых членов CMX-последовательности приближений:

$$\begin{split} E_0^{CMX(2)} &= -\frac{w^2}{v} N , \\ E_0^{CMX(3)} &= -\frac{4w^2 v}{9w^2 + 4v^2} N , \\ E_0^{CMX(4)} &= -\frac{(961w^4 + 598w^2v^2 + 5v^4)w^2}{(2074w^4 + 603w^2v^2 + 5v^4)v} N , \\ E_0^{CMX(5)} &= -\frac{(3513324w^6 + 1493413w^4v^2 + 31982w^2v^4 - 1195v^6)w^2v}{3880900w^8 + 6189496w^6v^2 + 1523990w^4v^4 + 30787w^2v^6 - 1195v^8} N , \end{split}$$
(19)

причем формула для $E_0^{CMX(5)}$ недействительна при 3.92w < v < 7.23w, так как на этом интервале для некоторых b_i из (12) $\operatorname{Re}(b_i) < 0$. Результаты вычислений по методу *D*-Паде представлены в табл. 1 (здесь и далее в таблицах индекс «p» означает, что аппроксимация Паде для E'(t) имеет полюс, поэтому интеграл (10) был вычислен в смысле главного значения), куда для наглядности добавлены и СМХ-результаты. При $v \gg w$ мы видим прекрасную сходимость СМХ-последовательности к точному значению энергии основного состояния (это полностью согласуется с высказанным в конце предыдущего раздела предположением, что СМХ дает хорошие результаты там, где щель
 Δ велика). Последовательности $E_0^{DP[0/M]}, \, E_0^{DP[1/M]}$ и
 $E_0^{DP[2/M]}$ также выглядят сходящимися, хотя и несколько медленнее, чем СМХ-последовательность. При $v\,\lesssim\,w$ ситуация обратная: в то время как D-Паде-аппроксимация дает оценки, близкие к точному решению, CMX-метод имеет низкую точность пр
и $v\sim w,$ а члены $E_0^{CMX(2)}$ и $E_0^{CMX(4)}$ даже становятся сингулярными при v = 0.

4.2. Модель Хаббарда с неелевским затравочным состоянием

Для одномерной модели Хаббарда имеем

$$\hat{H} = -w \sum_{i\sigma} \left(c^{\dagger}_{i\sigma} c_{i+1\sigma} + c^{\dagger}_{i+1\sigma} c_{i\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}.$$
 (20)

В случае половинного заполнения точный результат тоже известен [21].

Если в качестве затравочного взять неелевское состояние

$$|\phi_0\rangle = |\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\ldots\uparrow\downarrow\rangle,$$

то первые кумулянты таковы:

$$I_{1} = 0, \quad I_{2} = 2w^{2}N, \quad I_{3} = 2w^{2}UN,$$

$$I_{4} = (-12w^{4} + 2w^{2}U^{2})N,$$

$$I_{5} = (-64w^{4}U + 2w^{2}U^{3})N,$$

$$I_{6} = (320w^{6} - 204w^{4}U^{2} + 2w^{2}U^{4})N,$$

$$I_{7} = (4352w^{6}U - 528w^{4}U^{3} + 2w^{2}U^{5})N,$$

$$I_{8} = (-19040w^{8} + 29760w^{6}U^{2} - - - 1228w^{4}U^{4} + 2w^{2}U^{6})N,$$

$$I_{9} = (-507904w^{8}U + 150144w^{6}U^{3} - - 2688w^{4}U^{5} + 2w^{2}U^{7})N.$$
(21)

Этих данных достаточно, чтобы построить следующие СМХ-приближения:

v/w	1	2	5	10	20
$\mathrm{DP}[0/2]$	-0.721247	-0.553574	-0.290259	-0.153778	-0.078116
DP[0/3]	-0.579406	-0.422301	-0.215831	-0.113986	-0.057867
DP[0/4]	-0.493703	-0.379567	-0.198060	-0.104281	-0.052850
$\mathrm{DP}[0/5]$	-0.496992^{p}	-0.379567	-0.193261	-0.101028	-0.051103
DP[0/6]	-0.490726	-0.382435^{p}	-0.191984	-0.099799	-0.050408
$\mathrm{DP}[0/7]$	-0.496432^{p}	-0.382357^{p}	-0.192132^{p}	-0.099320	-0.050113
DP[1/3]	-0.839345^{p}	-0.490529^{p}	-0.113804	-0.053285	-0.024481
DP[1/4]	-0.496571	-0.379567	-0.188806	-0.097122	-0.048794
DP[1/5]	-0.494721	-0.379567	-0.191016	-0.098246	-0.049430
DP[1/6]	-0.493989	-0.378494	-0.192107	-0.098737	-0.049697
DP[2/4]	-0.490204	-0.383881	-0.203710	-0.127742	-0.072776
$\mathrm{DP}[2/5]$	-0.493912	-0.378564	-0.193253^{p}	-0.104122	-0.052880
CMX(2)	-1	-0.5	-0.2	-0.1	-0.05
CMX(3)	-0.307692	-0.32	-0.183486	-0.097800	-0.049720
CMX(4)	-0.583147	-0.375931	-0.187787	-0.098565	-0.0498508
CMX(5)	-0.433373	-0.362871	$\operatorname{Re}(b_j) < 0$	-0.099152	-0.0498757
Exact	-0.499953	-0.386294	-0.192014	-0.099000	-0.0498750

Таблица 1. *D*-Паде- и СМХ-приближения для плотности энергии основного состояния, E_0/Nw , одномерной полузаполненной модели бесспиновых фермионов

Таблица 2. *D*-Паде- и СМХ-приближения (неелевское затравочное состояние) для плотности энергии основного состояния, E_0/Nw , одномерной полузаполненной модели Хаббарда

U/w	1	2	5	10	20
$\mathrm{DP}[0/2]$	-1.442494	-1.107149	-0.580517	-0.307555	-0.156231
DP[0/3]	-1.233816	-0.889106	-0.439415	-0.229179	-0.115893
DP[0/4]	-1.039051	-0.831551	-0.413725	-0.211122	-0.106031
DP[0/5]	-1.089224^{p}	-0.845739^{p}	-0.428828^{p}	-0.206429	-0.102733
DP[0/6]	-1.008235	-0.866152^{p}	-0.414765^{p}	-0.206988	-0.101566
$\mathrm{DP}[0/7]$	-0.978359	-0.770341	-0.407829^{p}	-0.208846^{p}	-0.101240
DP[1/3]	-1.538446^{p}	-0.342684	-0.358095	-0.135706	-0.053589
DP[1/4]	-1.073167	-0.873628	-0.424940	-0.199730	-0.093515
DP[1/5]	-1.051557	-0.862319^{p}	-0.403324^{p}	-0.206875	-0.100229
DP[1/6]	-0.905973	-0.844844^{p}	-0.403334^{p}	-0.206368	-0.101007
DP[2/4]	-0.938415	-0.957755	-0.547872	-0.303967	-0.154341
DP[2/5]	-1.098874^{p}	-0.906032	-0.493409^{p}	-0.254153	-0.111685
CMX(2)	-2	-1	-0.4	-0.2	-0.1
CMX(3)	-0.714286	-0.689655	-0.373134	-0.196464	-0.099552
CMX(4)	-1.1566	-0.805196	-0.394462	-0.20321	-0.101171
CMX(5)	-0.934409	-0.783366	$\operatorname{Re}(b_j) < 0$	-0.237146	-0.103506
Exact	-1.040368	-0.844373	-0.486479	-0.267154	-0.137300

$$\begin{split} E_0^{CMX(2)} &= -\frac{2w^2}{U}N, \\ E_0^{CMX(3)} &= -\frac{10w^2U}{9w^2 + 5U^2}N, \\ E_0^{CMX(4)} &= -\frac{(961w^4 + 1293w^2U^2 + 6U^4)w^2}{(1328w^4 + 623w^2U^2 + 3U^4)U}N, \\ E_0^{CMX(5)} &= -\frac{(5236932w^6 + 6581472w^4U^2 + 8417w^2U^4 - 2088U^6)w^2U}{1940450w^8 + 7781746w^6U^2 + 2915976w^4U^4 + 17636w^2U^6 - 1041U^8}N, \end{split}$$

$$\end{split}$$

причем формула для $E_0^{CMX(5)}$ недействительна при 3.07w < U < 7.95w, так как в этой области для некоторых b_j из (12) $\operatorname{Re}(b_j) < 0$. Результаты вычислений энергии основного состояния приведены в табл. 2. В отличие от модели бесспиновых фермионов, здесь при $U \gg w$ мы не видим быстрой сходимости к точному значению ни для CMX-, ни для *D*-Паде-последовательностей. Объясняется эта разница, по-видимому, следующим. Вспомним, что для *t*-разложения важно, чтобы затравочное состояние $|\phi_0\rangle$ не было ортогонально искомому основному состоянию $|\psi_0\rangle$: при $\langle \phi_0 | \psi_0 \rangle = 0$ формулы (1) и (2) дают минимальное значение энергии лишь на подпространстве векторов, не ортогональных вектору $|\phi_0\rangle$, которое, очевидно, будет больше истинной энергии основного состояния, определяемой минимизацией по всему пространству векторов. В модели бесспиновых фермионов при $v \gg w$ основной вклад в $|\psi_0\rangle$ внесут два вектора:

$$|\phi_0\rangle = |\bullet \circ \bullet \circ \bullet \circ \circ \dots \bullet \circ\rangle, \quad |\phi_1\rangle = |\circ \bullet \circ \bullet \circ \bullet \circ \bullet \dots \circ \bullet\rangle,$$

поэтому $\langle \phi_0 | \psi_0 \rangle \sim 1/\sqrt{2}$ и проблем с ортогональностью искомого собственного вектора затравочному не будет. В модели же Хаббарда при w = 0 существует бесконечно много состояний с той же энергией, что и затравочное неелевское состояние $|\phi_0\rangle$. Вероятно, при $w \neq 0$ каждое из них даст сопоставимый вклад в $|\psi_0\rangle$, в результате чего $\langle \phi_0 | \psi_0 \rangle$ будет близко к нулю.

Таким образом, поскольку затравочное состояние $|\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\dots\uparrow\downarrow\rangle$ не подходит для поиска энергии основного состояния модели Хаббарда, то попробуем заменить его на хартри-фоковское.

4.3. Модель Хаббарда с хартри-фоковским затравочным состоянием

Перепишем в выражении (20) член с взаимодействием:

$$n_{i\uparrow}n_{i\downarrow} \to \langle n_{i\uparrow} \rangle n_{i\downarrow} + \langle n_{i\downarrow} \rangle n_{i\uparrow} , \qquad (23)$$

получив после замены гамильтониан в хартри-фоковском приближении. Решение уравнений Хартри–Фока дает набор орбиталей с энергиями $\varepsilon_{j\sigma}$. Введем новые операторы рождения $d_{j\sigma}^{\dagger}$ и уничтожения $d_{j\sigma}$ электронов на этих орбиталях:

$$d_{j\sigma}^{\dagger} = \sum_{i} \alpha_{ji\sigma}^{*} c_{i\sigma}^{\dagger} , \quad d_{j\sigma} = \sum_{i} \alpha_{ji\sigma} c_{i\sigma}, \qquad (24)$$

где $\alpha_{ji\sigma}$ — коэффициенты разложения *j*-й орбитали по исходным узельным одноэлектронным состояниям. Переписав гамильтониан (20) через *d*-операторы, получаем (аналогично гл. 3 книги [13])

$$\hat{H} = \sum_{j\sigma} \varepsilon_{j\sigma} d^{\dagger}_{j\sigma} d_{j\sigma} - \sum_{\gamma} \sum_{ij} \left(U_{ij\gamma\gamma} d^{\dagger}_{i\uparrow} d_{j\uparrow} + U_{\gamma\gamma ij} d^{\dagger}_{i\downarrow} d_{j\downarrow} \right) + \sum_{jkqr} U_{jkqr} d^{\dagger}_{j\uparrow} d_{k\uparrow} d^{\dagger}_{q\downarrow} d_{r\downarrow} , \quad (25)$$

где

$$U_{jkqr} = U \sum_{i} \alpha^*_{\uparrow ji} \alpha_{\uparrow ki} \alpha^*_{\downarrow qi} \alpha_{\downarrow ri}$$

и суммирование по γ ведется лишь по занятым электронами состояниям. Используя в качестве затравочного многоэлектронное хартри-фоковское основное состояние

$$\langle \phi_0
angle = \prod_{\gamma \sigma} d^{\dagger}_{\gamma \sigma} | \mathbf{vac}
angle,$$

с помощью техники спариваний получаем следующие выражения для кумулянтов:

$$I_{1} = \sum_{a} \varepsilon_{a\uparrow} + \sum_{b} \varepsilon_{b\downarrow} - \sum_{ab} U_{aabb} ,$$

$$I_{2} = \sum_{abq^{*}r^{*}} U_{aqbr} U_{qarb} ,$$

$$I_{3} = \sum_{abq^{*}r^{*}} U_{aqbr} U_{qarb} (\varepsilon_{q\uparrow} + \varepsilon_{r\downarrow} - \varepsilon_{a\uparrow} - \varepsilon_{b\downarrow}) -$$

$$- \sum_{abqr} U_{aqbr} U_{cart} U_{qctb} -$$

$$(26)$$

$$abcq^{*}r^{*}t^{*}$$

$$-\sum_{abdq^{*}r^{*}s^{*}}U_{aqbr}U_{qsdb}U_{sard} +$$

$$+\sum_{abq^{*}r^{*}s^{*}t^{*}}U_{aqbr}U_{qsrt}U_{satb} +$$

$$+\sum_{abcdq^{*}r^{*}}U_{aqbr}U_{cadb}U_{qcrd} ,$$

где наличие звездочки около индекса означает, что суммирование по этому индексу проводится по пустым орбиталям, а ее отсутствие — по заполненным. Заметим, что кумулянт $I_1 = \langle \phi_0 | \hat{H} | \phi_0 \rangle$ — это хартри-фоковская энергия основного состояния. При расчетах нужно хранить четырехмерный массив U_{aqbr} , поэтому требования к памяти растут с размером системы как $O(N^4)$, что намного медленнее, чем при точной диагонализации, и поэтому можно провести расчеты для достаточно большого кластера. Так как результаты быстро стабилизировались с ростом N, расчеты проводились при N = 30, что намного больше размера кластера, доступного для метода Ланцоша.

Формул (26) достаточно для построения приближения CMX(2), и видно (табл. 3 и рисунок), что замена неелевского затравочного состояния на хартри-фоковское существенно улучшает результаты: в частности, исчезла сингулярность, имевшаяся в (22) при U = 0. Однако поправки к хартри-фоковским результатам при $U \gg w$ невелики: 5 % корреляционной энергии (т. е. разницы между хартри-фоковской и истинной энергиями основного состояния) при U = 20w и 16% при U = 10w. Поэтому необходимо вычислить следующий член CMX-последовательности. Выведение формул для следующих кумулянтов весьма трудоемко (даже при выполнении части работы программой для манипуляции с символами), поэтому пока были получены лишь выражения для I₄ и I₅, которые не приведены здесь ввиду их громоздкости (в частности, выражение для I_4 занимает более ста строк).

Приближение CMX(3) дает результаты уже намного более близкие к точному значению при больших U/w: 72% корреляционной энергии при U =

(В цвете онлайн) Плотность энергии основного состояния одномерной полузаполненной модели Хаббарда с хартрифоковским затравочным состоянием: хартри-фоковское решение (HF), приближения *D*-Паде (DP) и CMX, а также точное решение [21]

= 20w и 87 % при U = 10w. Вместе с тем появляется область параметров 1.43w < U < 3.25w, в которой экспоненты разложения (12) не являются затухающими, и приближение СМХ(3) применять нельзя. Но в этой области существуют и оказываются близкими к точному решению *D*-Паде-аппроксимации: например, в $E_0^{DP[0/3]}$ учтено 97 % корреляционной энергии при U = 2w.

С другой стороны, D-Паде-приближение при больших U/w оказалось малоудовлетворительным: для DP[0/2] паде-аппроксимация функции E'(t)имеет полюс, если U > 7.15w, для DP[0/3] — если U > 3.66w. Ввиду соотношения (8) полюсов у этой функции быть не должно, поэтому в данных областях параметров результаты метода D-Паде нельзя считать достоверными, и они не приведены на рисунке. Но, аналогично предыдущему, при этих параметрах модели СМХ-приближение дает хорошие результаты.

Таким образом, методы СМХ- и *D*-Паде являются взаимодополняющими. Комбинируя их результаты (например, гладко сшивая графики DP[0/2] и СМХ(3) на отрезке [4;5], см. рисунок), получаем близкие к точным результаты во всей области параметров U > 0. Достигнутая точность в области $U \leq w$ сравнима, а при $U \gg w$ выше, чем у ряда других приближенных методов [22,23].

Таблица 3. Первые кумулянты и плотность энергии основного состояния, E_0/Nw , одномерной полузаполненной модели Хаббарда: *D*-Паде- и СМХ-приближения (при хартри-фоковском затравочном состоянии) и точное значение [21]

U/w	1	2	5	10	20
I_1/Nw	-1.025570	-0.782641	-0.384076	-0.198001	-0.099750
I_2/Nw	0.083519	0.267239	0.181840	0.056088	0.014751
I_3/Nw	0.448608	1.442834	0.852820	0.279077	0.110712
I_4/Nw	2.532412	8.168248	6.319842	3.289008	2.335562
I_5/Nw	14.660127	45.337977	50.541827	41.746319	50.842882
DP[0/2]	-1.050461	-0.861807	-0.466211	-0.214990^{p}	-0.101501^{p}
DP[0/3]	-1.044301	-0.842646	-0.437996^{p}	-0.207816^{p}	-0.101206^{p}
CMX(2)	-1.041118	-0.832139	-0.422848	-0.209273	-0.101715
CMX(3)	-1.042552	$\operatorname{Re}(b_j) < 0$	-0.488842	-0.258153	-0.127276
Exact	-1.040368	-0.844373	-0.486479	-0.267154	-0.137300

5. ЗАКЛЮЧЕНИЕ

Таким образом, кумулянтное *t*-разложение вполне можно применять для сильнокоррелированных многоэлектронных задач, по меньшей мере, для вычисления энергии основного состояния. Привлекательной особенностью описанного метода является то, что, будучи сопоставим по сложности вычислений с разложением по константе связи, он дает разумные оценки там, где последнее приводит к расходящемуся ряду.

Обнаруженные ранее [19] проблемы при применении этого метода к модели Хаббарда преодолены путем замены неелевского затравочного состояния на хартри-фоковское и комбинированным использованием двух методов (СМХ и *D*-Паде) определения E_0 при различных значениях параметров модели. При этом существуют критерии допустимости применения каждого из этих двух методов: если $\operatorname{Re}(b_j) \leq 0$ в (12), то нельзя пользоваться СМХ; если присутствуют полюса в подынтегральном выражении в (10), то сомнителен результат *D*-Паде-метода.

Метод протестирован на одномерных моделях, так как для них известны точные решения. Но поскольку способ вычисления кумулянтов нигде не использует специфики одномерности модели, предложенный метод равно применим к задачам любой мерности. В частности, *D*-Паде-приближение для двух- и трехмерной моделей бесспиновых фермионов строилось в работе [14]. Метод может рассматриваться как способ последовательного улучшения результатов приближения Хартри – Фока. При этом наиболее сложной технической проблемой является вывод формул для кумулянтов высокого порядка. При полной его автоматизации, в принципе возможной, точность результатов должна стать еще более высокой.

Данный метод применим к реальным многоэлектронным задачам физики конденсированного состояния. Хотелось бы привлечь к нему внимание исследователей, так как он дает систематический подход к решению физических проблем с сильным взаимодействием, не требуя при этом малости взаимодействия.

Финансирование. Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации (тема «Квант», № АААА-А18-118020190095-4).

ЛИТЕРАТУРА

- 1. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
- J. E. Hirsch, R. L. Sugar, D. J. Scalapino, and R. Blankenbecler, Phys. Rev. B 26, 5033 (1982).
- E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J. Scalapino, and R. L. Sugar, Phys. Rev. B 41, 9301 (1990).
- 4. S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

- 5. S. Liang and H. Pang, Phys. Rev. B 49, 9214 (1994).
- J. Oitmaa, C. Hamer, and W. Zheng, Series Expansion Methods for Strongly Interacting Lattice Models, Cambridge Univ. Press, Cambridge (2006).
- **7**. И. М. Суслов, ЖЭТФ **127**, 1350 (2005).
- Phase Transitions and Critical Phenomena, Vol. 3, ed. by C. Domb and M. S. Green, Acad. Press, London (1974).
- D. Horn and M. Weinstein, Phys. Rev. D 30, 1256 (1984).
- 10. P. J. Smith, Amer. Statist. 49, 217 (1995).
- 11. J. Cioslowski, Phys. Rev. Lett. 58, 83 (1987).
- 12. C. Stubbins, Phys. Rev. D 38, 1942 (1988).
- **13.** С. Реймс, *Теория многоэлектронных систем*, Мир, Москва (1976).
- 14. A. K. Zhuravlev, Phys. Lett. A 380, 1995 (2016).

- 15. P. J. Knowles, Chem. Phys. Lett. 134, 512 (1987).
- 16. P. Amore and F. M. Fernandez, Phys. Scripta 80, 055002 (2009).
- W. J. Massano, S. P. Bowen, and J. D. Mancini, Phys. Rev. A 39, 4301 (1989).
- J. D. Mancini, J. D. Prie, and W. J. Massano, Phys. Rev. A 43, 1777 (1991).
- 19. K. C. Lee and C. F. Lo, Nuovo Cim. 15, 1483 (1993).
- 20. J. Des Cloizeaux and M. Gaudin, J. Math. Phys. 7, 1384 (1966).
- 21. E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).
- 22. R. Strack and D. Vollhardt, J. Low Temp. Phys. 84, 357 (1991).
- **23**. Ю. Б. Кудасов, УФН **173**, 121 (2003).