ОБ ИНТЕРПРЕТАЦИИ ОТКЛОНЕНИЯ СМЅ ПРИ ИНВАРИАНТНОЙ МАССЕ МЮОННОЙ ПАРЫ 28 ГэВ В РАМКАХ МИНИМАЛЬНОЙ СУПЕРСИММЕТРИИ

М. Н. Дубинин, Е. Ю. Федотова*

Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына, Московский государственный университет им. М. В. Ломоносова 119991, Москва, Россия

> Поступила в редакцию 3 марта 2020 г., после переработки 8 июля 2020 г. Принята к публикации 5 августа 2020 г.

Рассматривается возможность отождествления наблюдаемого коллаборацией CMS (БАК, ЦЕРН) отклонения в канале $pp \rightarrow \mu^+ \mu^- b\bar{b}$ при инвариантной массе мюонной пары 28 ГэВ ($\sqrt{s} = 8$ и 13 ТэВ) с сигналом одного из бозонов Хиггса минимальной суперсимметрии. Показано, что в режиме больших радиационных поправок с легким СР-четным скаляром h, соответствующим наблюдаемому бозону Хиггса, существуют удовлетворяющие условиям пертурбативной унитарности в хиггсовском секторе параметрические сценарии с легким псевдоскаляром.

DOI: 10.31857/S0044451020120056

1. ВВЕДЕНИЕ

В 2018 г. коллаборация CMS сообщила о результатах поиска резонанса, распадающегося на мюонную пару в области масс 12-70 ГэВ, в ассоциированном рождении с b-кварком и дополнительной струей [1]. Соответствующий анализ основан на данных столкновения двух протонов при энергиях \sqrt{s} = = 8 и 13 ТэВ и интегральных светимостях 19.7 и 35.9 фбн⁻¹. Рассматривались следующие категории событий: мюоны имеют поперечный импульс не менее 25 ГэВ и инвариантную массу более 12 ГэВ, струя b-кварков имеет поперечный импульс более 30 ГэВ и находится в центральной области детектора ($|\eta| \le 2.4$), дополнительная струя либо вылетает в направлении, близком к оси столкновений (2.4 \leq $\leq |\eta| \leq 4.7$) (категория событий SR1), либо также регистрируется в центральной области детектора ($|\eta| < 2.4$) (категория событий SR2). При $\sqrt{s} =$ = 8 ТэВ наблюдалось отклонение при инвариантной массе мюонной пары 28 ГэВ с локальной статистической значимостью 4.2 и 2.9 стандартных отклонения для первой и второй категорий событий

соответственно. При $\sqrt{s} = 13$ ТэВ отклонение в первой категории событий порядка 2.0σ , в то время как во второй категории наблюдается дефицит событий (1.4σ) .

Поиск коллаборацией ATLAS резонанса, распадающегося на мюонную пару в области масс 26– 30 ГэВ в ассоциированном рождении с *b*-кварком, не дал положительных результатов [2]. Обсуждаемое отклонение, тем не менее, нельзя считать закрытым, поскольку сравнение результатов экспериментов ATLAS и CMS осложняется существенным различием эффективностей мюонного триггера и идентификации струй *b*-кварков, в результате чего подавляется отношение сигнал/фон, что усложняет выделение такого слабого сигнала в эксперименте ATLAS.

Слабые сигналы в распределениях для инвариантных масс $m_{\mu^+\mu^-}$ и $m_{\tau^+\tau^-}$ могут возникать при распадах нейтральных бозонов Хиггса минимальной суперсимметричной стандартной модели (МССМ), двухдублетный хиггсовский сектор которой содержит два СР-четных (h, H), один СР-нечетный A и два заряженных бозона H^{\pm} . Поиски СР-нечетного бозона A сравнительно малой массы на БАК весьма разнообразны¹). Их систе-

^{*} E-mail: fedotova@theory.sinp.msu.ru

¹⁾ В имеющейся литературе «легким СР-нечетным бозоном» называется бозон A с массой от 10 до 250 ГэВ.

Об интерпретации отклонения CMS...

матизация и приведение результатов «к общему знаменателю» затруднительны вследствие использования различающихся наборов для описания пространства параметров МССМ и ограничения областей в пространстве параметров, где проводится моделирование сигнала. Использование различных приближений для моделирования сигнала имеющимися генераторами событий приводит к возникновению существенных теоретических неопределенностей. Наиболее универсальная оценка для сигнала СР-нечетного бозона с массой в пределах 15–75 ГэВ при энергии $\sqrt{s} = 13$ ТэВ в приближении бесконечно малых ширин топ-кварка и заряженного бозона Хиггса содержится в работе [3], где для парного рождения топ-кварков анализируются каналы $t \to bH^{\pm}, H^{\pm} \to W^{\pm}A$ с последующим распадом $A \rightarrow \mu^+\mu^-$, приводящие к конечным состояниям с $e\mu\mu$ или $\mu\mu\mu$. Получено модельно-зависимое ограничение для произведения парциальных вероятностей распада $\operatorname{Br}(t \to bH^{\pm})\operatorname{Br}(H^{\pm} \to W^{\pm}A)\operatorname{Br}(A \to \mu^{+}\mu^{-}),$ koторое должно быть в пределах $1.9 \cdot 10^{-6} - 8.6 \cdot 10^{-6}$ на уровне достоверности 95% для масс m_A между 15 и 75 ГэВ и $m_{H^{\pm}}$ в интервале от m_A+85 ГэВ до 160 ГэВ, когда в выбранных амплитудах процесса W-бозоны и псевдоскаляр A могут быть на массовой поверхности одновременно²⁾. Это ограничение рассматривается нами в разд. 3.2. В недавнем обзоре коллаборации CMS [4] о поисках бозонов МССМ в канале $pp \rightarrow \mu^+ \mu^- b\bar{b}$ при $\sqrt{s} = 13$ ТэВ в контексте специфических параметрических наборов (сценариев) МССМ, известных под названиями m^{mod+} [5] и hMSSM [6], рассматриваются области пространства параметров tg $\beta > 10$ (отношение вакуумных средних двухдублетного хиггсовского потенциала) и m_A от 130 до 600 ГэВ. Указанные сценарии не могут объяснить наблюдаемый сигнал при инвариантной массе 28 ГэВ (см. разд. 3). Модельно-независимый недавний анализ [7], не привязанный к какому-либо из стандартных сценариев МССМ и выполненный для канала $pp \to H \to ZA$ и далее $\mu^+ \mu^- b\bar{b}$ в случае, когда b-струи вперед-назад не проявляются, проведен для специального параметрического набора

 $m_A > 30$ ГэВ, tg $\beta = 1.5$ и cos($\beta - \alpha$) = 0.01 (α , β — углы смешивания в секторе Хиггса) общей двухдублетной модели (ДДМ). В последнее время получены также экспериментальные ограничения для конечных состояний, содержащих $\tau^+\tau^-$ в комбинации с *b*-кварком [8] (также [9]), где ограничение сверху при $m_{\tau^+\tau^-}$ в интервале 25–70 ГэВ может быть установлено в интервале от 250 пбн до 44 пбн при уровне достоверности 95 %. Эти весьма мягкие ограничения в нашем случае соблюдаются (разд. 3).

Заметим, что отклонение при инвариантной массе мю
онной (электронной) пары $m_{\mu^+\mu^-}=30.40~\pm$ ± 0.46 ГэВ ($m_{e^+e^-} = 29.18 \pm 0.46$ ГэВ), ассоциированное с конечными состояниями $b\bar{b}$, наблюдается в пересмотренных данных 1992–1995 гг. эксперимента ALEPH (LEP2) [10], где выделялись события типа $b\bar{b} + X$ при энергии $\sqrt{s} = m_Z$ в диапазоне масс 15– 50 ГэВ. Статистические достоверности сигнала меняются в пределах от 2.6σ до 5σ в зависимости от используемой модели фоновых процессов. Для вычисления полных наборов диаграмм неприводимого фона стандартной модели использовался генератор SHERPA [11]. В рамках МССМ с легким скаляром для димюонного сигнала такого типа основную роль могли бы играть дважды резонансные диаграммы $e^+e^- \rightarrow Z^* \rightarrow \bar{b}b$ с последующими излучением псевдоскаляра A из линии b-кварка и распадом в пару $\mu^+\mu^-$, что дает конечное состояние $\mu^+\mu^-b\bar{b}$, а также $Z^* \to A, h$ и $Z^* \to A, H$. Вычисления для полных наборов диаграмм древесного уровня в рамках МССМ, включающих в себя как сигнал, так и фон, при помощи используемого в настоящей работе пакета СотрНЕР [12] дают очень большой неприводимый фон дилептонов от диаграмм с фотонами и Z-бозонами в промежуточных состояниях³⁾, что затрудняет интерпретацию сигнала АLEPH в рамках MCCM на древесном уровне амплитуд $2 \rightarrow 4$. Поиски нейтральных бозонов Хиггса на LEP (объединенные результаты коллабораций ALEPH, DELPHI, L3 и OPAL по итогам работы LEP2 и частично LEP1) привели к установлению ограничений сверху на сечения с бозонами Хиггса в конечных со-

²⁾ При моделировании использованы приближения, характерные для генератора РҮТНІА, т.е. из полного набора диаграмм $pp \rightarrow t\bar{t}$ с последующим распадом $t \rightarrow b, W^+, A$ или $\bar{t} \rightarrow \bar{b}, W^-, A$ выбраны только дважды резонансные. Для полной амплитуды, например, процесса с глюонами в начальном состоянии $gg \rightarrow \bar{t}bW^+A$ имеется 11 диаграмм с различными резонансными порогами, из которых дважды резонансных две. Это приводит к теоретическим неопределенностям полученного ограничения, величины которых непросто оценить.

³⁾ Теоретическое моделирование сигнала работа [10] не содержит. В рамках рассматриваемой в настоящей работе МССМ для набора параметров ВР1, например (см. разд. 3), сечение сигнала уровня LO с учетом кинематических обрезаний, использованных в [10], составляет $1.4 \cdot 10^{-3}$ фбн, а отношение сигнал/фон для распределения $d\sigma/dm_{\mu^+\mu^-}$ равно 1/35. Это значительно меньше, чем отношение сигнал/фон работы [10] порядка 0.1–1.

стояниях⁴⁾ в более ранней работе [13]. Интерпретация результатов в рамках МССМ проводилась для «ориентировочных сценариев» m_h^{max} , по-mixing, large- μ , gluophobic, small- α_{eff} , CPX [14], (см. также [15]), где параметр m_A варьировался в пределах 0.1–1000 ГэВ. Однако ни рассматриваемые процессы, ни массовый диапазон бозонов Хиггса (который выше анализируемого в текущей работе), ни порядок величины параметров $A_{t,b}$, μ в этих сценариях не соответствуют рассматриваемому в работе режиму МССМ с легким псевдоскаляром.

Бозоны с массой порядка 28 ГэВ предсказываются и в ряде расширений МССМ [16–19]. Например, подобный скаляр не запрещен в рамках неминимальной суперсимметричной стандартной модели (НМССМ) [16], а его наличие могло бы объяснить отклонение в измеренном значении аномального магнитного момента мюона $(q-2)_{\mu}$ [17]. В настоящее время численный анализ в рамках общедоступных заслуживающих доверия программных кодов исключил возможность интерпретации отклонения в рамках МССМ. Следует, однако, иметь ввиду, что любой численный анализ основан на ряде предположений. Так, например, в рамках кода MhEFT [20], основанном на методах эффективной теории поля (ЭТП) [21], анализ проводится в предположении режима отщепления, когда массы бозонов Хиггса $m_{H,A,H^{\pm}} \sim \mathcal{O}(M_{SUSY})$ и $m_h \sim \mathcal{O}(v)$, где $M_{SUSY} \gg v$ [22], что не соответствует обсуждаемому случаю. Численный анализ в рамках пакета FeynHiggs [23] основан на гибридном подходе, в котором диаграммная техника сочетается с подходом ЭТП: на интересуемом энергетическом масштабе массы бозонов Хиггса определяются как полюсные массы пропогатора с учетом логарифмических вкладов, пересчитанных методами ЭТП [24]. Как правило, по умолчанию рассматривается предположение, согласно которому масса псевдоскаляра принимает промежуточные значения между масштабом массы топ-кварка m_t и шкалой восстановления суперсимметрии M_{SUSY} [24]. Так, в недавнем анализе [25], выполненном с помощью FeynHiggs, «легкий псевдоскаляр» А принимает значения 200–300 ГэВ.

Случай $m_A < m_h, m_t$ в рамках ЭТП был качественно проанализирован в работе [26] для $m_A = 28$ и 90 ГэВ в предположении, что легкий СР-четный скаляр h соответствует наблюдаемому бозону Хиггса с массой 125 ГэВ — h(125) [27,28].

Настоящая работа посвящена анализу сценария МССМ с легким псевдоскаляром $m_A = 28$ ГэВ, для которого свойства бозона h(125) соответствуют предсказанным в рамках стандартной модели (СМ) и согласуются с наблюдаемыми [29–32], его феноменологическим следствиям и сравнению с экспериментальными данными, полученными для отклонения СМЅ при инвариантной массе 28 ГэВ.

2. ХИГГСОВСКИЙ СЕКТОР В НИЗКОЭНЕРГЕТИЧЕСКОМ ПРИБЛИЖЕНИИ

Хиггсовский потенциал минимальной суперсимметрии на низкоэнергетическом масштабе представляет собой эффективный двухдублетный потенциал, содержащий бесконечное число слагаемых по всем порядкам теории возмущений [33]:

$$U_{eff} = U^{(2)} + U^{(4)} + U^{(6)} + \dots, \tag{1}$$

где инвариантные слагаемые можно представить в виде

$$U^{(2)} = -\mu_1^2 (\Phi_1^{\dagger} \Phi_1) - \mu_2^2 (\Phi_2^{\dagger} \Phi_2) - [\mu_{12}^2 (\Phi_1^{\dagger} \Phi_2) + \text{H.c.}], \qquad (2)$$

$$U^{(4)} = \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + [\lambda_5/2 (\Phi_1^{\dagger} \Phi_2) (\Phi_1^{\dagger} \Phi_2) + \lambda_6 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) (\Phi_1^{\dagger} \Phi_2) + \text{H.c.}], (3)$$

$$U^{(6)} = \kappa_1 (\Phi_1^{\dagger} \Phi_1)^3 + \kappa_2 (\Phi_2^{\dagger} \Phi_2)^3 + \kappa_3 (\Phi_1^{\dagger} \Phi_1)^2 (\Phi_2^{\dagger} \Phi_2) + \\ + \kappa_4 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2)^2 + \kappa_5 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \\ + \kappa_6 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + [\kappa_7 (\Phi_1^{\dagger} \Phi_2)^3 + \\ + \kappa_8 (\Phi_1^{\dagger} \Phi_1)^2 (\Phi_1^{\dagger} \Phi_2) + \kappa_9 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2)^2 + \\ + \kappa_{10} (\Phi_1^{\dagger} \Phi_2)^2 (\Phi_2^{\dagger} \Phi_2) + \kappa_{11} (\Phi_1^{\dagger} \Phi_2)^2 (\Phi_2^{\dagger} \Phi_1) + \\ + \kappa_{12} (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_2)^2 + \\ + \kappa_{13} (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_2) + \text{H.c.].}$$
(4)

Здесь

$$\Phi_i = \begin{pmatrix} -i\omega_i^+ \\ \frac{1}{\sqrt{2}}(v_i + \eta_i + i\chi_i) \end{pmatrix}, \quad i = 1, 2,$$

⁴⁾ Численные величины ограничений на сечения для процессов 1) $e^+e^- \to H_1Z$ в предположении дальнейшего распада $H_1 \to b\bar{b}$ или $H_1 \to \tau^+\tau^-$, 2) $e^+e^- \to (H_2 \to H_1H_1)Z \to (b\bar{b}b\bar{b})Z$, 3) $e^+e^- \to$ $\to (H_2 \to H_1H_1)Z \to (\tau^+\tau^-\tau^+\tau^-)Z$, 4) $e^+e^- \to H_2H_1$ с последующим распадом на состояния $b\bar{b}, \tau^+\tau^-$, где H_1, H_2, H_3 — нейтральные бозоны Хиггса, представлены в Приложении В работы [13].

— хиггсовские дублеты, $v_1 = v \cos \beta$, $v_2 = v \sin \beta$ ($v = \sqrt{v_1^2 + v_2^2} = 246 \ \Gamma$ эВ) — соответствующие вакуумные ожидания, $\omega_i^+, \eta_i, \chi_i$ — флуктуации над вакуумом.

Константы самодействия полей Хиггса на древесном уровне определяются суперсимметричными соотношениями для калибровочных констант связи g_1, g_2 группы $SU(2)_L \times U(1)_Y$:

$$\begin{split} \lambda_{1,2}^{tree} &= \frac{g_1^2 + g_2^2}{8}, \quad \lambda_3^{tree} &= \frac{g_2^2 - g_1^2}{4}, \\ \lambda_4^{tree} &= -\frac{g_2^2}{2}, \quad \lambda_{5,6,7}^{tree} = 0, \quad \kappa_{1,\dots,13}^{tree} = 0, \end{split}$$

нарушенными в петлевом приближении конечными радиационными поправками

$$\lambda_i(M_{SUSY}) = \lambda_i^{tree}(M_{SUSY}) - \Delta\lambda_i(M)/2,$$

$$i = 1, 2,$$

$$\lambda_i(M) = \lambda_i^{tree}(M_{SUSY}) - \Delta\lambda_i(M),$$

$$i = 3, \dots, 7,$$

$$\kappa_i(M) = \Delta\kappa_i(M), \quad M \le M_{SUSY}.$$

(5)

Радиационные поправки к параметрам λ_i , $i = 1, \ldots, 7$, в рамках эффективной теории поля были получены в работах [15, 34–40]. Однопетлевые пороговые поправки к параметрам κ_i , $i = 1, \ldots, 13$, были найдены в [41] в приближении $M_{\tilde{Q}} \approx M_{\tilde{U}} \approx M_{\tilde{D}} \approx M_{\tilde{D}} \approx M_{SUSY}$, где рассматривался суперсимметричный скалярный потенциал взаимодействия бозонов Хиггса с третьим поколением скварков ($\tilde{Q}, \tilde{U}, \tilde{D}$) вида [34]

$$\mathcal{V}^0 = \mathcal{V}_M + \mathcal{V}_\Gamma + \mathcal{V}_\Lambda + \mathcal{V}_{\tilde{Q}},\tag{6}$$

$$\mathcal{V}_M = -\mu_{ij}^2 \Phi_i^{\dagger} \Phi_j + M_{\tilde{Q}}^2 (\tilde{Q}^{\dagger} \tilde{Q}) + M_{\tilde{U}}^2 (\tilde{U}^* \tilde{U}) + M_{\tilde{D}}^2 (\tilde{D}^* \tilde{D}), \quad (7)$$

$$\mathcal{V}_{\Gamma} = \Gamma_{i}^{D} (\Phi_{i}^{\dagger} \tilde{Q}) \tilde{D} + \Gamma_{i}^{U} (i \Phi_{i}^{T} \sigma_{2} \tilde{Q}) \tilde{U} + \text{H.c.},
\mathcal{V}_{\Lambda} = \Lambda_{ik}^{jl} (\Phi_{i}^{\dagger} \Phi_{j}) (\Phi_{k}^{\dagger} \Phi_{l}) + (\Phi_{i}^{\dagger} \Phi_{j}) [\Lambda_{ij}^{Q} (\tilde{Q}^{\dagger} \tilde{Q}) + \\
+ \Lambda_{ij}^{U} (\tilde{U}^{*} \tilde{U}) + \Lambda_{ij}^{D} (\tilde{D}^{*} \tilde{D})] + \overline{\Lambda}_{ij}^{Q} (\Phi_{i}^{\dagger} \tilde{Q}) (\tilde{Q}^{\dagger} \Phi_{j}) + \\
+ \frac{1}{2} [\Lambda \epsilon_{ij} (i \Phi_{i}^{T} \sigma_{2} \Phi_{j}) \tilde{D}^{*} \tilde{U} + \text{H.c.}],$$
(8)

 $\mathcal{V}_{\tilde{Q}}$ характеризует взаимодействие четырех скалярных кварков,

$$\Lambda^Q = \text{diag}\left[\frac{1}{4}(g_2^2 - g_1^2 Y_Q), h_t^2 - \frac{1}{4}(g_2^2 - g_1^2 Y_Q)\right], \quad (9)$$

$$\overline{\Lambda}^{Q} = \text{diag}\left(h_{b}^{2} - \frac{1}{2}g_{2}^{2}, \frac{1}{2}g_{2}^{2} - h_{t}^{2}\right),\tag{10}$$

$$\Lambda^{U} = \text{diag}\left(-\frac{1}{4}g_{1}^{2}Y_{U}, h_{t}^{2} + \frac{1}{4}g_{1}^{2}Y_{U}\right), \qquad (11)$$

$$\Lambda^{D} = \text{diag}\left(h_{b}^{2} - \frac{1}{4}g_{1}^{2}Y_{D}, \frac{1}{4}g_{1}^{2}Y_{D}\right), \qquad (12)$$

$$\Lambda = -h_t h_b, \tag{13}$$

$$\Gamma_{1,2}^U = h_t \{-\mu, A_t\}, \qquad \Gamma_{1,2}^D = h_b \{A_b, -\mu\}, \tag{14}$$

 $Y_{Q,U,D} = \{1/3, 2/3, -4/3\}$ — гиперзаряды скварков,

$$h_t = \frac{g_2 m_t}{\sqrt{2}m_W \sin\beta}, \quad h_b = \frac{g_2 m_b}{\sqrt{2}m_W \cos\beta}$$

— константы связи Юкавы, $A_{t,b}$ — трилинейные константы связи, μ — массовый параметр хиггсовского суперполя. Здесь и далее справедливо $M_{SUSY} = \sqrt{M_S^2 - m_t^2}$, где $M_S = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$ [37]. Например, однопетлевые поправки к λ_7 и κ_1 в виде разложения по степеням $A_{t,b}/M_S$ и μ/M_S имеют вид

$$\Delta\lambda_7 = -\frac{3}{96\pi^2} \left[h_b^4 \frac{|\mu|^2 \mu A_b}{M_S^4} - h_t^4 \frac{\mu A_t}{M_S^2} \left(6 - \frac{|A_t|^2}{M_S^2} \right) + (h_t^2 A_t - h_b^2 A_b) \frac{3\mu}{M_S^2} \frac{g_2^2 + g_1^2}{4} \right], \quad (15)$$

$$\begin{split} \Delta \kappa_1^{thr} &= \frac{h_b^6}{32M_S^2 \pi^2} \left(2 - \frac{3|A_b|^2}{M_S^2} + \frac{|A_b|^4}{M_S^4} - \frac{|A_b|^6}{10M_S^6} \right) - \\ &- h_b^4 \frac{g_1^2 + g_2^2}{128M_S^2 \pi^2} \left(3 - 3\frac{|A_b|^2}{M_S^2} + \frac{|A_b|^4}{2M_S^4} \right) + \\ &+ \frac{h_b^2}{512M_S^2 \pi^2} \left(\frac{5}{3}g_1^4 + 2g_1^2g_2^2 + 3g_2^4 \right) \times \\ &\times \left(1 - \frac{|A_b|^2}{2M_S^2} \right) - h_t^6 \frac{|\mu|^6}{320M_S^8 \pi^2} + \\ &+ h_t^4 \frac{(g_1^2 + g_2^2)|\mu|^4}{256M_S^6 \pi^2} + \frac{g_1^2}{1024M_S^2 \pi^2} (g_1^4 - g_2^4) - \\ &- h_t^2 \frac{(17g_1^4 - 6g_1^2g_2^2 + 9g_2^4)|\mu|^2}{3072M_S^4 \pi^2}. \end{split}$$
(16)

2.1. Спектр масс и углы смешивания

Хиггсовский сектор МССМ содержит пять бозонов, которыми в СР-сохраняющем пределе являются СР-четные скаляры h и H ($m_h < m_H$), СР-нечетный псевдоскаляр A и заряженные бозоны H^+ и H^- . Спектр масс на древесном уровне определен двумя параметрами: массой СР-нечетного бозона Хигтса m_A и отношением вакуумных ожиданий хигтсовских дублетов $v_2/v_1 \equiv \text{tg }\beta$ [42, 43]. Исследование электрослабого минимума для разложения хигтсовского потенциала до операторов размерности шесть проводилось в [44]. В петлевом приближении массы бозонов Хигтса можно представить в виде [41]

$$m_{H,h}^2 = \frac{1}{2} (m_A^2 + m_Z^2 + \Delta \mathcal{M}_{11}^2 + \Delta \mathcal{M}_{22}^2 \pm \sqrt{m_A^4 + m_Z^4 - 2m_A^2 m_Z^2 c_{4\beta} + C}), \quad (17)$$

$$m_{H^{\pm}}^{2} = m_{W}^{2} + m_{A}^{2} - \frac{v^{2}}{2} (\operatorname{Re} \Delta \lambda_{5} - \Delta \lambda_{4}) + \frac{v^{4}}{4} [c_{\beta}^{2} (2 \operatorname{Re} \kappa_{9} - \kappa_{5}) + s_{\beta}^{2} (2 \operatorname{Re} \kappa_{10} - \kappa_{6}) - s_{2\beta} (\operatorname{Re} \kappa_{11} - 3 \operatorname{Re} \kappa_{7})], \quad (18)$$

где $c_{\beta} = \cos \beta$, $s_{\beta} = \sin \beta$ и т. д., $m_{W,Z}$ — массы калибровочных бозонов W^{\pm}, Z ,

$$C = 4\Delta \mathcal{M}_{12}^4 + (\Delta \mathcal{M}_{11}^2 - \Delta \mathcal{M}_{22}^2)^2 - - 2(m_A^2 - m_Z^2)(\Delta \mathcal{M}_{11}^2 - \Delta \mathcal{M}_{22}^2)c_{2\beta} - - 4(m_A^2 + m_Z^2)\Delta \mathcal{M}_{12}^2s_{2\beta}, \quad (19)$$

 $\Delta \mathcal{M}_{ij}$ — радиационные поправки в СР-четную массовую матрицу. Поворот в базисе (η_1, η_2) определяется углом смешивания α $(-\pi/2 < \alpha^{tree} \leq 0)$, для которого справедливо

$$\operatorname{tg} 2\alpha = \frac{(m_Z^2 + m_A^2)s_{2\beta} - 2\Delta\mathcal{M}_{12}^2}{(m_A^2 - m_Z^2)c_{2\beta} - \Delta\mathcal{M}_{11}^2 + \Delta\mathcal{M}_{22}^2}.$$
 (20)

Наиболее сильные теоретические ограничения для $m_{H^{\pm}}$ получены из анализа распада *B*-мезонов [45], модельно-независимые измерения [46] приводят к ограничениям $m_{H^{\pm}} > 80$ ГэВ, $m_H > 92.8$ ГэВ (95 % CL).

2.2. Пертурбативная унитарность

Условия пертурбативной унитарности [47] в рамках ДДМ рассматривались в работах [48, 49]. Для одиночного процесса рассеяния 2 → 2 они сводятся к анализу амплитуды

$$M(s) = 16\pi \sum_{l=0}^{\infty} (2l+1)P_l(\cos\theta)a_l(s), \qquad (21)$$

где s — переменная Мандельштама, P_l — полиномы Лежандра, a_l — парциальная амплитуда. Из формулы для дифференциального сечения в безмассовом пределе $d\sigma/d\Omega = |M|^2/64\pi^2 s$ можно получить сечение

$$\sigma = \frac{16\pi}{s} \sum (2l+1)|a_l(s)|^2,$$

из оптической теоремы для которого

$$(\operatorname{Re} a_l)^2 + (\operatorname{Im} a_l)^2 = |a_l|^2 = \operatorname{Im} a_l$$

следует унитарное ограничение для действительной части амплитуды в древесном приближении:

$$|\operatorname{Re} a_0| \le \frac{1}{2},\tag{22}$$

где из всех парциальных волн l здесь оставлена только *s*-волна. В более общем случае ограничение (22) также справедливо, детальный вывод приведен в работе [50].

В случае нескольких каналов $2 \rightarrow 2$ это условие должно выполняться для любого собственного значения матрицы рассеяния, учитывающей все возможные комбинации частиц в начальном и конечном состояниях. Вид матрицы рассеяния МССМ в общем случае [51] довольно громоздок, однако в пределе $s \to \infty$ ограничения (22) можно представить в аналитическом виде: в безмассовом пределе $a_0(s) < V_4(S_1S_2S_3S_4)/16\pi$, где V_4 — четверная константа взаимодействия скаляров S_i, т.е. ориентировочное унитарное ограничение для четверной константы взаимодействия принимает вид $V_4(S_1S_2S_3S_4) < 8\pi$. В общем случае большого числа четверных вкладов в процессы $2 \rightarrow 2$ древесная матрица рассеяния для скаляров рассматривается в базисе SU(2) состояний, а затем диагонализуется с учетом ограничений на собственные значения [47]. В рамках ДДМ такая процедура выполнена в работах [48, 49]. Аналитические выражения для блочно-диагональной S-матрицы, учитывающей упругое рассеяние намбу-голдстоуновских бозонов и физических бозонов Хиггса, приведены в [52].

Однако приближение $s \to \infty$ выполняется не всегда [50]. Необходимо учитывать как зависимость от s, так и вклад трилинейных констант взаимодействия, которые становятся важными при проверке пертурбативной унитарности в МССМ. В настоящей работе анализ проводится в рамках подхода, развиваемого в [50], для упругого рассеяния бозонов Хиггса h, H, A, H^+, H^- с учетом вкладов, индуцированных операторами $U^{(6)}$. Например, трилинейная константа самодействия легкого СР-четного бозона Хиггса имеет вид

$$\kappa_{hhh} = c_1 v + c_2 v^3, \tag{23}$$

где коэффициенты c_1 и c_2 зависят от констант самодействия λ_i и κ_j соответственно,

$$c_{1} = -\lambda_{1}s_{\alpha}^{3}c_{\beta} + \lambda_{2}c_{\alpha}^{3}s_{\beta} - \frac{\lambda_{345}}{4}s_{2\alpha}c_{\alpha+\beta} + \\ + \frac{\operatorname{Re}\lambda_{6}}{2}s_{\alpha}^{2}(c_{\beta-\alpha}+2c_{\beta+\alpha}) + \frac{\operatorname{Re}\lambda_{7}}{2}c_{\alpha}^{2}(c_{\alpha}c_{\beta}-3s_{\alpha}s_{\beta}), \\ c_{2} = \frac{5}{2}[-\kappa_{1}s_{\alpha}^{3}c_{\beta}^{3} + \kappa_{2}c_{\alpha}^{3}s_{\beta}^{3} + (\operatorname{Re}\kappa_{8}s_{\alpha}^{2}c_{\beta}^{2} + \\ + \operatorname{Re}\kappa_{12}c_{\alpha}^{2}s_{\beta}^{2})c_{\alpha+\beta}] + \frac{1}{16}[(\kappa_{3}+\kappa_{5}+2\operatorname{Re}\kappa_{9})s_{\alpha}c_{\beta} - \\ - (\kappa_{4}+\kappa_{6}+2\operatorname{Re}\kappa_{10})c_{\alpha}s_{\beta}](c_{2(\beta-\alpha)} - \\ - 5c_{2(\alpha+\beta)}-4) + \frac{1}{32}\operatorname{Re}(\kappa_{7}+\kappa_{11}+\kappa_{13}) \times \\ \times [5c_{3(\alpha+\beta)}-3(c_{\beta-3\alpha}+c_{3\beta-\alpha}-3c_{\alpha+\beta})], \end{cases}$$

 $\lambda_{345} = \lambda_3 + \lambda_4 + \operatorname{Re} \lambda_5.$

3. ЧИСЛЕННЫЙ АНАЛИЗ

Численный анализ выполнен на основе результатов, полученных методами эффективной теории поля [15, 39, 41] в приближении вырожденных масс третьего поколения скварков (порядка M_S) и в предположении, что эффективная теория ниже этого масштаба — двухдублетная модель. Радиационные поправки к λ_i , $i = 1, \ldots, 7$, и κ_j , $j = 1, \ldots, 13$, рассчитываются для параметров МССМ m_A , tg β , M_S , $A_{t,b}$, μ , выбор которых практически совпадает с выбором в сценариях естественной суперсимметрии [5]. В дальнейшем в пространстве параметров выделим наборы, удовлетворяющие следующим условиям.

I. Хиггсовский массовый базис существует, при этом масса легкого СР-четного бозона Хиггса порядка 125 ГэВ, масса СР-нечетного бозона Хиггса — 28 ГэВ.

II. Константы связи Юкавы соответствуют пределу настройки связей [53,54]. Константы связи наблюдаемого бозона Хиггса с массой 125 ГэВ по своим свойствам близки к предсказанным в рамках СМ. В случае МССМ это значит, что для взаимодействий легкого бозона h с частицами СМ верно $g_{huu} \approx g_{hdd} \approx g_{hVV} \approx 1$, где V = W, Z. Таким образом, предел настройки связей выполняется, если $\beta - \alpha \approx \pi/2$.

Об интерпретации отклонения CMS...

3.1. Параметрические наборы

Значения параметров в пространстве $(m_A, \operatorname{tg} \beta,$ M_{S}, A, μ), где $A_{t} = A_{b} = A$, определялись следующим образом: при фиксированных значениях $m_A = 28$ ГэВ, M_S (0.6, 1.0, 2.0, 3.5, 5 ТэВ)⁵⁾ и $tg \beta$ (1, 2, 3, 15, 20) в пространстве параметров $(A, \mu) \in [0, 10]$ ТэВ анализировались зависимости $m_h = 125$ ГэВ, $\beta - \alpha \approx \pi/2$ как в случае учета операторов шестой степени в потенциале (1), так и без них. Как оказалось, существуют довольно много параметрических наборов, удовлетворяющих требованию I и ранее считавшихся закрытыми, даже при значениях $M_S \sim 1$ ТэВ, tg $\beta \sim 1$. Однако одновременное выполнение условий I и II возможно только при учете дополнительных вкладов, индуцированных операторами $U^{(6)}$ в хиггсовском потенциале МССМ, при этом число параметрических наборов существенно сокращается. Другими словами, в случае разложения эффективного хиггсовского потенциала до операторов размерности четыре условие I может выполняться, однако полученные параметрические наборы не удовлетворяют условию II. Выполнение условий пертурбативной унитарности (22) чувствительно к выбору значений $tg \beta$ и M_S . Например, при $M_S = 2$ ТэВ, tg $\beta = 3$ условие III справедливо при любых $A, \mu \ (0 \le A, \mu \le 10 \text{ T} \Im \text{B}),$ в то время как при $M_S = 1$ ТэВ, tg $\beta = 2$ пертурбативная унитарность нарушается уже при $A, \mu \geq 5$ ТэВ, см. рис. 1.

В табл. 1 представлены все наборы параметров модели, для которых выполняются условия I–III. Видно, что характерные значения параметров изменяются в следующих диапазонах: $M_S \sim 1-2$ ТэВ, tg $\beta \sim 2-5$, $A_{t,b}, \mu \sim 3-9$ ТэВ. Такой параметрический режим уместно назвать «режимом сильной связи», поскольку трилинейные параметры $\Gamma_i^{U,D}$ (14), порядка A, μ , отличаются от параметров в традиционных сценариях, где $A, \mu \sim 1$ ТэВ. Подобный режим не рассматривался в литературе ранее, поскольку массы бозонов Хиггса рассчитывались при $m_A \geq m_t$ как с помощью методов ЭТП, так и в рамках диаграммной техники [25, 57–59]. Основное отличие состоит в значении пороговых поправок $\Delta \lambda_i$ и $\Delta \kappa_i$ (см. разд. 2) с нелогарифмическими члена-

III. Выполняются условия пертурбативной унитарности, т. е. парциальные амплитуды для *s*-волны удовлетворяют соотношению (22).

 $^{^{5)}}$ Полученные на сегодняшний день ограничения снизу при $\sqrt{s}=13$ ТэВ и светимости 137 фбн $^{-1}$ для массы скварков носят модельно-зависимый характер. В зависимости от конкретного сценария они составляют 1190–1630 ГэВ [55] и могут быть ниже (порядка 1 ТэВ) [56]. По этой причине, а также для анализа характерных особенностей рассматриваемого режима МССМ в работе рассматривались также значения $M_S=0.6{-}1$ ТэВ.

Рис. 1. Максимальное значение амплитуды *s*-волны упругого рассеяния бозонов Хиггса при $m_A = 28$ ГэВ, $\sqrt{s} = 8$ ТэВ, $M_S = 2$ ТэВ, $tg \beta = 3$ (*a*), $M_S = 1$ ТэВ, $tg \beta = 2$ (*б*)

Таблица 1. Параметрические наборы, удовлетворяющие условиям $m_A = 28$ ГэВ, $m_h = 125$ ГэВ в пределе настройки связей

BP	$\lg \beta$	M_S , ГэВ	$A_{t,b},$ ГэВ	μ , ГэВ
1	2	2000	8800	5320
2	3	2000	7820	6450
3	5	1000	3385	5040
4	5	2000	6690	7960

Примечание. Для численных оценок использовались значения $m_Z = 91.187$ ГэВ, $m_t =$ = 173.3 ГэВ, $m_b = 4.92$ ГэВ, e = 0.3082, $g_S = 1.2772$, $\sin \theta_W = 0.472$ и соотношения $g^2 = (e/\sin \theta_W)^2 + (e/\cos \theta_W)^2$, $g_2 =$ $= g \cos \theta_W$, $g_1 = g_2 \operatorname{tg} \theta_W$, $m_W = m_Z \cos \theta_W$, v = $= 2m_W \sin \theta_W/e$.

ми, содержащими коэффициенты $A_{t,b}^2/M_S^2$ и μ^2/M_S^2 , а не в значении поправок, например, к калибровочным константам связи g_1 и g_2 .

Численная оценка масс бозонов Хиггса, угла смешивания α , а также выполнение условия пертурбативной унитарности представлены в табл. 2 для разЖЭТФ, том 158, вып. 6 (12), 2020

Таблица 2. Массы бозонов Хиггса, угол смешивания, максимальное значение парциальных амплитуд a_0 при $\sqrt{s} = 13$ ТэВ и константы связи взаимодействия тяжелого СР-четного бозона Хиггса с калибровочными бозонами и верхними (u) и нижними (d) кварками в пределе настройки связей при разложении хиггсовского потенциала до операторов $U^{(4)}$ и $U^{(6)}$ для параметрических наборов BP1–BP4,

где $m_A = 28$ ГэВ, $m_h = 125$ ГэВ

Прибл.	BP1	BP2	BP3	BP4
$U^{(6)}$				
m_h , ГэВ	125.0	125.4	125.0	125.0
m_H , ГэВ	134.4	132.2	127.6	130.4
$m_{H^{\pm}}, \Gamma$ эВ	129.7	130.0	127.4	131.2
α	-0.320	-0.288	-0.180	-0.195
$\max(a_0)$	0.184	0.140	0.355	0.145
g_{Huu}	-0.352	-0.299	-0.183	-0.198
g_{Hdd}	2.123	3.032	5.017	5.002
g_{HVV}	0.143	0.034	0.017	0.002
$U^{(4)}$				
m_h , ГэВ	119.5	121.9	104.3	123.0
m_H , ГэВ	141.8	135.2	131.8	131.2
$m_{H^{\pm}}, \Gamma$ эВ	130.5	130.4	130.7	131.4
α	-0.293	-0.283	-0.225	-0.217
$\max(a_0)$	0.158	0.121	0.341	0.129
g_{Huu}	-0.323	-0.294	-0.228	-0.220
g_{Hdd}	2.141	3.036	4.970	4.979
g_{HVV}	0.170	0.039	-0.028	-0.020

ложения потенциала Хиггса до операторов $U^{(4)}$ и $U^{(6)}$. Массы бозонов H и H^{\pm} , как видно, не отщеплены и имеют значения 130–150 ГэВ, что требует аккуратного анализа в свете имеющихся экспериментальных данных. Важно отметить, что существующие экспериментальные ограничения получены модельно-зависимыми методами в параметрическом режиме МССМ, отличном от представленного в табл. 1. Анализ имеющихся модельно-независимых данных в новом режиме требует дополнительных исследований. Интерпретация экспериментального анализа, выполненного коллаборацией CMS при энергии $\sqrt{s} = 13$ ТэВ и интегральной светимости 35.9 фбн⁻¹ в канале $H \to ZA \to l^+ l^- b \bar{b}$, в рамках ДДМ типа II при tg $\beta = 1.5$ и $\cos(\beta - \alpha) = 0.01$ [60] позволяет сравнить полученное ограничение с предсказаниями для наиболее близкого параметрического набора ВР1. При $m_A = 30$ ГэВ ограничение сверху для массы тяжелого СР-четного бозона Хиггса не превышает 150 ГэВ. Из табл. 2 видно, что этому ограничению удовлетворяют все рассматриваемые параметрические наборы, в частности, для BP1 $m_H = 141.8 \ (134.4)$ ГэВ в приближении $U^{(4)} \ (U^{(6)}).$ Характерные константы связи тяжелого СР-четного бозона Хиггса с частицами СМ, определяемые соотношениями $g_{Huu} = \sin \alpha / \sin \beta$, $g_{Hdd} = \cos \alpha / \cos \beta$, $g_{HVV} = \cos(\beta - \alpha)$ [54], представлены в табл. 2. Как и следует ожидать, в рассматриваемых сценариях взаимодействие Н с калибровочными бозонами W, Z мало, так как в пределе настройки связей $\cos(\beta - \alpha) \approx 0$. Взаимодействие *H* с нижними кварками (d) в 2-5 раз выше соответствующего взаимодействия бозона Хиггса CM, а взаимодействие с верхними кварками (и) противоположно по знаку и на порядок меньше соответствующего взаимодействия в СМ.

3.2. Ограничение на массу заряженного бозона Хиггса в процессах с участием топ-кварка

Полезно сравнить теоретические оценки для массы заряженного бозона Хиггса, полученные выше, с существующими экспериментальными ограничениями в процессах с участием топ-кварка. Поскольку $m_{H^{\pm}} < m_t$ для всех наборов параметров (см. табл. 2), основным механизмом рождения заряженного бозона является процесс распада топ-кварка на b-кварк и H^+ . В рассматриваемом нами сценарии МССМ с легким псевдоскаляром заряженный бозон преимущественно распадается на псевдоскаляр A и бозон W^+ (парциальная вероятность составляет 90-99%). Как уже упоминалось во Введении, анализ коллаборации CMS при энергии $\sqrt{s} = 13$ ТэВ и интегральной светимости 35.9 фбн⁻¹ в приближении бесконечно малых ширин t и H^{\pm} дает ограничение на $\operatorname{Br}(t \to bH^+)\operatorname{Br}(H^+ \to W^+A)\operatorname{Br}(A \to \mu^+\mu^-)$ от $1.9 \cdot 10^{-6}$ до $8.6 \cdot 10^{-6}$ в зависимости от масс m_{H^+} и m_A , где m_{H^+} меняется от $m_A + 85$ ГэВ до 160 ГэВ, m_A — от 15 до 75 ГэВ [3]. Существенно, что ограничения на сечения рождения состояний еµµ и µµµ получены при фиксированном условии $Br(A \rightarrow \mu^+\mu^-) = 3 \cdot 10^{-4}$, представляющем некое условное усредненное значение, взятое на основе анализа публикаций, использующих общую (несуперсимметричную) двухдублетную модель или же расширение НМССМ. С учетом этого верхнее ограничение на значение бренчинга сигнала составляет $\operatorname{Br}(t \to bH^+)\operatorname{Br}(H^+ \to W^+A) \leq 2.9\%$ (95% CL) [3]. В рамках рассматриваемой модели все парциальные вероятности рассчитываются точно, что дает для точек ВР1–ВР4 значения для Br($t \rightarrow bH^+$)Br($H^+ \rightarrow W^+A$) в размере 2.67%, 1.26%, 0.73% и 0.65% соответственно. Парциальная вероятность распада $A \rightarrow \mu^+\mu^$ в рассматриваемой модели равна 0.02%, вследствие чего для произведения трех бренчингов Br($t \rightarrow bH^+$)Br($H^+ \rightarrow W^+A$)Br($A \rightarrow \mu^+\mu^-$) получаем 5.36, 2.52, 1.46 и 1.30 в единицах 10⁻⁶ для точек пространства параметров ВР1–ВР4 соответственно. Таким образом, только ВР1 находится довольно близко к границе исключения [3], а ВР2–ВР4 удовлетворяют ограничению⁶.

Имеются также более слабые ограничения для конечных состояний с τ -лептонами. Ограничения сверху для $\operatorname{Br}(t \to H^+b)\operatorname{Br}(H^+ \to \tau^+\nu_{\tau})$, полученные коллаборациями ATLAS и CMS в предположении tg $\beta \geq 5^{7}$, составляют 1.3–0.2% [61] и 1.2–0.5% [62] соответственно. Численные значения $\operatorname{Br}(t \to H^+b)\operatorname{Br}(H^+ \to \tau^+\nu_{\tau})$ для соответствующих параметрических наборов составляют 0.13% (BP3) и 0.09% (BP4).

Таким образом, текущие экспериментальные ограничения для дважды резонансных амплитуд процессов заряженный бозон Хиггса-топ-кварк не противоречат следствиям рассматриваемого сценария MCCM с легким бозоном A.

3.3. Сечения при $\sqrt{s} = 8$ и 13 ТэВ

Как было отмечено выше, отклонение CMS [1] при инвариантной массе 28 ГэВ наблюдалось в двух категориях событий: со струей, направленной вперед, (категория SR1) и без таковой (категория SR2) (см. табл. 1 работы [1]). Измеренные сечения с точностью ±1 стандартное отклонение имеют следующие значения: 4.1 ± 1.4 фбн (SR1), 4.2 ± 1.7 фбн (SR2) при $\sqrt{s} = 8$ ТэВ и 1.4 ± 0.9 фбн (SR1), -1.5 ± 1.0 фбн (SR2) при $\sqrt{s} = 13$ ТэВ.

В дальнейшем будем предполагать, что наблюдаемое отклонение проявляется в процессе $pp \rightarrow \mu^+ \mu^- b\bar{b}$ с промежуточным псевдоскаляром A, см. рис. 2.

Для сравнения сечений с результатами численных расчетов для отобранных параметрических наборов BP1–BP4 были выбраны следующие категории кинематических обрезаний:

 $^{^{6)}}$ Cm. также замечание в сноске 2 во Введении.

 $^{^{7)}}$ При средних значениях tg β основной модой распада заряженного бозона Хиггса в проведенном анализе считалась $\tau^+\nu_{\tau}.$

Рис. 2. Диаграммы сигнала процесса $pp o \mu^+ \mu^- b \bar{b}$, где $A - {
m CP}$ -нечетный бозон Хиггса

- μ : $p_T > 25 \ \Gamma \Im B$, $|\eta| < 2.1, m_{\mu^+\mu^-} > 12 \ \Gamma \Im B$;
- b: $p_T > 30 \ \Gamma \Rightarrow B, \ |\eta| \le 2.4;$
- $\bar{b}: p_T > 30 \ \Gamma \Im B, \ 2.4 \le |\eta| \le 4.7 \ (SR1), |\eta| \le 2.4 \ (SR2).$

Для оценки вклада сигнала и неприводимого фона процесса $pp \rightarrow \mu^+ \mu^- b\bar{b}$ в сечения ниже приведены следующие обрезания:

SR1a (SR2a): все неприводимые фоновые диаграммы с промежуточными фотонами и калибровочными бозонами исключены, рассматривается категория событий SR1 (SR2, 25 ГэВ $\leq m_{\mu^+\mu^-} \leq \leq 32$ ГэВ);

SR1b (SR2b): все древесные диаграммы учтены, обрезания на фазовое пространство определены для категории событий SR1 (SR2);

SR2c: все древесные диаграммы учтены, обрезания на фазовое пространство определены для категории событий SR2, 25 ГэВ $\leq m_{\mu^+\mu^-} \leq 32$ ГэВ.

Расчет полного набора древесных диаграмм — 13 партонных подпроцессов — был выполнен с помощью программы CompHEP [12] в рамках модели MCCM, учитывающей дополнительные операторы размерности шесть в разложении хиггсовского потенциала. Генерация правил Фейнмана проводилась при помощи пакета LanHEP [63].

Основной вклад в силу сигнала дает глюонное слияние $gg \to b\bar{b}A$ с последующим распадом легкого псевдоскаляра в два мюона, см. рис. 2. Подпроцессы с кварками в начальном состоянии увеличивают значение сечения на 3–4%. Численные оценки представлены в табл. 3 и 4 для процессов $gg \to b\bar{b}A$ и $gg \to \mu^+\mu^-b\bar{b}$ соответственно.

Сечения с учетом обрезаний SR1a, SR2a процесса 2 \rightarrow 4, где основной вклад вносят диаграммы сигнала, порядка 0.01–0.40 фбн при $\sqrt{s} = 8$ ТэВ и 0.03–0.90 фбн при $\sqrt{s} = 13$ ТэВ и совпадают с результатами в приближении бесконечно малой ширины $\sigma(pp \rightarrow b\bar{b}A)\text{Br}(A \rightarrow \mu^+\mu^-)$, представленными в табл. 3.

Таблица 3. Численные оценки сечения процесса $pp(gg) \rightarrow b\bar{b}A$ с последующим распадом $A \rightarrow \mu^+\mu^-$, $\sigma(gg \rightarrow b\bar{b}A)\mathrm{Br}(A \rightarrow \mu^+\mu^-)$, где $\mathrm{Br}(A \rightarrow \mu^+\mu^-) = 1.6 \cdot 10^{-4}$. Использованы CompHEP-наборы PDF:сteq611:4:58 в рамках схемы с четырьмя ароматами кварков

	SR1		SR2	
$\operatorname{tg}\beta$	σ ,	σBr ,	$\sigma,$	σBr ,
	фбн	фбн	фбн	фбн
	$\sqrt{s} = 8$ TəB			
2	56.63	0.009	386.27	0.062
3	127.19	0.020	870.73	0.139
5	355.90	0.057	2423.10	0.388
	$\sqrt{s} = 13 \text{ T} \Rightarrow \text{B}$			
2	165.68	0.026	904.65	0.145
3	370.38	0.059	2021.10	0.323
5	1040.88	0.167	5640.90	0.903

Таблица 4. Численные оценки сечения $\sigma(pp(gg) \rightarrow \mu^+ \mu^- b \bar{b})$ [фбн] для параметрических наборов ВР1–ВР4 с учетом обрезаний SR1a–SR2c. Использованы CompHEP-наборы PDF:cteq611:4:58 в рамках схемы с четырьмя ароматами кварков. Относительная 1 σ -ошибка вычисления методом Монте-Карло сечений сигнала и фона порядка одного процента

	SR1		SR2			
BP	SR1a	SR1b	SR2a	SR2b	SR2c	
	$\sqrt{s} = 8 \text{ T}$ əB					
1	0.009	10.382	0.065	246.671	0.730	
2	0.020	10.581	0.134	251.665	0.742	
3	0.056	10.560	0.384	248.419	0.758	
4	0.057	10.361	0.387	251.166	0.769	
	$\sqrt{s} = 13 \text{ T}$ əB					
1	0.027	47.237	0.148	598.979	1.887	
2	0.058	47.902	0.310	597.789	1.903	
3	0.165	47.854	0.902	588.867	1.972	
4	0.191	47.046	0.905	599.574	1.970	

Сечения с учетом обрезаний SR1b, SR2b, SR2c для полного набора древесных диаграмм $2 \rightarrow 4$ с промежуточными A-, Z-бозонами и фотоном содержат большой плоский фон, на котором присутствует небольшой пик сигнала. Они чувствительны к обрезанию по инвариантной массе $m_{\mu^+\mu^-}$, что отражено в результатах для обрезаний SR2b и SR2c.

4. ЗАКЛЮЧЕНИЕ

В заключение подведем итоги анализа в рамках MCCM отклонения CMS при инвариантной массе 28 ГэВ пары $\mu^+\mu^-$.

1. Существование легкого псевдоскаляра МССМ с массой $m_A = 28$ ГэВ возможно только при учете дополнительных пороговых поправок, индуцированных операторами размерности шесть в разложении однопетлевого эффективного хиггсовского потенциала МССМ.

2. Характерные параметрические режимы, соответствующие легкому псевдоскаляру МССМ в пределе настройки связей h(125), определены следующим образом: $M_S \sim 1-2$ ТэВ, tg $\beta \sim 2-5$, $A_{t,b}, \mu \sim 3-9$ ТэВ. В хиггсовском секторе такой выбор параметров удовлетворяет условиям существования локального минимума и пертурбативной унитарности, модифицированным с учетом операторов $U^{(6)}$.

3. Массы тяжелого СР-четного H- и заряженных H^{\pm} -бозонов Хиггса порядка масштаба электрослабого взаимодействия. При этом численные оценки не противоречат модельно-независимым экспериментальным данным, полученным на БАК.

4. Сечение процесса $pp \rightarrow \mu^+\mu^-b\bar{b}$ с промежуточным СР-нечетным бозоном Хиггса порядка 0.01–0.40 фбн и 0.03–0.90 фбн при $\sqrt{s} = 8$ и 13 ТэВ соответственно, что от нескольких раз до 1–2 порядков меньше оцененного коллаборацией СМS для отклонения при 28 ГэВ. С увеличением энергии до $\sqrt{s} = 13$ ТэВ сечение рождения псевдоскаляра растет медленнее, чем фон, что ухудшает достоверность сигнала.

Выше уже упоминалось, что сечение чувствительно к эффективности мюонного триггера и идентификации струй *b*-кварков, которые сильно влияют на достоверность такого слабого сигнала. Реконструкция подобного рода выходит за пределы настоящей работы. Помимо факторов, связанных с реконструкцией конечного состояния, отметим более чем вероятную возможность больших радиационных поправок в полные ширины скаляров и парциальные вероятности распадов, что очевидно из имеющегося опыта расчетов для состояния $h(125 \ \Gamma \to B)$ уже в рамках стандартной модели. Как известно, например, КХД-поправки СМ в парциальную ширину $h \to \bar{b}b$ уровней NLO (следующего за лидирующим) и NNLO (следующего за NLO), улучшенные при помощи ренормгруппы [64], велики и приводят к росту ${\rm Br}(h \to \gamma \gamma)$ более чем в два раза, КХДпоправки к $h \to qq$ дают K-фактор эффективного лагранжиана ggh, равный 1.7 [65] и модифицирующий парциальную ширину множителем K^2 , необходимо принимать во внимание также меньшие по величине электрослабые поправки и т.п. Из имеющегося опыта расчетов уровней NLO и NNLO следует, что результаты древесного уровня могут быть существенно модифицированы в сторону увеличения. Масштаб модификации такого рода сложно оценить без детальных вычислений.

5. В силу наличия канала распада $h \to AA$ численные оценки древесной двухчастичной общей пирины $\Gamma_{h(125)}$ дают значение порядка 1 ГэВ. Экспериментальная точность Γ_h из измерений на массовой поверхности [66] соответствует этому значению, хотя и хуже, чем ограничения из анализа за рамками приближения бесконечно малой ширины [67] с константами связи СМ. Древесный результат $\Gamma(h \to AA)$ сильно зависит от радиационных поправок⁸⁾. Таким образом, вопрос о вкладе $h \to AA$ в Γ_h в обсуждаемом параметрическом режиме заслуживает детального исследования.

С учетом изложенного выше основным результатом настоящей работы представляется новый параметрический режим расширенного эффективного хиггсовского потенциала МССМ (1), вследствие которого возможно появление легкого СР-нечетного скаляра с массой 28 ГэВ. Примерами, реализующими новый режим, являются параметрические наборы BP1-BP4, которые непротиворечивым образом удовлетворяют совокупности требований (разд. 3), обусловленных существованием физических состояний в двухдублетном секторе Хиггса, пертурбативной унитарности, а также совокупности ограничений, следующих из полученных в самое последнее время экспериментальных данных коллабораций ATLAS и CMS. Новый режим можно охарактеризовать как «режим сильной связи» и в эффективном потенциале, и в секторе суперпартнеров кварков третьего поколения, взаимодействующих с бозонами Хиггса. Отметим, что

 $^{^{8)}}$ Например, смещение сильной константы связи g_s на 0.1 уменьшает фактор при вершине взаимодействия приблизительно в два раза.

предлагаемый режим сильно отличается от традиционно рассматриваемых в литературе иерархий масс МССМ с очень большим расщеплением масс скаляров на масштабах от нескольких до 10 ТэВ. По этой причине существующие пакеты программ встречаются с трудностями воспроизведения сценариев МССМ с легким псевдоскаляром, поскольку не содержат вкладов эффективных операторов размерности шесть в хиггсовском секторе и не ориентированы на вычисления спектра масс при $m_A < m_h$ для всех используемых вариантов учета радиационных поправок. Наиболее существенным открытым вопросом остается степень точности используемого в настоящей работе древесного приближения для полных наборов диаграмм (приближения LO), которое, по всей видимости, дает заниженные величины сечений. Для надежных заключений о сечениях рождения и достоверности сигнала необходим аккуратный учет радиационных поправок NLO и NNLO в ширины скалярных состояний МССМ, что выходит за рамки настоящей работы.

Благодарности. Авторы выражают благодарность О. Кодоловой, А. Никитенко, Х. Балю, Г. Вайгляйну за полезные обсуждения.

Финансирование. Исследование выполнено при финансовой поддержке Российского научного фонда (проект № 16-12-10280).

ЛИТЕРАТУРА

- CMS Collaboration, J. High Energy Phys. 1811, 161 (2018); J. High Energy Phys. 1711, 010 (2017).
- ATLAS Collaboration, ATLAS-CONF-2019-036, https://cds.cern.ch/record/2684853.
- CMS Collaboration, Phys. Rev. Lett. 123, 131802 (2019).
- CMS Collaboration, Phys. Lett. B 798, 134992 (2019).
- M. Carena, S. Heinemeyer, O. Stal et al., Eur. Phys. J. C 73, 2552 (2013).
- A. Djouadi, L. Maiani, A. Polosa et al., J. High Energy Phys. 1506, 168 (2015).
- 7. CMS Collaboration, arXiv:1911.03781[hep-ex].
- CMS Collaboration, J. High Energy Phys. 1905, 210 (2019).
- CMS Collaboration, J. High Energy Phys. 1711, 010 (2017).

- 10. A. Heister, arXiv: 1610.06536 [hep-ex].
- S. Hoche, S. Kuttimalai, S. Schumann et al., Eur. Phys. J. C 75, 135 (2015).
- CompHEP Collaboration, Nucl. Instr. Meth. A 534, 250 (2004); A. Pukhov, E. Boos, M. Dubinin et al., arXiv:hep-ph/9908288.
- LEP Collaborations ALEPH, DELPHI, L3 et al., Eur. Phys. J. C 47, 547 (2006).
- 14. M. Carena, S. Heinemeyer, C. E. M. Wagner et al., Eur. Phys. J. C 26, 601 (2003).
- E. Akhmetzyanova, M. Dolgopolov, and M. Dubinin, Phys. Part. Nucl. 37, 677 (2006).
- 16. C. Beskidt, W. de Boer, and D. I. Kazakov, Phys. Lett. B 782, 69 (2018).
- 17. S. I. Godunov, V. A. Novikov, M. I. Vysotsky et al., JETP Lett. 109, 358 (2019).
- A. Arhrib, R. Benbrik, W. Klemm et al., arXiv:1909. 12405 [hep-ph].
- **19**. E. van Beveren and G. Rupp, arXiv:1811.02274 [hep-ph].
- **20**. G. Lee and C. Wagner, *MhEFT Package*, http://gabrlee.com/code (2016).
- 21. G. Lee and C. E. M. Wagner, Phys. Rev. D 92, 075032 (2015).
- 22. J. F. Gunion and H. E. Haber, Phys. Rev. D 67, 075019 (2003).
- 23. S. Heinemeyer, W. Hollik, and G. Weiglein, Comput. Phys. Comm. 124, 76 (2000).
- 24. H. Bahl and W. Hollik, Eur. Phys. J. C 76, 499 (2016).
- 25. H. Bahl and W. Hollik, J. High Energy Phys. 1807, 182 (2018).
- 26. M. N. Dubinin and E. Yu. Petrova, Int. J. Mod. Phys. A 33, 1850150 (2018).
- 27. ATLAS Collaboration, Phys. Lett. B 716, 1 (2012).
- 28. CMS Collaboration, Phys. Lett. B 716, 30 (2012).
- 29. ATLAS and CMS Collaborations, J. High Energy Phys. 1608, 045 (2016).
- ATLAS and CMS Collaborations, Phys. Rev. Lett. 114, 191803 (2015).
- 31. J. Brandstetter, arXiv:1801.07926v1 [hep-ex].
- 32. M. Malberti, Nuovo Cim. C 40, 182 (2017).

- 33. S. Coleman and E. Weinberg, Phys. Rev. D 7, 1888 (1973).
- 34. H. E. Haber and R. Hempfling, Phys. Rev. D 48, 4280 (1993).
- 35. M. Carena, J. Ellis, A. Pilaftsis et al., Nucl. Phys. B 586, 92 (2000).
- 36. S. Y. Choi, M. Drees, and J. S. Lee, Phys. Lett. B 481, 57 (2000).
- 37. M. Carena, M. Quiros, and C. E. M. Wagner, Nucl. Phys. B 461, 407 (1996).
- 38. M. Carena, J. R. Espinosa, M. Quiros et al., Phys. Lett. B 355, 209 (1995).
- 39. E. Akhmetzyanova, M. Dolgopolov, and M. Dubinin, Phys. Rev. D 71, 075008 (2005).
- 40. M. N. Dubinin and E. Yu. Petrova, Yad. Phys. 79, 302 (2016).
- 41. M. N. Dubinin and E. Yu. Petrova, Phys. Rev. D 95, 055021 (2017).
- 42. A. Djouadi, Phys. Rep. 459, 1 (2008).
- 43. H. Haber and G. Kane, Phys. Rep. 117, 75 (1985).
- 44. M. N. Dubinin and E. Yu. Petrova, EPJ Web Conf. 158, 02005 (2017).
- 45. M. Misiak and M. Steinhauser, Eur. Phys. J. C 77, 201 (2017).
- 46. Particle Data Group, Chin. Phys. C 40, 100001 (2016).
- 47. B. W. Lee, C. Quigg, and H. B. Thacker, Phys. Rev. D 16, 1519 (1977).
- 48. I. F. Ginzburg and I. P. Ivanov, Phys. Rev. D 72, 115010 (2005).
- 49. A. G. Akeroyd, A. Arhrib, and E. Naimi, Phys. Lett. B 490, 119 (2000).
- 50. M. D. Goodsell and F. Staub, Eur. Phys. J. C 78, 649 (2018); M. E. Krauss and F. Staub, Phys. Rev. D 98, 015041 (2018).
- 51. F. Staub, Phys. Lett. B 789, 2013 (2019).
- 52. S. Kanemura and K. Yagyu, Phys. Lett. B 751, 289 (2015).

- 53. M. Carena, H. E. Haber, I. Low et al., Phys. Rev. D 91, 035003 (2015).
- 54. D. Asner et al., in 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), ed. by N. A. Graf, M. E. Peskin, and J. L. Rosner, Minneapolis (2013), p. 1.
- CMS Collaboration, J. High Energy Phys. **1910**, 244 (2019).
- 56. CMS Collaboration, arXiv:1912.08887 [hep-ex].
- 57. G. Lee and C. E. M. Wagner, Phys. Rev. D 92, 075032 (2015).
- 58. E. Bagnaschi, F. Brümmer, W. Buchmüller et al., J. High Energy Phys. 1603, 158 (2016).
- 59. H. Bahl, S. Liebler, and T. Stefaniak, Eur. Phys. J. C 79, 279 (2019).
- CMS Collaboration, J. High Energy Phys. 2003, 055 (2020); 1911.03781 [hep-ex]; CMS PAS HIG-18-012 (2019).
- ATLAS Collaboration, J. High Energy Phys. 1503, 088 (2015); Eur. Phys. J. C 73, 2465 (2013).
- 62. CMS Collaboration, J. High Energy Phys. 1511, 018 (2015).
- 63. A. Semenov, Nucl. Instr. Meth. A 393, 293 (1997);
 Comput. Phys. Comm. 115, 124 (1998); arXiv:1005.
 1909 [hep-ph].
- 64. A. L. Kataev and V. T. Kim, Mod. Phys. Lett. A 9, 1309 (1994); N. Gray, D. Broadhurst, W. Grafe et al., Z. Phys. C 48, 673 (1990); S. Gorishny, A. L. Kataev, S. Larin et al., Mod. Phys. Lett. A 5, 2703 (1990).
- 65. A. Djouadi, M. Spira, and P. Zerwas, Phys. Lett. B 264, 440 (1991).
- CMS Collaboration, J. High Energy Phys. 1711, 047 (2017); ATLAS Collaboration, Phys. Rev. D 90, 052004 (2014).
- 67. J. M. Campbell, R. K. Ellis, and C. Williams, J. High Energy Phys. 1404, 060 (2014); F. Caola and K. Melnikov, Phys. Rev. D 88, 054024 (2013); N. Kauer and G. Passarino, J. High Energy Phys. 1208, 116 (2012).