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In a linear magnetoelectric material, an applied
electric field induces a magnetization linearly propor-
tional to the field strength, and an applied magnetic
field induces a corresponding linear electric polariza-
tion. The first mention of the phenomenon, to our
knowledge, is in the original 1958 edition of the clas-
sic Electrodynamics of Continuous Media by Landau
and Lifshitz [1], with the brief statement that an effect
resulting from a linear relation between the magnetic
and electric fields in a substance is possible in princi-
ple. Soon after, Dzyaloshinskii proved using symmetry
arguments that the behavior should occur in chromia,
Cr2O3 [2]. This was then the material of choice for the
first experimental demonstration of the linear magne-
toelectric effect by Astrov [3].

A symmetry requirement for the existence of a lin-
ear magnetoelectric response is that both time-reversal,
T , and space-inversion, P , symmetries are broken. This
condition is the same as that for a non-zero magneto-
electric multipole tensor, Mij =

∫
riμj(r) d

3r, which
is the second order coefficient in the multipole expan-
sion of the energy of a spatially varying magnetization,
μ(r), in a spatially varying magnetic field, H(r) [4–6]:
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Energy =−
∫

μ(r) ·H(r) d3r =

=−
∫

μ(r) ·H(0) d3r−

−
∫
riμj(r)∂iHj(0) d

3r − . . . (1)

Here, the expansion in powers of the field gradients is
calculated at some arbitrary reference point r = 0, and
i, j are Cartesian directions with summation over re-
peated indices implied. The usual magnetic dipole mo-
ment, m =

∫
μ(r)d3r appears in the first term of the

expansion of Eq. (1); the Mij tensor appears in the
second term. When appropriately normalized by the
volume in the case of bulk, periodic systems we will
call it the magnetoelectric multipolization, by analogy
with the magnetization or polarization. It provides a
bulk, thermodynamic quantity associated with “mag-
netoelectricness”, complementing the usual definition
of magnetoelectricity as a response function.

One scenario in which this thermodynamic aspect
manifests, which was pointed out by Dzyaloshinskii in
1992 [7], is in the power-law decay of the external mag-
netic field around an antiferromagnetic material with a
net non-zero magnetoelectric multipolization. Power-
law behavior is fundamentally different from the ex-
ponential field decay expected around a conventional
centro- or time-reversal symmetric antiferromagnet [7].
In the particular case of the prototypical magnetoelec-
tric Cr2O3, which is uniaxial and has non-zero magne-
toelectric multipolization below its Néel temperature,
Dzyaloshinskii showed that the external field should
have the angular form of a magnetic quadrupole. As in
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Fig. 1. a) Surface charge associated with ferroelectric polarization, P. b) Surface magnetic dipole moment associated with
magnetoelectric multipolization, Mzz, which can be represented as the sum of a magnetoelectric monopole and z2 quadrupole.
The − signs, + signs and small black arrows on the surfaces indicate negative charge, positive charge and magnetic dipole
moments. The ferroelectric has negative charge on its lower surface and positive charge on its upper surface; the magnetoelectric

has positive magnetic dipole moments (pointing outwards from the sample) on both its upper and lower surfaces

the case of the original magnetoelectric response predic-
tion, this was subsequently confirmed by Astrov [8, 9],
although the measured field strength was smaller in
magnitude than predicted. The intrinsic bulk nature
of the measured external field dependence was sub-
sequently questioned, however, when it was pointed
out that any antiferromagnet can in principle have a
surface magnetization that, depending on the sample
shape and choice of surface termination, could give rise
to a magnetic field [10]. The discussion was further
enriched by recent theoretical demonstrations that cer-
tain surfaces of a magnetoelectric antiferromagnet will
always have a surface magnetization [11] and associ-
ated external magnetic field [12] as a consequence of
the bulk magnetoelectric multipolization.

In this paper, we revisit Dzyaloshinskii’s pioneer-
ing work on the linear magnetoelectric effect in light
of the modern theory of ferroelectric polarization, and
approach the description of the surface magnetism of
magnetoelectric antiferromagnets by making a corre-
spondence with the surfaces of ferroelectrics. We show
that the surface magnetic dipole moment associated
with magnetoelectric materials is analogous to the
bound surface charge in ferroelectrics, in that it can

be conveniently described in terms of the bulk magne-
toelectric multipolization that is analogous to the fer-
roelectric polarization. We define the intrinsic surface
magnetization to be this surface magnetic dipole mo-
ment per unit area, and provide a convenient recipe
for extracting it for any surface plane, from knowledge
of the bulk magnetic order. We demonstrate the pro-
cedure for the prototypical magnetoelectric material,
Cr2O3, in which Dzyaloshinskii first identified the lin-
ear magnetoelectric effect, and compare the value of the
intrinsic surface magnetization to recent experimental
measurements. Finally, we show that the description is
also relevant for non-magnetoelectric antiferromagnets,
allowing a classification into one of two types with fun-
damentally different surface magnetic properties: the
trivial case, in which the allowed magnetoelectric mul-
tipolization values contains zero, and non-trivial anti-
ferromagnets whose magnetoelectric multipolization is
non-zero, in spite of their not being magnetoelectric.

From a quick glance at the units of electric polar-
ization, which are dipole moment per unit volume or
equivalently charge per unit area, it is clear that a sur-
face perpendicular to the polarization direction in a
ferroelectric material carries a bound charge per unit
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Fig. 2. (Color online) A semi-infinite slab of Cr2O3 with a
(0001) surface, shown projected down the y axis. Cr and O
ions are shown in blue and red respectively, and the arrows in-
dicate the directions of the local magnetic moments on the Cr
ions. The symbol . . . (black dots) indicate continuation of the
structure. The black rectangle shows a choice of hexagonal
unit cell, which, in combination with the numbered Cr ions,

can be periodically repeated to tile the slab

area equal to the value of the polarization, with the sign
of the surface charge given by the direction of polariza-
tion, as shown in Fig. 1a. (For a rigorous derivation
see Ref. [13].)

While the ferroelectric polarization has units of
charge per unit area, the magnetoelectric multipoliza-
tion, or magnetoelectric multipole per unit volume, has
units of magnetic dipole moment per unit area. There-
fore, by analogy with the ferroelectric case, the surface
of a magnetoelectric should have a magnetic dipole mo-
ment per unit area, whose size and orientation depends
on the bulk magnetoelectric multipolization. We refer
to this as the intrinsic surface magnetization, since it re-
sults from a bulk property of the material; it is this sur-
face magnetization that was discussed in Ref. [11]. In
Fig. 1b we illustrate the analogy with ferroelectricity for
the case of a uniaxial magnetoelectric such as Cr2O3 in
which the Mzz component of the magnetoelectric mul-
tipolization tensor (which can be decomposed into the
magnetoelectric monopolar and z2 quadrupolar contri-
butions shown) is non-zero. The Mzz component re-
sults in a z-oriented magnetic moment pointing away
from the sample on the (001) and (001̄) surfaces in this
example.

Our procedure for extracting the surface magnetiza-
tion of a semi-infinite slab of an antiferromagnet from
its bulk magnetoelectric multipolization follows that
for determining the surface charge from the bulk ferro-

electric polarization [14, 15]. For a particular choice of
surface plane orientation and atomic termination, we
identify the unit cell that tiles the semi-infinite slab;
an example for the (0001) surface of Cr2O3 is shown in
Fig. 2. We then calculate the magnetoelectric multi-
pole of that unit cell, and normalize it to the unit cell
volume; by analogy with the ferroelectric case we call
this Mbulk. For the illustrated surface, domain and
unit cell of Cr2O3, only Mbulk

zz is non-zero, and it has
the value −2.35μB/nm2 (taking the atomic positions
and lattice parameters from Ref. [16]). The surface
magnetic dipole per unit area, which we define to be
the intrinsic surface magnetization, can then be read
off directly from the i, j components of the Mbulk ten-
sor, with the first index, i, indicating the x, y or z
orientation of the surface magnetic dipole moments at
the surface plane normal to the second index, j. For
the case of Cr2O3 both (0001) surfaces shown have a
surface magnetization of 2.35μB/nm2 pointing into the
sample.

In the full manuscript, the procedure is also ap-
plied to calculation of the interfacial magnetism in het-
erostructures of Fe2O3/Cr2O3, and to model non-mag-
netoelectric systems.
Summary and outlook. In summary, we re-

viewed the phenomenology of magnetoelectric multi-
polization in bulk, periodic solids, and provided an
analogy with various aspects of the ferroelectric po-
larization. We showed that the analogy provides a par-
ticularly convenient picture of the surface magnetiza-
tion that is associated with magnetoelectric materials
[10, 11], and we provided the following straightforward
recipe to extract it from the bulk magnetoelectric mul-
tipolization for a given surface plane:

1) for the surface plane and chemistry of interest,
identify the unit cell and ionic basis that tiles a semi-
infinite slab of the system;

2) calculate the components of the bulk magneto-
electric multipolization, Mbulk

ij , using this unit cell and
basis of ions, and normalizing it to the unit cell volume;

3) the non-zero components of Mbulk
ij that have a

contribution normal to the surface plane then give di-
rectly the size and orientation of the intrinsic surface
magnetization.
We argued that such an intrinsic surface magnetiza-
tion is possible even at the surface or interface of a
non-magnetoelectric material, and distinguished two
cases: In non-magnetoelectric materials whose multi-
polization lattice contains zero it is always possible to
choose a stoichiometric termination with zero magnetic
moment for any choice of surface plane, although this
might not necessarily be the lowest energy termina-
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tion. In non-magnetoelectric materials whose multi-
polization lattice contains the half-multipolization in-
crement, in contrast, surface planes exist for which an
intrinsic magnetic moment can not be avoided for sto-
ichiometric terminations.

We mentioned some phenomena for which these
concepts might be relevant and which could provide
interesting directions for future work. In particular,
the intrinsic surface magnetization arising from the
magnetoelectric multipolization could have implica-
tions for the relative stability of antiferromagnetic
surfaces and interfaces, the formation of antiferromag-
netic domains, and the mechanism of exchange-bias
coupling. Finally, we suggested some experiments that
could be used to verify or disprove our proposals, and
we hope, in the spirit of Igor Dzyaloshinskii, that this
manuscript motivates future experimental work in
these directions.
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