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Many years have passed since the first observa-
tion of helical spin structures in cubic B20 com-
pounds FeGe [1] and MnSi [2]. However, helimagnets
with Dzyaloshinskii–Moriya (DM) interaction [3,4] are
among the most studied systems in contemporary con-
densed matter physics. In particular, this interest is
stimulated by rather simple but fancy phase diagram
which includes topologically lattice (A-phase) [5]. The
theoretical descriptions [6,7] pointed out that the com-
petition between the ferromagnetic exchange interac-
tion and the antisymmetric DM interaction is balanced
in the homochiral helical magnetic structure.

Mixed B20 compounds like Mn1−xFexSi or
Mn1−xFexGe are characterized by additional pa-
rameter x which allows fine tuning for the system
properties. In Mn1−xFexGe its variation leads to
change of the sign of magnetic chirality at xc ≈ 0.75

[8, 9], where the system is in ferromagnetic state due
to cubic anisotropy [10].

* E-mail: grigoryev_sv@pnpi.nrcki.ru

The isostructural solid solutions Mn1−xFexSi also
reveal intriguing properties upon Fe concentration
growth. The substitution of manganese by iron sup-
presses the helical order [11]. Neutron scattering stud-
ies [12, 13] together with magnetic susceptibility and
specific heat measurements [11, 14–16] discovered a
quantum critical point (QCP) described as a suppres-
sion of the spiral phase with long-range order (LRO)
in Mn1−xFexSi. As it was shown in Refs. [13, 15, 16],
this QCP located at xc ≈ 0.11–0.12 is hidden by an
extensive phase of spin helix fluctuations. This fluctu-
ation regime, sometimes referred to as chiral spin liquid
[17, 18], vanishes at about x ≈ 0.24.

Both magnetic susceptibility measurements
and neutron scattering experiments demonstrate
a short-range order (SRO) and a crossover to the
helix fluctuating regime [13, 19–21]. The crossover
temperature TDM decreases with x and becomes
zero at xDM ≈ 0.17 [12, 22]. It was shown that the
temperature TDM is proportional to the spin wave
stiffness of the compounds Mn1−xFexSi [23]. One
concludes that these compounds at x ∼ xDM ≈ 0.17

represent the only known example of the system,
where ferromagnetic exchange approaches zero but
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Fig. 1. (Color online) Temperature–concentration (T–x) phase
diagram of the Mn1−xFexSi compounds and the helix wave
vector k as a function of x. The data taken from several stu-
dies [12, 13, 23] are combined with data of the present work.

The dashed lines are the guides for an eye

DM interaction is finite and provides chiral rotation of
spins in magnetic fluctuations.

In the present paper, we study the critical fluctua-
tions in DM helimagnets Mn1−xFexSi by means of po-
larized neutron scattering. Three samples with x =

= 0.10, x = 0.15, and x = 0.20 are selected so as
to represent three different regimes: namely close to
the quantum critical point x ∼ xc, close to the con-
centration with zero ferromagnetic exchange xDM , and
beyond this concentration, respectively.

The series of Mn1−xFexSi single crystals with x =

= 0.10, 0.15, 0.20 were grown using the Czochralski
technique at the Institute of Condensed Matter Physics
(Braunschweig, Germany). These samples were pre-
pared as cylinders with a height of 15–20 mm and a
diameter of 5–6 mm.

The temperature–concentration (T –x) phase dia-
gram is shown in Fig. 1. One can see (in accord with
Refs. [13, 15, 16, 19]) that Tc, which indicates a phase
with LRO, reaches zero at xc ≈ 0.11–0.12, while the
temperature band of the fluctuating helix regime in-
creases with x. The decrease in Tc is accompanied by
the linear with x increase in the helix wave vector k, as
shown in Fig. 1.

The polarized small-angle neutron scattering
(SANS) was performed using the D22 instrument at
the Laue–Langevin Institute (Grenoble, France). The
[110] axis of the single crystal was oriented parallel to
the neutron beam with an accuracy of 5◦. A polarized
neutron beam with initial polarization P0 = 0.93 and
mean wavelength λ = 0.60 nm was used. The scattered

neutrons were detected with a 2D position sensitive
detector. The beam divergence was tuned from 1 to
10 mrad to set the Q-range and Q-resolution optimal
for an individual sample (Q is a momentum transfer).
With these settings, we were able to cover the Q-range
from 2 ·10−2 to 2 nm−1. A weak magnetic field (1 mT)
guiding the polarization P0 was applied along the Qx.
The temperature was set in the range from 1.7 to
60 K with accuracy of the order of 0.05 K. As a result,
we obtain the maps of polarized SANS intensities at
various temperatures for three samples with different
x. A background intensity maps were taken for all
samples at high temperature (T = 60 K) when no
magnetic scattering is observed. These background
maps were subtracted from the other scattering maps
of the given sample. The software GRASP developed
at the ILL (Grenoble) were used for the primary data
reduction [24].

Figure 2 shows the maps of the polarized SANS in-
tensities with the polarization along P0. One can fol-
low the evolution of the scattering patterns with tem-
perature (vertical axis) and the concentration (horizon-
tal axis). The whole diagram can be qualitatively de-
scribed in the following way. No scattering is observed
at the temperature of 15 K for all three concentra-
tions. Upon lowering temperature to 9 K, the blurred
but well detectable scattering appears for the sample
with x = 0.10, while the samples with x = 0.15 and
x = 0.20 show no scattering, demonstrating absence
of short-range magnetic correlations. Further temper-
ature lowering to 5 K forms a well-defined “half-moon”
image (which is typical for chiral helimagnets) for the
sample with x = 0.10. For the ones with x = 0.15 and
x = 0.20, it results in the appearance of the blurred im-
ages. At T = 2 K, the scattering for the sample with
x = 0.10 is almost the same, whereas for the sample
with x = 0.15, a slightly blurred half-moon image ap-
pears. For the most disordered sample with x = 0.20,
the image is still far from being well-defined half-moon.
We note that the scattering is strongly asymmetric in
all cases. The latter is typical for the critical scattering
above Tc in the MnSi system [20,21, 25].

Similarly to Ref. [26], we treated the obtained data
using the following mean-field form of the neutron cross
section which is appropriate for the disordered fluctu-
ating phase in these compounds (T > Tc) [20, 25]:

dσ

dΩ
=
r2T

A

k2 + κ2 +Q2 + 2 sgn (D) kQ ·P0[
(Q+ k)

2
+ κ2
] [

(Q− k)
2
+ κ2
] . (1)

Here Q is the scattering vector, r is the classical elect-
ron radius, κ is the inverse correlation length of the
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Fig. 2. (Color online) Maps of the polarized SANS intensities plotted on the T–x phase diagram for Mn1−xFexSi system for the
polarization P0 along the guide field
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Fig. 3. (Color online) Q-dependence of the azimuthally ave-
raged scattering intensity for the Mn1−xFexSi system with

x = 0.10, 0.15, 0.20 at T = 2.0 K

critical fluctuation, A is the spin wave stiffness at low
temperatures, D is the Dzyaloshinskii constant, and
P0 is the incident polarization of neutrons. The cross
section (Eq. (1)) has several features provided by DM
interaction.

(i) Due to the second term of the product in the
denominator, the scattering intensity should form a
sphere of radius Q = k with a width of κ. The scalar
variables in (Q − k)2 are due to isotropic DM interac-
tion.

(ii) The intensity has the Lorentzian shape typical
for critical fluctuations.

(iii) The scattering intensity is strongly oriented
along the incident neutron polarization since the nu-
merator of Eq. (1) is maximal at P0 parallel to Q and
it is minimal at P0 antiparallel to Q.

The chirality of the critical fluctuations can be esti-
mated via measurement of the polarization of the scat-
tering:

Ps(Q) =
σ(P0)− σ(−P0)

σ(P0) + σ(−P0)
= − 2kQP0 cosφ

Q2 + k2 + κ2
, (2)

where φ is the angle between P0 and Q, and we use
Eq. (1) to express its value via parameters Q, k and κ.

For quantitative analysis, the intensity maps were
azimuthally averaged. Examples of the radial pro-
files (the Q-dependence of the scattering intensity) are
shown in Fig. 3. As it is well seen in Fig. 3, the position
and the width of the observed peak differ for the three
samples. The scattering curve I(Q) can be well de-
scribed by the Lorentzian at high temperatures, which

Fig. 4. Temperature dependence of the inverse correlation
length of helical fluctuations for the Mn1−xFexSi system with
x = 0.10, 0.15, 0.20 in the log-log scale (the line denoted “res”

shows the level of the instrumantal resolution)

can be ascribed to the scattering on the critical fluc-
tuations of the helical structure, whereas at low tem-
peratures, I(Q) is described by the sum of the Gaus-
sian and Lorentzian for the samples with x = 0.10 and
x = 0.15; Gaussian term being attributed to the limi-
tation of the instrument resolution, which exceeds the
value of 0.12 nm−1 (see Fig. 3, curve for x = 0.10).

The whole set of the experimental data obtained
by polarized SANS was fitted to Eq. (1). The position
of the maximum k (the helix wavevector) and inverse
correlation length κ of the helix were obtained as a re-
sult of the fit. The wave vector does not change with
the temperature within the error bars for the individ-
ual sample. It is equal to 0.72 nm−1, 0.90 nm−1, and
0.94 nm−1 for the samples with x = 0.10, 0.15, and
0.20, respectively. Interesting to note that the wave
vector changes linearly with the concentration in the
range of x = 0–0.15 and saturates at the concentration
x larger that 0.15 (see Fig. 1). It is correlated to the
range with the finite crossover temperature TDM in the
Mn1−xFexSi compounds.

The temperature dependence of the inverse corre-
lation length κ is shown in Fig. 4. As it was noticed
above, the value of κ is resolution limited for the com-
pound with x = 0.10 for the low temperature range.
It saturates with lowering temperature at Tc = 3.0 K
(x = 0.10). In contrast, for the sample with x = 0.15,
κ tends to saturate at larger value, disorder-induced κd
(see below). For the sample with x = 0.20, κ does not
saturate at all.
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We observe (it was also noted in Refs. [20,25]) that
the polarization Ps (Q = k) is close to 1 at low tempera-
ture even for the most disordered sample with x = 0.20,
which shows that DM interaction is still present and
makes short fluctuations chiral. Upon increase of tem-
perature, the polarization Ps was found to decrease
smoothly.

The behaviour observed experimentally can be
qualitatively understood using the assumption that Fe
ions introduce the defect antiferromagnetic (AF) bonds
in the system. First of all, strong AF bonds lead to
significant lowering of the spin wave stiffness, Tc, and
TDM . The latter becomes zero at x = xDM . Moreover,
according to the theory of Ref. [27], strong AF bonds
can lead to large variation of the helical vector even at
small concentrations (see Fig. 1).

It is well-known that the strong frustrating defect
bonds with finite concentration destroy the long-range
order in the two-dimensional collinear magnets. In-
stead, the SRO order of the glassy phase emerges in
the system [28, 29]. Strong defects lead to additional
rotations of spins, δϕ(r), in the classical ground state
of the system. For a single defect bond, they can be
described as the dipolar field (cf. Refs. [27, 30]),

δϕ(r) =
d · r
rD

, (3)

where d is the dipole moment of the defect bond, r

is the distance from the defect bond, and D is the di-
mension of the system. After averaging over disorder
configurations, one gets for mean squared transverse
fluctuation of the ordered moment M [31]:

〈M2
⊥〉 ∼ xM2

∫
dDr δϕ2(r). (4)

In two-dimensional systems, this integral diverges as
a logarithm on large distances and the cut-off (disor-
der-induced correlation length ξd) should be intro-
duced. Importantly, ξd is finite for every nonzero con-
centration x. In three-dimensional systems, the same
scenario can occur at finite concentrations xc if the dis-
order is strong enough [29]. Correlation length can be
estimated using the condition

1 = x

ξd∫
d3r δϕ2(r), (5)

which at x > xc yields

ξd ∼ (x− xc)
−1. (6)

Note, that the correlation length ξd is temperature-
independent since its nature is pure classical.

In the considered mixed B20 helimagnet, the LRO
disappears at xc ≈ 0.11. The correlation length ξd
decreases from infinity at xc to finite values at larger
Fe concentrations. We denote disorder-induced inverse
correlation length as κd. When discussing polarized
neutron scattering data, κ2d should be added into the
denominator of Eq. (1) and considered as a part of κ2

along with temperature-dependent contribution κ2T as
the system has effective size ξd [32].

Thus, we arrive to the following qualitative picture.
The sample with x = 0.10 has κd = 0 and behaves
like pure MnSi with lower Tc and TDM values due to
AF bonds-induced lowering of the spin-wave stiffness.
Half-moon patterns and sharp peaks in the neutron
scattering (see Figs. 2 and 3), and peaks in magnetic
susceptibility [22] near Tc are well pronounced due to
mean-field denominator propotional to (Q− k)2 + κ2T .

For the sample with x = 0.15, the inverse corre-
lation lenght κd is nonzero and it is smaller than k.
It leads to the highly chiral fluctuating phase at T <

< TDM , but suppresses the growth of the critical fluc-
tuations so naturally seen at x < xc. Moreover, since
κ has a tendency to saturation upon temperature low-
ering (see Fig. 4), apparently there should be a transi-
tion to frozen SRO phase (like in usual spin-glasses, see
Ref. [33]) with correlation length larger than the spi-
ral period. In the polarized neutron images, such be-
haviour results in blurred half-moon patterns, whereas
in magnetic susceptibility measurements [22] there is a
broad maximum.

At x = xDM , spin wave stiffness becomes zero, and
a possible qualitative description of the experimental
data observed at x > xDM (e. g., blurred SANS maps
and negative Curie–Weiss temperature) can be based
on a domination of the AF interaction in the sample.
Concentration xDM itself is very peculiar, its vicinity
in T –x phase diagram should reveal intriguing proper-
ties of the fluctuating highly chiral helical state with
the shortest period possible for such systems. The cor-
relation length of these fluctuations are affected by two
factors not related to temperature: disorder induced
by the AF bonds and DM interaction destabilizing
the ferromagnetic order. A detailed description of the
situation in the vicinity of xDM requires further exper-
imental studies.
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version of JETP.
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