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The pairing near a quantum-critical point (QCP)
in a metal and its interplay with non-Fermi-liquid be-
havior in the normal state is a fascinating subject,
which attracted substantial attention in the corre-
lated electron community after the discovery of su-
perconductivity (SC) in the cuprates, Fe-based sys-
tems, heavy-fermion materials, organic materials, and,
most recently, twisted bilayer graphene [1-13]. Ttin-
erant QC models, analyzed in recent years, include
models of fermions in spatial dimensions D < 3, vari-
ous two-dimensional models near zero-momentum spin
and charge nematic instabilities, and instabilities to-
wards spin and charge density-wave order with ei-
ther real or imaginary (current) order parameter, 2D
fermions at a half-filled Landau level, Sachdev — Ye — Ki-
taev (SYK) and SYK — Yukawa models, strong coupling
limit of electron-phonon superconductivity, and even
color superconductivity of quarks, mediated by gluon
exchange. These problems have been studied analyti-
cally and using various numerical techniques [14].

From theory perspective, pairing near a QCP is a
fundamentally novel phenomenon, because an effective
dynamic electron-electron interaction, V(g,$2), medi-
ated by a critical collective boson, which condenses at
a QCP, provides a strong attraction in one or more
pairing channels and, at the same time, gives rise to a
non-Fermi liquid (NFL) behavior in the normal state.
The two tendencies compete with each other: fermionic
incoherence, associated with the NFL behavior, de-
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stroys the Cooper logarithm and by this reduces the
tendency to pairing, while an opening of a SC gap
eliminates the scattering at low energies and reduces
the tendency to a NFL. To find the winner of this com-
petition (SC or NFL), one needs to analyze the set of
integral equations for the fermionic self-energy, ¥ (k,w),
and the gap function, A(k,w), for fermions with mo-

mentum /frequency (k,w) and (—k, —w).

We consider the subset of models, in which col-
lective bosons are slow modes compared to dressed
fermions, for one reason or the other. In this situa-
tion, which bears parallels with Eliashberg theory for
electron-phonon interaction [15], the self-energy and
the pairing vertex can be approximated by their val-
ues on the Fermi surface (FS) and computed within
the one-loop approximation. The self-energy on the
FS, ¥(k,w), is invariant under rotations from the point
group of the underlying lattice. The rotational sym-
metry of the gap function A(kp,w) and the relation
between the phases of A(kp,w) on different FS’s in
multi-band systems are model specific. E.g., near an
antiferromagnetic QCP in a system with a single FS,
the strongest attraction is in the d-wave channel. In
each particular case, one has to project the pairing in-
teraction into the irreducible channels V (g, Q) — V(Q),
find the strongest one, and solve for the pairing vertex
for a given pairing symmetry.

Away from a QCP, the effective V(Q2) tends to a
finite value at Q = 0. In this situation, the fermionic
self-energy has a FL form at the smallest frequencies,
and the equation for A(w) is similar to that in a conven-
tional Eliashberg theory for phonon-mediated super-
conductivity. At a QCP, the situation is qualitatively



MXKITPD, Tom 159, BrI. 4, 2021

Pairing by a dynamical interaction in a metal

Away from a QCP

«— Full form

a) The frequency dependence of the effective interaction V(€,,), mediated by a soft boson, at 7' = 0. Away from a QCP,

V(Qr) tends to a finite value at ,,, = 0. Right at a QCP, the boson becomes massless, and at frequencies below the upper

cutoff A, the dimensionless V' (£2,,,) behaves as log A/|Q,| at v = 0+ and as (§/|Qm|)” at a finite 4. b) T¢ as a function of

the parameter B = y(A/§)”, which determines the crossover between the behavior at a finite vy (the limit of large B) and at
~ = 0+ (the limit of small B)

different, because the effective interaction V(£2), medi-
ated by a critical massless boson, is a singular function
of frequency. Quite generally, the dimensionless inter-
action behaves at the smallest €2,,, on the Matsubara
axis as V(Q,) = (§/|Q2m])7, where v > 0 is some expo-
nent (Figure a). This holds at frequencies below some
upper cutoff A. At larger Q,, > A, the interaction
drops even further, and can be safely neglected.

In this communication, we consider the pairing at
small . This limit attracted a lot of attention in the
last few years from various sub-communities of physi-
cists [16-31]. We consider this limit analytically for
V(€2), which crosses over from (§/|Q,|)” behavior at a
finite v to the logarithmic behavior at v = 0+ (the di-
mensionless V(Q) = Alog A/|2,,]). In the latter case,
T, ~ Aexp(—n/(2V/A)). This expression is similar to
the one in the BCS case, but with v/ instead of A in
the exponent, because the “Cooper” logarithm appears
from the combination of the logarithms in fermion and
boson propagators. At a finite -, the transition tempe-
rature remains finite even if A — oo and its dependence
on v is T, ~ §(1/)Y/7. This T, rapidly increases as v
decreases.

When both A and + are finite, one expects the
crossover between the expressions for 7, at finite v and
A — oo and at v = 0+ and a finite A. This crossover is
the main theme of our paper. We find the full crossover
function for T, and show that the two limiting cases
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correspond to small and large values of the single pa-
rameter B = v(A/g)".

The structure of the paper is the following. Sec-
tion 1 is a preface for the paper. Section 2 is the
detailed Introduction. In Sec. 3 we present the set
of coupled Eliashberg equations for the pairing ver-
tex ®(wy,,) and the fermionic self-energy ¥(w,,) and
combine them into the equation for the gap function
A(wp,). In Sec. 4 we analyze the structure of the log-
arithmic perturbation theory for v = 0+ and v > 0,
keeping a finite high frequency cutoff A. We show that
for v = 0+, the summation of the leading logarithms
capture T. ~ Aexp(—7/(2v/\)), although logarithmic
series are not geometric, in distinction from the BCS
theory. However, for a finite v, summation of the loga-
rithms does not give rise to a pairing instability — the
pairing susceptibility does not diverge. In Sec. 5 we go
beyond perturbation theory. We re-express the inte-
gral Eliashberg equation as an approximate differential
equation for the pairing vertex and solve it. We show
that for v = 0+, the solution coincides with the result
of summation of the logarithmic series. For v > 0, we
show that the absence of an instability within the loga-
rithmic approximation implies that there is a threshold
on the strength of the pairing interaction. We find the
threshold and show explicitly that, once the interac-
tion exceeds the threshold, the normal state becomes
unstable against pairing at some finite T,. We show
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that for a finite ~, the calculation of the pairing insta-
bility is ultra-violet convergent, hence T, remains finite
even when the cutoff A is set to infinity. We analyze
the crossover between the forms of 7T, at a finite v and
at v = 0+ and show that the crossover is governed by
the single parameter B = vy(A/g)".

In Sec. 6 we analyze the pairing at small v from
the renormalization group (RG) perspective — as
the flow of the 4-fermion pairing vertex at a finite
~v.  We show that the solution of the RG equations
describes the same crossover between T, at a finite
~ and at v = 04. We present our conclusions in Sec. 7.

The full text of this paper is published in the English
version of JETP.
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