2KOT®, 2022, Tom 161, BbIm. 2, crp. 184-188

© 2022

DIFFERENTIABLE PROGRAMMING
FOR PARTICLE PHYSICS SIMULATIONS

L
R. Grinis

Moscow Institute of Physics and Technology
141700, Dolgoprudny, Moscow Region, Russia

Received August 24, 2021,
revised version August 24, 2021
Accepted for publication October 6, 2021

DOI: 10.31857,/50044451022020043

Abstract. We describe how to apply adjoint sen-
sitivity methods to backward Monte-Carlo schemes
arising from simulations of particles passing through
matter. Relying on this, we demonstrate deriva-
tive based techniques for solving inverse problems for
such systems without approximations to underlying
transport dynamics. We are implementing those al-
gorithms for various scenarios within a general pur-
pose differentiable programming C++17 library NOA
(github.com/grinisrit/noa).

1. Overview of the main results. In this pa-
per, we explore the challenges and opportunities that
arise in integrating differentiable programming (DP)
with simulations in particle physics.

In our context, we will broadly refer to DP as a pro-
gram for which some of the inputs could be given the
notion of a variable, and the output of that program
could be differentiated with respect to them.

Most common examples include the widely used
deep learning (DL) models created over the powerful
automatic differentiation (AD) engines such as Tensor-
Flow and PyTorch. Since their initial release, those ma-
chine learning (ML) frameworks grew up into fully-fled-
ged DP libraries capable of tackling a more diversified
set of tasks.

Recently, a very fruitful interaction between DP as
we know it in ML and numerical solutions to differen-

* E-mail: roland.grinis@grinisrit.com
** GrinisRIT ltd., London, UK

184

tial equations started to gather pace with the work of
Chen et al. [1]. A whole new area tagged now-days
Neural Differential Equations arose in scientific ML.

On one hand, using ML we obtain a more flexible
framework with a wealth of new tools to tackle a variety
of inverse problems in mathematical modeling. On the
other hand, many techniques in the latter such as the
adjoint sensitivity methods give rise to new powerful
algorithms for AD.

A few implementations are now available:

— torchdiffeq is the initial python package devel-
oped by [1] providing ODE solvers that not only inte-
grate with PyTorch DL models, but also use those to
describe the dynamics;

— torchsde builds off from torchdiffeq and provides
the same functionality for SDEs, as well as O(1)-me-
mory gradient computation algorithms, see [2];

— diffegflux is a Julia package developed by Rack-
auckas et al. [3] and relies on a rich scientific ML ecosys-
tem treating many different types of equations inclu-
ding PDEs.

Unsurprisingly, one can also find roots of this story
in computational finance, see for example the work of
Giles et al. [4]. An AD algorithm is presented there
for computing the risk sensitivities for a portfolio of
options priced through Monte-Carlo simulation. That
set-up is close to our case of interest and therefore rep-
resents a great source of inspiration for us.

In fact, for particle physics simulations a similar
picture is left almost unexplored so far. The dynamics
are richer than the ones considered before, but we also

HKITD, Ttom 161, BoII. 2, 2022

Differentiable programming for particle physics simulations

0_

1 . . ° dletector .

-) 0 5 T

Fig. 1. (Color online) This is a toy example. The contours
correspond to level sets of the materials mixture given by a
Gaussian centered at 9, = (0,5) with scale ¥, = /10. In
blue we show the BMC simulated trajectories. For the sake of
simplicity, we assume the known particle flux is constant equals
to one and is reached after two steps. A naive implementation
of the BMC scheme to compute the flux in this configuration
can be found in the Appendix, routine backward _mc 1.There
is, however, a challenge with the approach consisting in differ-
entiating through the MC simulation with AD. The algorithm is
not scalable in the number of steps for the discretisation of the
transport. This issue can be addressed by adjoint sensitivity
methods. The routine backward _mc_grad 2 in the Appendix
provides an implementation with first order derivative for the
BMC scheme in this example

have more tools at our disposal such as the Backward
Monte-Carlo (BMC) techniques [5,6]. We make use of
the latter to adapt the adjoint sensitivity methods [7] to
the transport of particles through matter simulations.

Ultimately, we obtain a novel methodology for
image reconstruction problems when the absorption
mechanism is non-linear. In future, one can demon-
strate this approach in the specific case of muography.
We are releasing our implementations within the open
source library NOA [8].

The results are shown in Figs. 1-3.

2. Conclusion. In this paper, we have demon-
strated how to efficiently integrate automatic diffe-
rentiation and adjoint sensitivity methods with BMC
schemes arising in the passage of particles through mat-
ter simulations.

We believe that this builds a whole new bridge be-
tween scientific machine learning and inverse problems
arising in particle physics. In future, we hope to prove
the success of this technique in a variety of image recon-
struction problems with non-linear dynamics, starting
with muography.

3 KIT®, Bbim. 2

0r— log likelyh: PP —
o8 Y O(Ti“,xu*r‘*ﬁﬁ\ih’m‘*"’”” e
~0.01} ‘*,,W
WWW\

—0.02}F)}1 W
-0.03F 4

f
-0.04F |

0 200 400 600 800 1000

Fig. 2. After implementing BMC over LibTorch's Autograd li-

brary we can use a gradient based optimisation to solve the in-

verse problem for 9, and ¥,. Let us set 9, = (—1,5) arbitrar-

ily. We present SGD convergence over 1000 steps with learning

rate 0.05, reaching ¥, = (—1.0033,4.9891) and 92 = 9.9611
in good agreement with true values

)))) detlector
B) 0 3 1

Fig. 3. (Color online) Optimal parameters and Bayesian pos-
terior sampled using NOA [8] implementation of Riemannian
HMC with an explicit symplectic integrator

Acknowledgments. I would like to thank the
MIPT-NPM lab and A. Nozik in particular for very
fruitful discussions that have led to this work. We are
very grateful to GrinisRIT for the support.

This work has been initially presented at the
QUARKS-2020 workshop — serie “Advanced Compu-
ting in Particle Physics”.

The full text of this paper is published in the English
version of JETP.

Appendix. Code examples. We have col-
lected here the two BMC implementations for our
basic example. You can reproduce all the calcu-
lations in this paper from the notebook differen-
tiable programming pms.ipynb available in NOA [8].

185

R. Grinis

MHITP, Tom 161, BhIm. 2, 2022

For the specific code snippets here the only dependency is LibTorch:
#include <torch/torch.h>

The following routine will be used throughout and provides the rotations by a tensor angles for multiple

scattering:
inline torch:: Tensor rot(const torch:: Tensor &angles)
const auto n = angles.numel();
const auto c¢ = torch::cos(angles);
const auto s = torch::sin(angles);

return torch::stack({c, —s, s, c}).t().view({n, 2, 2});

3

Given the set-up in Fig. 1 example we define:

const auto detector = torch ::zeros(2);

const auto materialA = 0.9f;

const auto materialB = 0.01f;

inline const auto Pl = 2.f % torch::acos(torch::tensor(0.f));

inline torch:: Tensor mix_density (

const torch :: Tensor &states,

const torch:: Tensor &vartheta)

{

return torch::exp(—(states — vartheta.slice(0, 0, 2))
.pow(2).sum(—1) / vartheta[2].pow(2));

Example 1. This implementation relies completely on the AD engine for tensors. The whole trajectory is

kept in memory to perform reverse-mode differentiation.

The routine accepts a tensor theta representing the angles for the readings on the detector, the tensor node
encoding the mixture of the materials which is essentially our variable, and the number of particles npar.

It outputs the simulated flux on the detector corresponding to theta:

inline torch:: Tensor backward mc(
const torch:: Tensor &theta ,

const torch :: Tensor &node,

const int npar)

{
const auto lengthl = 1.f — 0.2f % torch::rand(npar);
const auto rotl = rot(theta);

auto stepl = torch::stack({torch::zeros(npar), lengthl}).t
stepl = rotl.matmul (stepl.view({npar, 2, 1})).view({npar,

const auto statel = detector + stepl;

auto biasing = torch::randint(0, 2, {npar});
auto density = mix_density(statel , node);
auto weights =

torch ::where(biasing > 0,

(density / 0.5) % materialA,

((1 — density) / 0.5) % materialB) =

torch ::exp(—0.1f % lengthl);

const auto length2 = 1.f — 0.2f % torch::rand(npar);

const auto rot2 = rot(0.05f x Pl % (torch::rand(npar) — 0.5f));

auto step2 =
length2 .view({npar, 1}) = stepl / lengthl.view ({npar,

step2 = rot2.matmul (step2.view({npar, 2, 1})).view({npar,

const auto state2 = statel 4 step2;

biasing = torch::randint(0, 2, {npar});

186

MIT®D, Tom 161, BoII. 2, 2022 Differentiable programming for particle physics simulations

density = mix_density (state2 , node);
weights *=

torch ::where(biasing > 0,

(density / 0.5) % materialA,

((1 — density) / 0.5) % materialB) =
torch ::exp(—0.1f % length2);

// assuming the flux is known equal to one at state2
return weights;

}

Example 2. This routine adopts the adjoint sensitivity algorithm to earlier Example 1. It outputs the value
of the flux and the first order derivative w.r.t. the tensor node:
inline std::tuple<torch:: Tensor, torch::Tensor> backward mc_grad (

const torch :: Tensor &theta ,
const torch :: Tensor &node)

{
const auto npar = 1; //work with single particle
auto bmc_grad = torch ::zeros like(node);

const auto lengthl = 1.f — 0.2f % torch::rand(npar);

const auto rotl = rot(theta);

auto stepl = torch::stack({torch::zeros(npar), lengthl}).t();
stepl = rotl.matmul(stepl.view({npar, 2, 1})).view({npar, 2});
const auto statel = detector + stepl;

auto biasing = torch::randint(0, 2, {npar});

auto node leaf = node.detach ().requires grad ();

auto density = mix_density (statel , node leaf);

auto weights leaf = torch::where(biasing > 0,

(density / 0.5) % materialA,

((1 — density) / 0.5) % materialB) % torch::exp(—0.01f % lengthl);

bmc_grad += torch ::autograd::grad({weights leaf}, {node leaf})[0];
auto weights = weights leaf.detach ();

const auto length2 = 1.f — 0.2f % torch::rand(npar);
const auto rot2 = rot(0.05f x Pl x (torch::rand(npar) — 0.5f));

auto step2 = length2.view({npar, 1}) % stepl / lengthl.view({npar, 1});
step2 = rot2.matmul(step2.view({npar, 2, 1})).view({npar, 2});
const auto state2 = statel + step2;

biasing = torch::randint (0, 2, {npar});

node leaf = node.detach ().requires grad ();

density = mix_density (state2 , node leaf);

weights leaf = torch::where(biasing > 0,

(density / 0.5) * materialA,

((1 — density) / 0.5) x materialB) % torch::exp(—0.01f % length2);

const auto weight2 =
bmc grad = weights =
+ weight2 * bmc grad;
weights *= weight2;

weights leaf.detach ();
torch :: autograd :: grad ({weights leaf}, {node leaf})[0]

// assuming the flux is known equal to one at state2
return std:: make tuple(weights, bmc_grad);

¥
REFERENCES mation Processing Systems 81, pp. 6571-6583 (2018).
1. R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and 2. X. Li, T-K. L. Wong, R. T. Q. Chen, and D. K. Du-
D. K. Duvenaud, in Proc. Advances in Neural Infor- venaud, 237 International Conference on Artificial
187

3*

R. Grinis

MHITP, Tom 161, BhIm. 2, 2022

Intelligence and Statistics, Proc. Machine Learning
Res. 108, 2677 (2020).

. C. Rackauckas, Y. Ma, J. Martensen, C. Warner,
K. Zubov, R. Supekar, D. Skinner, and A. Ramad-
han, arXiv:2001.04385.

. L. Capriotti and M. B. Giles, Algorithmic Differen-
tiation: Adjoint Greeks Made Fasy, SSRN Electronic
Journal (2011).

. L. Desorgher, F. Lei, and G. Santin, Nucl. Instrum.
Meth. A 621, 247 (2010).

188

. V. Niess, A. Barnoud, C. Carloganu, and E. Le Me-

nedeu, Comput. Phys. Comm. 229, 54 (2018).

. L. S. Pontryagin, E. F. Mishchenko, V. G. Boltyan-

skii, and R. V. Gamkrelidze, The Mathematical Theo-
ry of Optimal Processes, John Wiley S., New York,
London (1962).

. Differentiable =~ Programming for Optimisation
Algorithms over LibTorch, https://github.com/
grinisrit/noa.

