РЕЗУЛЬТАТЫ НЕЙТРИННЫХ ЭКСПЕРИМЕНТОВ Т2К И NOvA: УПОРЯДОЧИВАНИЕ МАСС НЕЙТРИНО И СР-СИММЕТРИЯ

А. В. Буткевич*

Институт ядерных исследований Российской академии наук 117312, Москва, Россия

> Поступила в редакцию 3 декабря 2021 г., после переработки 21 декабря 2021 г. Принята к публикации 22 декабря 2021 г.

Рассматриваются новые данные об осцилляциях нейтрино, полученные в ускорительных нейтринных экспериментах T2K и NOvA. Каждая коллаборация сообщает об умеренном предпочтении нормального упорядочивания масс нейтрино, однако измеренные значения фазы нарушения CP-инвариантности δ_{CP} различаются на два стандартных отклонения (2σ), и при этом результат эксперимента T2K исключает сохранение CP-инвариантности с достоверностью порядка 2σ . Совместный анализ данных этих экспериментов может привести к обратной иерархии масс нейтрино и значению $\delta_{CP} \approx 3\pi/2$. Дополнительно обсуждается важность полученных результатов для неосцилляционных нейтринных экспериментов.

Статья для специального выпуска ЖЭТФ, посвященного 100-летию А. Е. Чудакова

DOI: 10.31857/S0044451022040058 **EDN:** DPSQWI

1. ВВЕДЕНИЕ

В нейтринных экспериментах [1–3] было установлено, что нейтрино, рожденное в определенном слабом состоянии ν_{α} (нейтрино с определенным ароматом ν_e , ν_{μ} , ν_{τ}), после прохождения макроскопического расстояния может быть зарегистрировано в другом слабом состоянии, т. е. нейтрино осциллирует. Таким образом, были установлены две близко связанные особенности нейтрино: нейтрино имеет массу и аналогично кваркам является суперпозицией собственных массивных состояний ν_i , (i = 1, 2, 3) с массами m_i , причем $m_1 \neq m_2 \neq m_3$. Наличие у нейтрино массы — единственное доказательством того, что физика элементарных частиц выходит за рамки Стандартной Модели.

Слабые состояния могут быть представлены в виде суперпозиции массовых состояний

$$\nu_{\alpha} = \sum U_{\alpha i} \nu_i,$$

где $U_{\alpha i}$ — элементы матрицы смешивания Понтекорво – Маки – Накагава – Саката [4–6]. В настоящее время трехфлейворная (ароматная) парадигма успешно описывает большинство результатов нейтринных осцилляционных экспериментов. В рамках этой парадигмы элементы матрицы смешивания могут быть представлены как функции трех углов смешивания, $\theta_{12}, \theta_{13}, \theta_{23}$, и дираковской фазы нарушения СР-инвариантности в лептонном секторе δ_{CP} . Эффекты осцилляций зависят от параметров смешивания нейтрино и разностей квадратов масс нейтрино $\Delta m_{ij}^2 = m_i^2 - m_j^2$.

Сейчас параметры осцилляций θ_i и Δm_{ij}^2 наболее точно определены в следующих экспериментах. Значение угла смешивания θ_{13} было измерено в реакторных нейтринных экспериментах [7–9], а параметры θ_{12} и Δm^2_{21} были установлены в экспериментах с солнечными и реакторными нейтрино [10, 11]. При рассмотрении состояния ν_1 как состояния, которое дает наибольший вклад в ν_e , было установлено, что $\Delta m_{21}^2 > 0$. В экспериментах с атмосферными и ускорительными нейтрино [12, 13] было измерено значение $|\Delta m_{31}^2| \gg \Delta m_{21}^2$, но эти эксперименты не чувствительны к знаку Δm_{31}^2 . В этом и заключается проблема упорядочивания (иерархии) масс нейтрино, а именно, предпочитает ли природа $m_1 < m_2 < m_3$ нормальную иерархию (normal mass ordering, NO), или $m_3 < m_1 < m_2$ — обратную иерархию (inverted mass ordering, IO) масс нейтрино. Знание иерархии масс ограничит набор моде-

^{*} E-mail: butkevic@.inr.ru

лей, претендующих на описание механизма генерации масс [14–17] и поможет определить природу нейтрино, т. е. является ли нейтрино дираковским, или майорановским фермионом [18, 19].

Вероятности осцилляций $\nu_{\mu}(\bar{\nu}_{\mu}) \rightarrow \nu_{e}(\bar{\nu}_{e})$ при прохождении нейтрино через Землю зависят от упорядочивания масс нейтрино. Когерентное рассеяние вперед на электронах в земной коре увеличивает вероятность $P(\nu_{\mu} \rightarrow \nu_{e})$ и уменьшает вероятность $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ при нормальной иерархии масс. Эффекты усиления и подавления вероятностей осцилляций становятся обратными при обратном упорядочивании масс нейтрино [20, 21]. Комбинация измерений вероятности исчезновения ν_{μ} из пучка мюонных нейтрино $P(\nu_{\mu} \rightarrow \nu_{\mu})$ и появления в этом пучке электронных нейтрино $P(\nu_{\mu} \rightarrow \nu_{e})$, а также соответствующих антинейтрино позволяет определить иерархию масс нейтрино в ускорительных экспериментах с большими расстояниями между источником и детектором нейтрино (в экспериментах с длинной базой). Тем не менее существует серьезная проблема, связанная с вырождением между определением иерархии масс, значением угла θ_{23} и степенью нарушения СР-инвариантности в нейтринных осцилляциях параметризованной фазой δ_{CP} . Угол $heta_{23}$ во многом определяет примесь u_{μ} и $u_{ au}$ в массовом состоянии ν_3 . В случае максимального смешивания $\theta_{23}=\pi/4$ состояния ν_{μ}
и ν_{τ} дают одинаковые вклады в ν_3 , что предполагает существование дополнительной $\mu - \tau$ -симметрии [22]. Если смешивание не является максимальным, то θ_{23} может находиться в верхнем октанте (upper octant, UO, $\theta_{23} > \pi/4$), или в нижнем октанте (lower octant, LO, $\theta_{23} < \pi/4$) с большей примесью соответственно ν_{μ} или ν_{τ} в ν_{3} . Текущие измеренные значения θ_{23} близки к максимальному смешиванию, однако остаются значительные неопределенности, что делает θ_{23} наименее точно измеренным углом смешивания.

Ускорительные нейтринные эксперименты с большими расстояниями между источником и детектором нейтрино чувствительны и к значению δ_{CP} . Если СР-инвариантность нарушается $(\delta_{CP} \neq 0, \pi)$ и $\sin \delta_{CP} < 0$, то вероятность $\nu_{\mu} \rightarrow \nu_{e}$ осцилляций увеличивается, а в противном случае $(\sin \delta_{CP} > 0)$ она уменьшается. Эффект обратный для $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ -переходов. Наблюдение нарушения СР-инвариантности в нейтринных осцилляциях предоставит экспериментальное подтверждение моделям, объясняющим наблюдаемый дисбаланс между веществом и антивеществом во Вселенной за счет нарушения СР-инвариантности в лептонном секторе [23–27]. Следует отметить, что существуют теоретические модели, где лептогенезис может иметь место даже без нарушения СР-инвариантности при низких энергиях [28].

Вероятности выживания мюонных (анти)нейтрино И появления электронных (анти)нейтрино в пучках мюонных нейтрино измеряются коллаборациями Т2К (Япония) [29, 30] и NOvA (США) [31-33] в экспериментах с мощными пучками нейтрино. В эксперименте Т2К максимум в спектре нейтрино приходится на энергию $E_{\nu} \approx 0.75$ ГэВ, а дальний детектор нейтрино расположен на расстоянии 250 км от ускорителя. В эксперименте NOvA дальний детектор находится на расстоянии 810 км, а энергия нейтрино в максимуме спектра равна $E_{\nu} \approx 1.9$ ГэВ. В 2021 году обе коллаборации опубликовали новые данные. Коллаборация Т2К представила результаты измерений вероятностей осцилляций нейтрино и антинейтрино $\nu_{\mu}(\bar{\nu}_{\mu}) \rightarrow \nu_{\mu}(\bar{\nu}_{\mu})$ и $\nu_{\mu}(\bar{\nu}_{\mu}) \rightarrow \nu_{e}(\bar{\nu}_{e})$ [34]. Анализ отдает слабое предпочтение нормальной иерархии масс и верхнему октанту $\sin \theta_{23}$. Кроме того, данные Т2К исключают сохранение СР-инвариантности в нейтринных осцилляциях на уровне 2σ . Данные эксперимента NOvA [35] также указывают на нормальное упорядочивание масс нейтрино и верхний октант угла $\sin \theta_{23}$ на уровне 1σ . При нормальной иерархии масс наблюдается различие между измеренными наиболее вероятными значениями δ_{CP} . Коллаборация NOvA получила значение $\delta_{CP} = 0.86$ (слабое СР-нарушение), а коллаборация Т2К — значение $\delta_{CP} = -1.6\pi$ (максимальное CP-нарушение) и оба эксперимента взаимоисключают эти значения на доверительном 2σ -уровне.

Статья организована следующим образом. Вопервых, мы объясняем, как эксперименты на больших расстояниях между источником и детектором нейтрино чувствительны к упорядочиванию масс, а также к вырождениям с θ_{23} и δ_{CP} . Затем приводится краткое описание экспериментов T2K и NOvA, сравнение и анализ их данных, а также рассматривается компромиссный вариант согласования результатов по измерению фазы нарушения СР-инвариантности и определению упорядоченности масс нейтрино. Обсуждается важность полученных результатов для неускорительных нейтринных экспериментов. В заключении отмечается необходимость проведения осцилляционных исследований с детекторами следующего поколения, которые позволят определелить иерархию масс нейтрино и получить ответ на вопрос о нарушении СР-симметрии в лептонном секторе.

2. ВЕРОЯТНОСТЬ ОСШИЛЛЯШИЙ В УСКОРИТЕЛЬНЫХ ЭКСПЕРИМЕНТАХ

В экспериментах T2K и NOvA нейтрино проходит большие расстояния (сотни километров) в веществе. Среда, вследствие взаимодействия с ее компонентами, изменяет картину осцилляций [20]. Влияние среды обусловлено различием в амплитудах упругого рассеяния вперед смешанных нейтрино, например ν_e и ν_{μ} . В сочетании с вакуумным смешиванием состояния ν_{im} , отличные от ν_i , теперь имеют определенные энергии, фазовые и групповые скорости, следовательно, смешивание в веществе изменяется, а ν_e и ν_{μ} осциллируют относительно состояния ν_{im} . Среда может приводить как к подавлению осцилляций, так и к усилению их глубины. Детальное обсуждение влияния вещества на процессы осцилляций в случае трех поколений нейтрино дано в работах [36, 37].

Для ускорительных экспериментов можно полагать, что плотность вещества вдоль траектории нейтрино постоянная и отношение заряда к атомному номеру $Z/A \simeq 0.5$ является хорошим приближением при вычислении вероятностей осцилляций в земной коре [38]. Кроме того, поскольку расчеты вероятности осцилляций с использованием точных формул [36] довольно трудоемки, обычно для этих целей применяются приближенные выражения для вероятностей. Как правило, используются аппроксимации [39-42], которые получены в результате разложения в ряд точных формул по малому параметру

$$\alpha = \Delta m_{21}^2 / \Delta m_{31}^2 \approx 0.034.$$

В случае осцилляций $\nu_{\mu}(\bar{\nu}_{\mu}) \rightarrow \nu_{\mu}(\bar{\nu}_{\mu})$ эффекты вещества сильно подавлены и вероятность выживания мюонных (анти)нейтрино хорошо аппроксимируется выражением

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - (\cos^{2} \theta_{31} \sin^{2} 2\theta_{23} + \\ + \sin^{2} 2\theta_{13} \sin^{4} \theta_{23}) \sin^{2} \Delta, \quad (1)$$

где $\Delta = \Delta m_{31}^2 L/E$, L — расстояние между источником и детектором нейтрино (база эксперимента) и Е — энергия нейтрино. Вероятность появления $\nu_e(\bar{\nu}_e)$ в пучках $\nu_\mu(\bar{\nu}_\mu)$ в экспериментах Т2К и NOvA можно представить с точностью $O(\alpha^2)$ в виде

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \times \\ \times \sin^{2}[(A-1)\Delta]/(A-1)^{2} + \alpha^{2} \sin^{2} 2\theta_{12} \cos^{2} \theta_{23} \times \\ \times \sin^{2}(A\Delta)/A^{2} + \alpha \sin 2\theta_{13} \cos(\Delta + \delta_{CP}) \times \\ \times \sin 2\theta_{12} \sin 2\theta_{23} \sin(A\Delta) \times \\ \times \sin[(A-1)\Delta]/[A(A-1)], \quad (2)$$

0

где

$$A = 2EV/\Delta \tag{3}$$

зависит от упорядочивания масс нейтрино, т.е. A >> 0 при $\Delta > 0$ (NO) и A < 0 при $\Delta < 0$ (IO). Потенциал V обусловлен рассеянием ν_e на электронах среды вследствие заряженных токов. Ни ν_{μ} , ни ν_{τ} таких взаимодействий не имеют [37] и

$$V = \sqrt{2}G_F \rho m_N^{-1} Y_e \simeq 7.56^{-14} \rho Y_e, \qquad (4)$$

где G_F — константа Ферми, m_N — масса нуклона, $Y_e \simeq 0.5$ — число электронов, приходящихся на один нуклон среды, ρ (Γ/cM^3) — плотность вещества вдоль траектории нейтрино и размерность потенциала V — электронвольты. Для вычисления вероятностей осцилляций $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ в формуле (2) необходимо сделать замену $\delta_{CP} \rightarrow -\delta_{CP}$ и $A \rightarrow$ $\rightarrow -A \ (V \rightarrow -V)$. Таким образом, вероятности осцилляций $\nu_{\mu} \rightarrow \nu_{e}$ и $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ зависят от знака Δ иерархии масс нейтрино, угла θ_{23} ($\theta_{23} < \pi/4$ или $\theta_{23} > \pi/4$) и фазы СР-нарушения. При этом амплитуда $\nu_{\mu} \rightarrow \nu_{e} (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ осцилляций будет максимальной (минимальной) при NO и $\delta_{CP} \simeq -\pi/2$ и минимальной (максимальной) при IO и $\delta_{CP} \simeq \pi/2$.

Влияние вещества проявляется лишь на больших его толщинах. Характеристикой среды является собственная длина l_0 в веществе, которая определяется как [37]

$$l_0 = \sqrt{2\pi} m_N / (G_F \rho Y_e). \tag{5}$$

На пути l_0 в результате рассеяния приобретается дополнительная разность фаз у ν_e и ν_{μ} : $\Delta \phi = 2\pi$. Отсюда следует, что эффект вещества заметен на толщине

$$d_0 = \rho l_0 \approx 2\pi m_N / \left(\sqrt{2} G_F\right)^{-1}.$$
 (6)

и $d_0 \approx 3.5 \cdot 10^9$ (г/см³). Он зависит от соотношения собственной длины в веществе и длины осцилляций в вакууме:

$$l_{\nu} = 4\pi E / \Delta m_{31}^2.$$
 (7)

Если $l_{\nu} \ll l_0$, то изменение свойств осцилляций незначительно. Эффекты велики при $l_{\nu} \gg l_0$.

Для оценки влияния вещества на вероятности осцилляций ν_{μ} \rightarrow ν_{e} и $\bar{\nu}_{\mu}$ \rightarrow $\bar{\nu}_{e}$ при энергиях E \approx $\approx 2\Delta m_{31}^2 L/\pi$, где $\sin^2 \Delta \approx 1$ можно использовать выражение [42]

$$P_{\mu e}^{m} = P_{\mu e}^{v} (1 \pm 2E/E_{r}), \qquad (8)$$

где $P_{\mu e}^{m}(P_{\mu e}^{v})$ — вероятность осцилляций в веществе (вакууме), знак «+» («-») соответствует осцилляциям нейтрино (антинейтрино). Резонансная энергия E_r определяется как

$$E_r = \Delta m_{31}^2 / 2V \tag{9}$$

и $E_r \simeq 10$ ГэВ при $\Delta m_{31}^2 \simeq 2.5 \cdot 10^{-3}$ эВ² и $\rho = 3$ г/см³. Из уравнения (8) следует, что разность $P_{\mu e}^m - P_{\mu e}^v$ линейно уменьшается с энергией нейтрино и для $E \ll E_r$, т. е. в экспериментах на короткой базе, амплитуда и фаза осцилляций в веществе всегда близки к вакуумным значениям.

Анализ суммы

$$P_+ = P(\nu_\mu \to \nu_e) + P(\bar{\nu}_\mu \to \bar{\nu}_e)$$

и разности

$$P_{-} = P(\nu_{\mu} \to \nu_{e}) - P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})$$

вероятностей осцилляций нейтрино и антинейтрино вблизи первого осцилляционного максимума, где $\Delta \sim \pi/2$, можно использовать для определения параметров осцилляций. Из (2) следует, что сумма вероятностей чувствительна, главным образом, к $\sin^2 \theta_{23}$, поскольку эффекты СР-нарушения и иерархии масс дают малый вклад в P_+ . С другой стороны, измерение разности P_- можно использовать для определения упорядочивания масс нейтрино, значения угла θ_{23} и фазы δ_{CP} , хотя все это обусловлено сравнимыми и конкурирующими эффектами.

Асимметрия нейтрино-антинейтрино, определенная как

$$A_{CP} = \frac{P(\nu_{\mu} \to \nu_{e}) - P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})},$$
 (10)

используется как мера нарушения СР-инвариантности. Для оценки A_{CP} при $\Delta \sim \pi/2$ можно использовать выражение [43]

$$A_{cp} = A_{CP}^{\delta} + A_{CP}^{mat}, \tag{11}$$

где

$$A_{CP}^{\delta} \simeq \frac{\cos \theta_{23} \sin \theta_{21}}{\sin \theta_{23} \sin \theta_{31}} \left(\frac{\Delta m_{21}^2 L}{4E}\right) \sin \delta_{CP}, \qquad (12)$$

и $A_{CP}^{mat} \propto L \times E$. Таким образом, измеряемая в веществе асимметрия обусловлена асимметрией A_{CP}^{δ} , вызванной нарушением СР-инвариантности и асимметрией A_{CP}^{mat} , возникающей из-за эффекта вещества. Знак A_{CP}^{mat} определяется иерархией масс, т.е. $A_{CP}^{mat} > 0$ ($A_{CP}^{mat} < 0$) при $\Delta > 0$ ($\Delta < 0$). Поскольку A_{CP}^{mat} убывает с энергией и расстоянием, в экспериментах с небольшой базой измеряемая асимметрия $A_{CP} \approx A_{CP}^{\delta} \sim \sin \delta_{CP}$ обусловлена, главным образом, нарушением СР-инвариантности.

3. РЕЗУЛЬТАТЫ НЕЙТРИННЫХ ОСЦИЛЛЯЦИОННЫХ ЭКСПЕРИМЕНТОВ Т2К И NOvA

В последних своих публикациях коллаборации T2K [34] и NOvA [35] представили обновленные данные экспериментов об осцилляциях мюонных (анти)нейтрино на больших расстояния между источником и детектором нейтрино. В эксперименте Т2К используется интенсивный пучок мюонных (анти)нейтрино, полученный на ускорителе J-PARC (Токай, Япония). Эти пучки направлены на дальний черенковский детектор Супер-Камиоканде, который находится на расстоянии L = 250 км от ускорителя под углом 2.5° к оси пучка. Таким образом, на пути к детектору нейтрино проходит расстояние существенно меньшее, чем собственная длина вещества $l_0 \sim 10^9$ см. Спектр нейтрино имеет максимум при энергии $E \approx 0.6$ ГэВ, что соответствует примерно первому осцилляционному максимуму. Согласно (8) эффект вещества для (анти)нейтрино можно оценить как

$$(P_{\mu e}^m - P_{\mu e}^v)/P_{\mu e}^v = \pm 2E/E_r \approx \pm 0.12,$$

т. е. порядка 10%. Поскольку этот эффект мал, эксперимент T2K имеет слабую чувствительность к упорядочиванию масс нейтрино. Другими словами, параметры осцилляций, определенные для NO и IO, будут иметь близкие значения.

Коллаборация Т2К проанализировала и опубликовала [34] данные, которые соответствуют статистике упавших на мишень протонов 19.4 · 10²⁰ и 16.4 · 10²⁰ для пучка соответственно нейтрино и антинейтрино. При этом мощность протонного пучка не превышала 500 кВт. На дальнем детекторе было зарегистрировано 243 (140) $\nu_{\mu}(\bar{\nu}_{\mu}) \rightarrow \nu_{\mu}(\bar{\nu}_{\mu})$ мюонных событий и 75 (15) $\nu_{\mu}(\bar{\nu}_{\mu}) \rightarrow \nu_{e}(\bar{\nu}_{e})$ электронных событий без учета вклада $\nu_{\mu} \rightarrow \nu_{e}$ событий с пионом в конечном состоянии, который составляет 15 событий. В безпионных электронных событиях ожидаемый фон равен 13.6 (8.9) событий.

В эксперименте NOvA (анти)нейтрино создаются на ускорителе в Фермилабе (Батавия, США) с энергиями нейтрино в диапазоне 1–5 ГэВ. Пучок нейтрино направлен на дальний сцинтилляционный детектор с массой 14 кТ, который находится на расстоянии 810 км в районе Аш-Ривер (штат Минессота) на глубине 4 м под землей. Этот детектор расположен под углом 14.6 мрад к оси пучка, а максимум в спектре нейтрино приходится на энергию $E \simeq 1.6$ ГэВ. Таким образом, ожидаемый эффект вещества $\pm 2E/E_r$ составляет примерно 30%, и этот

эксперимент более чувствителен к иерархии масс нейтрино, чем T2K.

Коллаборация NOvA опубликовала результаты [35], которые соответствуют статистике $13.6(12.5) \cdot 10^{20}$ протонов, брошенных на мишень для нейтринной (антинейтринной) моды пучка. При этом средняя мощность пучка составила 650 кВт, и пиковая мощность достигала 750 кВт. В эксперименте NOvA используется самый мощный в мире пучок нейтрино (антинейтрино). В этом эксперименре было зарегистрировано 211 (105) $\nu_{\mu}(\bar{\nu}_{\mu}) \rightarrow \nu_{\mu}(\bar{\nu}_{\mu})$ мюонных событий и 82 (33) $\nu_{\mu}(\bar{\nu}_{\mu}) \rightarrow \nu_{e}(\bar{\nu}_{e})$ электронных событий. Ожидаемый фон для электронного канала осцилляций составляет 26.8 (14.0) событий.

Ожидаемые на дальнем детекторе спектры мюонных и электронных событий, вычисленные с разными значениями параметров осцилляций, сравниваются с измеренными спектрами событий. В обоих экспериментах используются фиксированные значения параметров $\Delta m_{21}^2 = 7.53 \cdot 10^{-5} \text{ зB}^2$, $\sin^2 \theta_{12} = 0.307 \text{ } \text{ } \text{ } \sin^2 \theta_{13} = 0.021 \pm 0.0011 \text{ } [44],$ полученные в экспериментах с солнечными и реакторными нейтрино. В эксперименте Т2К также был проведен анализ, когда угол θ_{13} варьировался, а в эксперименте NOvA он менялся в пределах ошибок. В результате подгонки ожидаемых спектров $\nu_{\mu}(\bar{\nu}_{\mu}) \rightarrow \nu_{\mu}(\bar{\nu}_{\mu})$ и $\nu_{\mu}(\bar{\nu}_{\mu}) \rightarrow \nu_{e}(\bar{\nu}_{e})$ событий к измеренным спектрам были получены наиболее вероятные значения параметров осцилляций. Для нормального упорядочивания масс и верхнего октанта угла θ_{23} ($\theta_{23} > \pi/4$) коллаборация T2K (NOvA) получила следующие значения параметров: $\Delta m_{32}^2 = 2.45 \pm 0.07(2.41 \pm 0.07) \cdot 10^{-3}$ эВ², $\sin^2 \theta_{23} = 0.532 \pm 0.03(0.57^{+0.03}_{-0.04})$ in $\delta_{CP}(\pi) =$ $1.398^{+0.223}_{-0.185}(0.82^{+0.27}_{-0.87})$ при реакторных значениях угла θ_{13} , где $\delta_{CP}(\pi) = \delta_{CP}/\pi$. Для обратной иерархии масс значения параметров, полученные в эксперименте T2K (NOvA), равны: $m^2_{31} = -2.43 \pm 0.07(-2.45) \cdot 10^{-3}$ эВ², sin² $\theta_{23} = 0.532^{+0.029}_{-0.035}(0.56)$ и $\delta_{CP}(\pi) = 1.56^{+0.149}_{-0.179}(1.52).$

Таким образом, значения параметров осцилляций, определенные в эксперименте T2K при разных иерархиях масс нейтрино, совпадают в пределах стандартной ошибки. Данные этого эксперимента исключают сохранения CP-инвариантности (значения $\delta_{CP} = 0, \pi$) на уровне 2σ вне зависимости от упорядочивания масс. Для обратной иерархии масс оба значения $\delta_{CP} = 0, \pi$ находятся за пределами доверительных интервалов 3σ . Для нормального упорядочивания масс значение $\delta_{CP} = 0$ находится за пределами доверительного интервала 3σ , в то время как значения $\delta_{CP} = \pm \pi$ находится внутри этого интервала. Результаты эксперимента NOvA показывают предпочтение (на доверительном уровне 68%) нормальной иерархии масс нейтрино, $\theta_{23} > \pi/4$, и слабому нарушению СР-инвариантности. В случае обратного упорядочивания масс данные NOvA, так же как и данные T2K, предпочитают значение $\delta_{CP} = 3\pi/2$. Они исключают такие комбинации параметров осцилляций, которые приводят к большим значениям асимметрии А_{СР}. Обратное массовое упорядочивание с $\delta = \pi/2$ исключается на уровне 3σ , а нормальная иерархия масс с $\delta_{CP} = 3\pi/2$ исключается с достоверностью 2σ . Однако из-за вырождения разрешенные области с доверительным интервалом 90 % охватывают все значения δ_{CP} для обоих массовых упорядочиваний и октантов угла θ_{23} .

Как показано на рисунке, взятом из работы [35], наиболее вероятная точка Т2К в плоскости $(\delta_{CP}, \sin^2 \theta_{23})$ для нормальной иерархии масс (рис. a) лежит в области, которую результат NOvA не одобряет на уровне 2σ , так же как и наиболее вероятная точка NOvA отвергается результатами Т2К с достоверностью большей, чем 2σ . На рис. δ показано, что для обратной иерархии масс разрешенная область Т2К с доверительным интервалом 90 % полностью содержится в соответствующей разрешенной области NOvA. Поскольку NOvA отдает предпочтение NH только на доверительном уровне 68%, решения, которые находятся в пределах контуров на рис. б, могут быть приемлемыми для обоих экспериментов. Таким образом, предпочтение максимального нарушения СР-инвариантности от Т2К, которое не зависит от иерархии масс, и решение для NOvA с IH и $\delta_{CP} = 1.52\pi$ может являться общим решением для этих экспериментов. В работе [46] было показано, что совместный анализ данных экспериментов T2K и NOvA может привести к компромиссному решению проблемы нарушения СР-симметрии, а именно, к обратной иерархии масс и $\delta_{CP} \approx 3\pi/2$. Возможность объяснения наблюдаемой в этих экспериментах асимметрии A_{CP} неучтенными в Стандартной Модели эффектами вещества исследовалась в работах [47, 48].

Упорядочивание масс нейтрино остается одной из самых больших загадок, и важность этой проблемы нельзя недооценивать. Если иерархия масс действительно является обратной, то это может иметь далеко идущие последствия. К тому же, если нейтрино является майорановским фермионом, то существует минимальная масса, соответствующая безнейтринному двойному бета-распаду. В случае, ко-

Контуры доверительных уровней (ДУ) 68% и 90% в плоскости ($\delta_{CP}, \sin^2 \theta_{23}$). Рисунок *а* для нормальной иерархии масс, а рис. δ для обратного массового упорядочивания [35]. Крестом (квадратом) обозначена наиболее вероятная точка NOvA (T2K), а цветом отображены области допустимые на доверительных уровнях 68% и 90%. Черные сплошные и пунктирные контуры изображают области, разрешенные экспериментом T2K [45]

гда установлено, что упорядочивание масс обратное, а безнейтринный двойной бета-распад не наблюдается, то можно полагать, что нейтрино является дираковским фермионом. Более того, измерение космического микроволнового фона и спектра мощности материи позволяет сделать заключение о сумме масс нейтрино. Если массовое упорядочивание обратное, то сумма масс нейтрино составляет не менее примерно 100 мэВ, а если иерархия масс нейтрино важна и для экспериментов, таких как KATRIN [49], где масса нейтрино измеряется посредством кинематических эффектов. Действительно, для обратной иерархии масс минимальная эффективная масса нейтрино ожидается порядка 50 мэВ и порядка 9 мэВ для нормального массового упорядочивания.

4. ЗАКЛЮЧЕНИЕ

Коллаборации T2K и NOvA представили уточненные измерения параметров осцилляций Δm_{32}^2 , $\sin^2 \theta_{23}$ и δ_{CP} , включающие расширенный набор данных и усовершенствованные методы их анализа, по сравнению с предыдущими публикациями.

Основным результатом эксперимента Т2К является измерение фазы δ_{CP} , исключающее сохранение СР-инвариантности в осцилляциях нейтрино на уровне 2σ , а также тот факт, что некоторые из возможных значений δ_{CP} находятся за пределами доверительного интервала 3*σ*. Этот результат отражает то обстоятельство, что в этом эксперименте наблюдается выраженная асимметрия A_{CP} , которая в данном случае из-за слабого эффекта вещества определяется, главным образом, асимметрией A_{CP}^{δ} (12), связанной с возможным нарушением СР-инвариантности. Данные эксперимента NOvA продолжают предпочитать нормальное упорядочивания масс и $\theta_{23} > \pi/4$, а также значения параметров осцилляций, которые не приводят к большой асимметрии в осцилляциях $\nu_{\mu}(\bar{\nu}_{\mu}) \rightarrow \nu_{e}(\bar{\nu}_{e})$. Полученные результаты показывают предпочтения в отношении сохранения СР-инвариантности по сравнению с ее нарушением.

Хотя каждый эксперимент сообщает об умеренном предпочтении нормальной иерархии масс, возможно, что совместный анализ данных экспериментов T2K и NOvA приведет к обратному упорядочиванию масс нейтрино, верхнему или нижнему октанту угла θ_{23} и к тому, что максимальное нарушение ($\delta_{CP} \approx 3\pi/2$) CP-симметрии будет являться общим предпочтительным решением.

Таким образом, из представленных коллаборациями данных следует, что несмотря на многолетние исследования, вопросы об иерархии масс нейтрино и о нарушении СР-инвариантности в нейтринных осцилляциях остаются открытыми из-за статистических и систематических ошибок экспериментов. Все это указывает на необходимость проведения экспериментов больших масштабов с реакторными ν_e с длинной базой (JUNO) [50], ускорительными ν_{μ} (DUNE и T2HK) [51, 52] на больших расстояниях между источником и детектором нейтрино и с атмосферными нейтрино. Результаты этих экспериментов позволят окончательно определить массовую упорядоченность нейтрино и однозначно ответить на вопрос о нарушении СР-ивариантности в нейтринных осцилляциях.

ЛИТЕРАТУРА

- S. Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998); Errartum: Phys. Rev. Lett. 81, 4279 (1998).
- Q. R. Ahmad et al., Phys. Rev. Lett. 87, 071301 (2001).
- 3. T. A. Araki et al., Phys. Rev. Lett. 94, 081801 (2005).
- **4**. Б. М. Понтекорво, ЖЭТФ **33**, 549 (1957).
- **5**. Б. М. Понтекорво, ЖЭТФ **34**, 217 (1958).
- Z. Maki, M. Nakagava, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).
- 7. F. An et al., Phys. Rev. Lett. 108, 171803 (2012).
- 8. J. Ahn et al., Phys. Rev. Lett. 108, 191802 (2012).
- 9. Y. Abe et al., Phys. Rev. Lett. 108, 131801 (2012).
- 10. B. Aharmim et al., Phys. Rev. C 88, 025501 (2013).
- 11. A. Gando et al., Phys. Rev. D 88, 033001 (2013).
- 12. Y. Abe et al., Phys. Rev. D 97, 072001 (2018).
- P. Adamson et al., Phys. Rev. Lett. 125, 131802 (2020).
- 14. R. N. Mohapatra and A. Y. Smirnov, Ann. Rev. NUcl. Part. Sci. 56, 569 (2006).
- G. Altarelli and F. Feruglio, Rev. Mod. Phys. 82, 2701 (2010).
- 16. S. F. King, J. Phys. G 42, 123001 (2015).
- 17. S. T. Petkov, Eur. Phys. J. C 78, 709 (2018).
- 18. S. Pascoli and S. T. Petkov, Phys. Lett. B 544, 239 (2002).
- 19. J. N. Bahcall, H. Murayama, and C. Pena-Garay, Phys. Rev. D 70, 033012 (2004).
- 20. L. Wolfenstein, Phys. Rev. D 17, 2369 (1978).
- 21. S. Mikheev and A. Smirnov, Il Nuovo Cimento C 9, 17 (1986).
- 22. P. F. Harrison and W. G. Scott, Phys. Lett. B 547, 219 (2002).

- 23. А. Д. Сахаров, Письма в ЖЭТФ 5, 32 (1967).
- 24. V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, Phys. Lett. B 155, 36 (1985).
- W. Buchmuller, R. D. Peccei, and T. Yanagida, Ann. Rev. Nucl. Part. Sci. 55, 331 (2005).
- 26. S. Pascoli, S. T. Petkov, S. T. Riotto, Phys. Rev. D 75, 083511 (2007).
- 27. C. Hagedorn, R. M. Mohapatra, C. C. Nishi, and S. T. Petkov, Int. J. Mod. Phys. A 33, 1842006 (2018).
- 28. M. N. Rebelo, Phys. Rev. D 67, 013008 (2003).
- 29. K. Abe et al., Phys. Rev. Lett. 121, 171802 (2018).
- **30**. K. Abe et al., Phys. Rev. Lett. **124**, 161802 (2020).
- 31. P. Adamson et al., Phys. Rev. Lett. 118, 231801 (2017).
- 32. M. Acero et al., Phys. Rev. D 98, 032012 (2018).
- 33. M. Acero et al., Phys. Rev. Lett. 123, 151803 (2019).
- 34. K. Abe et al., Phys. Rev. D 103, 112008 (2021).
- 35. M. Acero et al., arXiv:2108.08219 [hep-ph].
- 36. V. Barger, K. Whisnant, S. Pakvasa, and R. J. N. Phillips, Phys. Rev. D 22, 2718 (1980)
- **37**. С. П. Михеев, А. Ю. Смирнов, УФН **153**, 3 (1987).
- **38**. R. Byron, arXiv:1707.02322 [hep-ex].
- 39. H. Nunokawa, S. Parke, and R. Zukanovich-Funchal, Phys. Rev. D 72, 013009 (2005).
- 40. J. Arafune, M. Koike, and J. Sato, Phys. Rev. D 56, 3093 (1997); Errartum: Phys. Rev. D 60, 119905 (1999).
- 41. M. Freund, Phys. Rev. D 64, 053003 (2001).
- 42. E. K. Akhmedov, R. Johansson, M. Linder, T. Ohlsson, and T. Schwetz, JHEP 04, 078 (2004).
- 43. W. J. Marciano and Z. Parsa, Nucl. Phys. B (Proc. Suppl) 221, 166 (2011).
- 44. M. Tanabashi et al., Phys. Rev. D 98, 030001 (2018 and 2019 update)
- **45**. K. Abe et al., Nature **580**, 339 (2020); Errartum: Nature **583**, E16 (2020).

- 46. K. J Kelly, P. A. Machado, S. J. Parke, Y. F. Perez-Gonzalez, and R. Zukanovich-Funchal, Phys. Rev. D 103, 013004 (2021).
- 47. P. B Denton, J. Gehrlein, and R. Pestes, Phys. Rev. Lett. 126, 051801 (2021).
- 48. S. S. Chatterjee and A. Palazzo, Phys. Rev. Lett. 126, 051802 (2021).
- 49. M. Aker et al., Phys. Rev. Lett. 123, 221802 (2019).
- 50. F. An et al., J. Phys. G 43, 030401 (2016).
- **51**. B. Abi et al., arXiv:2002.03005 [hep-ex].
- 52. K. Abe et al., arXiv:1805.04163 [physics.ins-det].