ГЕОДЕЗИЧЕСКИЕ В ГРАВИТАЦИОННОМ ПОЛЕ КРОТОВОЙ НОРЫ

М. В. Сажин, О. С. Сажина^{*}, А. А. Шацкий

Государственный астрономический институт им. П. К. Штернберга, Московский государственный университет им. М. В. Ломоносова 119234, Москва, Россия

> Поступила в редакцию 10 февраля 2022 г., после переработки 10 февраля 2022 г. Принята к публикации 16 февраля 2022 г.

Теоретически исследуются структура пространства-времени вблизи кротовой норы (KH) и возможные наблюдательные следствия. В связи с растущей точностью наблюдений и перспективностью нового гравитационно-волнового канала задача различения астрофизических проявлений черных дыр и гипотетических КН приобретает актуальность. КН, наряду с черными дырами, естественно возникают в рамках ОТО. Для наблюдательных поисков КН необходимо знание характерных траекторий тел в ее окрестности, в том числе траекторий, заходящих в ее горловину. Выведены уравнения движения пробной частицы в метрике КН, а также рассмотрены наиболее интересные свойства этих движений. Выведено общее уравнение геодезических в метрике КН и рассмотрены некоторые свойства этих геодезических. Проанализированы точное решение для круговых орбит пробных частиц вокруг КН, а также приближенное аналитическое решение уравнений геодезических. Рассмотрено смещение перицентра орбиты пробной частицы в поле КН и обсуждаются возможные наблюдательные следствия. Представлены примеры траекторий пробных частиц у КН, полученные путем численного моделирования.

DOI: 10.31857/S0044451022070100 **EDN**: EEGIMJ

1. ВВЕДЕНИЕ

В общей теории относительности (ОТО) появляется несколько решений, которые описывают релятивистские объекты, скорость пробных частиц вблизи которых сравнима со скоростью света. Это прежде всего «черные дыры» (далее ЧД) — решения уравнений ОТО, найденные Шварцшильдом и Керром. ЧД открыты как в электромагнитном канале наблюдений [1], так и в гравитационно-волновом канале [2]. Открытие ЧД внушает уверенность, что и другие решения ОТО (на сегодняшний день только теоретические) могут существовать в космосе. Одним из таких гипотетических решений являются кротовые норы (далее КН). Сейчас существует несколько решений типа КН [3,4], см. обзор [5]. В литературе рассматривают как решения ОТО, так и наблюдательные проявления КН [6-8].

Для описания наблюдательных проявлений вблизи КН необходимо знать закон движения пробных частиц, другими словами, форму геодезических вблизи КН. В предлагаемой работе будут выведены уравнения движения пробной частицы в метрике КН, а также рассмотрены наиболее интересные свойства этих движений.

В разд. 2 мы рассматриваем метрику КН и некоторые общие свойства этой метрики. В разд. 3 мы выводим общее уравнение геодезических в метрике КН и рассматриваем некоторые свойства этих геодезических. В разд. 4 анализируем точное решение для круговых орбит пробных частиц вокруг КН. В разд. 5 мы рассматриваем приближенное аналитическое решение уравнений геодезических и некоторые его свойства. Наконец, в разд. 6 мы рассматриваем смещение перицентра орбиты пробной частицы в поле КН и обсуждаем возможные наблюдательные следствия. В Приложении представлены примеры траекторий движения пробных частиц у КН, полученные путем численного моделирования.

^{*} E-mail: cosmologia@yandex.ru

2. МЕТРИКА КРОТОВОЙ НОРЫ И ЕЕ СВОЙСТВА

Метрику КН примем в простейшем виде:

$$ds^{2} = \left(1 - \frac{r_{g}}{r}\right)c^{2}dt^{2} - \frac{dr^{2}}{1 - r_{0}/r} - r^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\varphi^{2}\right). \quad (1)$$

Здесь ct, r, θ, φ — соответственно координаты x^0, x^1, x^2, x^3 . Величина r_g — гравитационный радиус КН, а r_0 — радиус ее горловины. В отличие от шварцшильдовской метрики, метрика (1) является двухпараметрической и определяется параметрами r_g и r_0 .

Можно преобразовать радиальную координату следующим образом:

$$dl = \pm \frac{dr}{\sqrt{1 - r_0/r}}.$$

Тогда метрика КН (1) запишется в виде

$$ds^{2} = \left(1 - \frac{r_{g}}{r(l)}\right)c^{2}dt^{2} - dl^{2} - -r(l)^{2}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right).$$
(2)

Для того чтобы у КН не было горизонтов ЧД, необходимо на функцию $g_{00}(l)$ наложить условие, согласно которому она во всей области определения $(-\infty < l < \infty)$ должна быть больше нуля. При выполнении условия $r_0 > r_g$ величина $g_{00}(l)$ будет больше нуля во всей области определения. При этом функция $r^2(l)$ (квадрат радиуса) должна достигать своего минимума на горловине КН, которая определяется точками l = 0 и $r = r_0$. Преобразование от радиальной координаты r, которая является неоднозначной (одно и то же значение r может принадлежать разным полам полного пространства), к радиальной координате l, которая уже однозначно определяет положение каждой точки в полном пространстве, для верхней полы пространства КН есть

$$l = + \int_{r_0}^{r} \frac{dr}{\sqrt{1 - \frac{r_0}{r}}} = \sqrt{r(r - r_0)} + \frac{r_0}{4} \ln\left\{\sqrt{\frac{r}{r_0}} + \sqrt{\frac{r}{r_0} - 1}\right\},$$

а для нижней полы пространства $\rm KH-$

$$l = -\int_{r_0}^{r} \frac{dr}{\sqrt{1 - \frac{r_0}{r}}} = -\sqrt{r(r - r_0)} - \frac{r_0}{4} \ln\left\{\sqrt{\frac{r}{r_0}} + \sqrt{\frac{r}{r_0} - 1}\right\}.$$

Метрика (2), а также первые и вторые производные радиальной координаты по l регулярны во всей области определения ($-\infty < l < +\infty$):

$$\frac{dr}{dl} = \pm \sqrt{1 - \frac{r_0}{r}}, \quad \frac{d^2r}{dl^2} = \frac{r_0}{2r^2}.$$
 (3)

Метрике (2) соответствует тензор энергии-импульса T_k^i , нарушающий нулевое энергетическое условие (NEC) для радиальных фотонов.

Ненулевые компоненты этого тензора имеют вид

$$T_r^r = \frac{r_0 - r_g}{8\pi r^2 (r - r_g)} > 0,$$

$$T_{\theta}^{\theta} = T_{\varphi}^{\varphi} = \frac{(r_g - r_0)(2r - r_g)}{32\pi r^2 (r - r_g)^2} < 0.$$

Ниже мы обсудим вид траекторий пробных частиц как в *r*-координатной системе, так и в *l*-координатной системе.

3. УРАВНЕНИЯ ДВИЖЕНИЯ ПРОБНОЙ ЧАСТИЦЫ ВОКРУГ КРОТОВОЙ НОРЫ

3.1. Анализ геодезических в пространстве-времени кротовой норы

Проанализируем уравнение геодезических в пространстве-времени КН. Метрику возьмем в виде (1) (радиальная координата есть r). Геодезические также будут уравнениями движения пробных частиц. Будем также считать, что полученные нами уравнения движения относятся к движению пробной частицы по верхней поле пространства.

Обыкновенная производная от траектории частицы по собственному времени *s* выражается через компоненты

$$u^i \equiv \frac{dx^i}{ds}.$$

Эту величину в ОТО называют также контравариантной 4-скоростью. Уравнение геодезической определяется для касательного вектора вдоль траектории частицы u^i

$$\frac{du^i}{ds} + \Gamma^i_{jk} u^j u^k = 0$$

7 ЖЭТФ, вып. 1 (7)

Для ковариантных компонент касательного вектора u_i соответствующее уравнение имеет вид

$$\frac{du_i}{ds} = \frac{1}{2} \frac{\partial g_{jk}}{\partial x^i} u^j u^k.$$

Поскольку метрика (1) является статической и сферически-симметричной, можно сразу написать два интеграла движения [9]:

$$u_0 \equiv \epsilon = \text{const},$$
 (4)

$$u_3 \equiv h = \text{const.}$$
 (5)

Первый интеграл есть сохранение полной энергии системы, а второй — сохранение момента количества движения. Кроме того, можно показать, что пробная частица движется в плоскости, а это означает, что $\theta(s) = \text{const.}$ Можно выбрать $\theta(s) = \pi/2$. Тогда интегралы можно переписать в виде

$$\begin{pmatrix} 1 - \frac{r_g}{r} \end{pmatrix} \frac{dt}{ds} = \epsilon,$$

$$r^2 \frac{d\varphi}{ds} = h.$$
(6)

Итак, у нас есть уравнения для трех координат. Выведем уравнение для эволюции радиальной координаты r. Это уравнение будем выводить так же, как это делается при анализе движения в метрике ЧД. Для нахождения уравнений движения по радиусу используем уравнение метрики:

$$1 = \left(1 - \frac{r_g}{r}\right)\frac{dt^2}{ds^2} - \frac{1}{1 - \frac{r_0}{r}}\frac{dr^2}{ds^2} - \frac{1}{r^2}\left(\frac{d\theta^2}{ds^2} + \sin^2\theta\frac{d\varphi^2}{ds^2}\right).$$

Будем рассматривать случай массивной пробной частицы (двигающейся со скоростью, меньшей скорости света).

Подставим в уравнение метрик величину $\theta = \pi/2$ и получим уравнение

$$1 = \left(1 - \frac{r_g}{r}\right)\frac{dt^2}{ds^2} - \frac{1}{1 - r_0/r}\frac{dr^2}{ds^2} - r^2\frac{d\varphi^2}{ds^2}$$

Это уравнение можно преобразовать как

$$\left(1-\frac{r_g}{r}\right)\frac{dt^2}{ds^2} - \frac{d\varphi^2}{ds^2}\left(\frac{1}{1-r_0/r}\frac{dr^2}{d\varphi^2} + r^2\right) = 1.$$

Подставим интегралы движения и получим уравнения

$$\frac{\epsilon^2}{1 - r_g/r} - \frac{h^2}{r^4} \left(\frac{1}{1 - r_0/r} \frac{dr^2}{d\varphi^2} + r^2\right) = 1, \quad (7)$$

$$(u^r)^2 = \left(1 - \frac{r_0}{r}\right) \left(\frac{\epsilon^2}{1 - r_g/r} - 1 - \frac{h^2}{r^2}\right).$$
 (8)

Далее сделаем подстановку

$$u = \frac{1}{r},$$

которая окончательно приведет к уравнению

$$\left(\frac{du}{d\varphi}\right)^2 + (1 - r_0 u) u^2 = \frac{\epsilon^2 - 1 + r_g u}{h^2} \frac{1 - r_0 u}{1 - r_g u}.$$
 (9)

При анализе уравнений движения в метрике ЧД существует аналогичное уравнение, которое выглядит как

$$\left(\frac{du}{d\varphi}\right)^2 + (1 - r_g u) u^2 = \frac{\epsilon^2 - 1}{h^2} + \frac{r_g}{h^2} u$$

Можно также сравнить (13) с нерелятивистским уравнением движения. Оно получается, если пренебречь величинами r_0u , r_qu по сравнению с единицей:

$$\left(\frac{du}{d\varphi}\right)^2 + u^2 = \frac{\epsilon^2 - 1 + r_g u}{h^2}$$

Выпишем еще несколько полезных уравнений.

Для КН (в отличие от ЧД) радиальную координату r можно рассматривать как компоненту метрики (1). Можно сказать, что величина r является поперечной радиальной координатой, а продольной радиальной координатой является величина l из метрики (2).

Поэтому равенство нулю производной \dot{r} не означает прекращения движения по продольной радиальной координате l. По этой причине на горловине КН всегда будет выполняться условие $\dot{r} = 0$, но в общем случае величина $\dot{l} \neq 0$ на горловине КН.

3.2. Условие достижимости горловины кротовой норы свободно падающей частицей

Запишем величину l на горловине КН. С учетом выражений (3) и (8) получаем в произвольной точке:

$$\frac{dl}{ds} = u^l = \pm \sqrt{\frac{\epsilon^2}{1 - r_g/r}} - 1 - \frac{h^2}{r^2}$$

В точке горловины, $r = r_0$,

$$\left(u_0^l\right)^2 = \frac{\epsilon^2}{1 - r_g/r_0} - 1 - \frac{h^2}{r_0^2},\tag{10}$$

причем для чисто радиального падения имеем h = 0, поэтому

$$\left(u_{00}^{l}\right)^{2} = \frac{\epsilon^{2}}{1 - r_{g}/r_{0}} - 1.$$
 (11)

Из этого выражения видно, что при радиальном падении подавляющее число траекторий достигают горловины КН с ненулевой продольной скоростью. И наоборот: для того чтобы частица не достигла горловины КН, необходимо, чтобы правая часть выражений (10) или (11) была отрицательной.

При этом никаких ограничений на величину интеграла движения для удельной полной энергии ϵ , кроме того, что $\epsilon > 0$, не существует. Величина $\epsilon = 1$ соответствует тому, что частица на бесконечности имеет нулевую скорость. Диапазон значений $\epsilon > 1$ соответствует тому, что траектория частицы будет инфинитной, и наоборот: диапазон значений $\epsilon < 1$ соответствует тому, что частица гравитационно захвачена, и ее траектория будет финитной.

Анализ траекторий можно проводить в *r*-координатах (уравнения движения выглядят проще), а можно в *l*-координатах. Во втором случае уравнения содержат не только квадрат производных, но также и нелинейные функции l, которые являются также неявными функциями этой переменной. Тем не менее будем анализировать уравнения движения также и в *l*-координатах. Причина заключается в том, что в *r*-координатах на уравнения движения накладываются связи вида $r \ge r_0$, что приводит рассматриваемую задачу к задаче о движении с уравнениями с неголономными неудерживающими связями [10,11]. Такие уравнения требуют специального рассмотрения, которого в нашем случае можно избежать, рассматривая задачу о движении в lкоординатах. Особенно удобно рассмотрение задачи о движении пробных частиц в *l*-координатах вблизи горловины КН. В этом случае $r \approx r_0$ и можно анализировать уравнения движения в пределе малых *l*, т. е. $l \ll r_0$.

3.3. Собственная частота малых колебаний через горловину кротовой норы

Найдем частоту колебаний пробной частицы через горловину КН в предположении малости амплитуды колебаний.

Уравнение движения частицы запишем в виде

$$\frac{du_k}{ds} = \frac{1}{2} \frac{\partial g_{ij}}{\partial x^k} u^i u^j.$$

Тогда для k = r имеем

$$\frac{d\left(u^{r}g_{rr}\right)}{ds} = \frac{1}{2} \left[\frac{\partial g_{tt}}{\partial r} \left(u^{t}\right)^{2} + \frac{\partial g_{rr}}{\partial r} \left(u^{r}\right)^{2} \right].$$

Обозначая точкой производную по собственному времени *ds*, получаем

$$-\frac{\ddot{r}}{1-r_0/r} + \frac{r_0/r^2}{(1-r_0/r)^2} \dot{r}^2 = = \frac{1}{2} \left[\frac{r_g}{r^2} \frac{\epsilon^2}{(1-r_g/r)^2} + \frac{r_0/r^2}{(1-r_0/r)^2} \dot{r}^2 \right].$$
 (12)

Здесь $\dot{r} \equiv u^r$ определяется выражением (20) (см. ниже).

Переносим в выражении (12) все члены в правую часть и умножаем их на $(1 - r_0/r)^2$:

$$\left(1 - \frac{r_0}{r}\right)\ddot{r} - \frac{r_0}{2r^2}\dot{r}^2 + \frac{r_g\epsilon^2(1 - r_0/r)^2}{2r_0^2(1 - r_g/r)^2} = 0.$$

Или, обозначая $\delta r \equiv r - r_0$, получаем

$$\frac{\delta r \, \delta \ddot{r}}{r} - \frac{r_0 (\delta \dot{r})^2}{2r^2} + \frac{r_g \epsilon^2 (\delta r)^2}{2r_0^2 (r - r_g)^2} = 0. \tag{13}$$

Вблизи горловины величину r можно разложить в ряд по малым значениям l. Используем для этого выражения (3):

$$r(l) \approx r_0 + \frac{l^2}{4r_0}, \quad \delta r \approx \frac{l^2}{4r_0}, \quad \delta \dot{r} \approx \frac{l\,\dot{l}}{2r_0}, \qquad (14)$$
$$\delta \ddot{r} \approx \frac{l\,\ddot{l}}{2r_0} + \frac{(\dot{l})^2}{2r_0}.$$

Делим выражение (13) на $\delta r/r$ и подставляем в него значения производных из (14), в квадратичном приближении по l получаем

$$\frac{l\,\tilde{l}}{2r_0} + \frac{(\tilde{l})^2}{2r_0} - \frac{r_0}{2r} \frac{l^2(\tilde{l})^2/(4r_0^2)}{l^2/(4r_0)} + \frac{r_g\epsilon^2 l^2}{8r_0^2(r_0 - r_g)^2} = 0.$$
(15)

В квадратичном приближении по *l* второй и третий члены в (15) взаимно сокращаются:

$$\frac{l\ddot{l}}{2r_0} + \frac{r_g \epsilon^2 l^2}{8r_0^2 (r_0 - r_g)^2} = 0.$$

Отсюда получаем уравнение гармонических колебаний по *l*:

$$\ddot{l} + \omega^2 l = 0, \quad \omega^2 \equiv \frac{\epsilon^2 r_g}{4r_0(r_0 - r_g)^2}$$

Величина ω и определяет собственную частоту малых колебаний вблизи горловины КН для зависимости продольной физической координаты l от собственного времени s.

..

4. АНАЛИЗ ТОЧНОГО РЕШЕНИЯ В МЕТРИКЕ КРОТОВОЙ НОРЫ ДЛЯ СЛУЧАЯ КРУГОВОЙ ОРБИТЫ

4.1. Круговые орбиты и их устойчивость

Рассмотрим важный случай круговых орбит вокруг КН. Анализировать будем точное уравнение движения (13). Круговые орбиты определяются соотношением

$$\frac{dr}{dt} = \frac{u^r}{u^t} = 0. \tag{16}$$

Кроме этого, есть еще одно соотношение, которое определяет устойчивые и неустойчивые орбиты. Для того чтобы получить критерий устойчивости, надо через (16) выписать уравнение для производной радиуса по времени:

$$\left(\frac{dr}{dt}\right)^2 = \left(1 - \frac{r_0}{r}\right) \left(1 - \frac{r_g}{r}\right) \epsilon^{-2} \times \left[\epsilon^2 - \left(1 - \frac{r_g}{r}\right) \left(1 + \frac{h^2}{r^2}\right)\right].$$
 (17)

Экстремумы функции

$$U(r) = \sqrt{\left(1 - \frac{r_g}{r}\right)\left(1 + \frac{h^2}{r^2}\right)}$$

определяют устойчивость орбиты. Минимумы функции отвечают устойчивым орбитам, максимумы — неустойчивым. Из вида функции следует, что она совпадает с функцией энергии, определяющей круговые орбиты в метрике Шварцшильда с гравитационным радиусом r_g . Поэтому так же, как и для ЧД Шварцшильда, в метрике КН (1) последняя устойчивая круговая орбита находится при $r = 3r_g$ и имеет параметры: $h = \sqrt{3}r_g$, $\epsilon = \sqrt{8/9}$ (см. [9], § 102).

Из сказанного выше следует, что устойчивая круговая орбита соответствует совместному решению двух уравнений:

$$\epsilon^2 - \left(1 - \frac{r_g}{r}\right)\left(1 + \frac{h^2}{r^2}\right) = 0, \qquad (18)$$
$$U'(r) = 0.$$

Здесь и далее штрих означает производную по r. Решая совместно систему (18), получаем

$$h^{2} = \frac{r_{g}r}{2 - 3r_{g}/r},$$

$$\epsilon^{2} = \frac{(1 - r_{g}/r)^{2}}{1 - (3/2)r_{g}/r}.$$
(19)

Эти два уравнения определяют связь удельного углового момента h и удельной полной энергии ϵ с радиусом r устойчивой круговой орбиты частицы.

Обратим особое внимание на то, что выражения (7) и (19) не зависят от величины r_0 . Это связано с тем, что величины ϵ и h не зависят от компоненты g_{rr} метрики (1). В нерелятивистском пределе $r_g/r \to 0$ второе выражение (19) переходит в известную ньютоновскую формулу для «постоянной энергии» частицы на круговой орбите вокруг массивного центра с массой M:

$$\epsilon \to 1 - M/(2r).$$

Минимальный радиус неустойчивой орбиты есть $r = (3/2)r_q$, при этом $h \to \infty$, $\epsilon \to \infty$.

Поскольку в метрике КН орбиты с $r < r_0$ невозможны, наличие последней устойчивой орбиты, а тем более последней неустойчивой орбиты определяется соотношением между гравитационным радиусом КН и радиусом горловины. При $r_0 > 3r_g$ все круговые орбиты являются устойчивыми.

Для случая $r_0 = r_g$ появляется последняя устойчивая орбита. В случае метрики Шварцшильда пробная частица, минуя $r = (3/2)r_g$, совершает менее одного оборота вокруг ЧД. Вычислим полное изменение угла при сходе частицы с последней устойчивой орбиты в случае КН. Выпишем уравнение для u^r :

$$(u^{r})^{2} = \left(1 - \frac{r_{0}}{r}\right) \left(\frac{\epsilon^{2}}{1 - r_{g}/r} - 1 - \frac{h^{2}}{r^{2}}\right).$$
(20)

С другой стороны, имеем

$$\frac{d\varphi}{dr} = \frac{u^{\varphi}}{u^r} = \frac{u_{\varphi}g^{\varphi\varphi}}{u^r} = -\frac{h}{r^2u^r}$$

Подставляя сюда (20), получаем

$$\frac{d\varphi}{dr} = \frac{h\sqrt{1 - r_g/r}}{r^2\sqrt{[\epsilon^2 - (1 + h^2/r^2)(1 - r_g/r)](1 - r_0/r)}}.$$
 (21)

Полное изменение угла φ находится из этой формулы интегрированием по радиусу.

Для случая $r_0 = r_g$ интегрируем выражение (21) и получаем полное изменение угла от момента схода с минимально устойчивой орбиты до гравитационного радиуса:

$$\Delta \varphi = \int_{3r_g}^{r_g} \frac{9h \, dr}{r^2 \left(3r_g/r - 1\right)^{3/2}}$$

Этот интеграл расходится в точке $r = 3r_g$, что соответствует бесконечному количеству оборотов при сходе с минимально устойчивой орбиты для ЧД.

4.2. Собственное время витка обращения по круговой орбите

Рассчитаем собственное время обращения пробной частицы вокруг КН (или ЧД). Учтем, что элемент собственного времени — это просто инвариантный элемент интервала ds:

$$ds \equiv \frac{d\varphi}{u^{\varphi}} = \frac{d\varphi}{hg^{\varphi\varphi}}$$

Отсюда для полного оборота $\delta \varphi = 2\pi$ получаем

$$\delta s = \frac{2\pi r^2}{h}.$$

Подставляя сюда для h первое выражение (19), получаем

$$\delta s = 2\pi r \sqrt{2\frac{r}{r_g} - 3} = 2\pi r \sqrt{2\frac{r}{r_g}} \sqrt{1 - \frac{3}{2}\frac{r_g}{r_g}}.$$

Отсюда видно, что выражение для собственного времени витка оборота вокруг КН δs на бесконечности совпадает с его ньютоновским пределом $\delta \tau$:

$$\delta \tau = 2\pi r \sqrt{r/M}$$

Кроме того, величина собственного времени δs не зависит от параметра r_0 для KH, т. е. она одинакова и для KH, и для ЧД.

5. ПРИБЛИЖЕННЫЙ АНАЛИЗ УРАВНЕНИЙ ДВИЖЕНИЯ

5.1. Уравнение траектории пробной частицы

Аналитический вид решения уравнения (13) нам найти не удалось, поэтому будем анализировать приближенное уравнение. Надо отметить, что это не просто постньютоновское приближение, принятое в ОТО. Поскольку существует условие $r_g < r_0$, можно также рассматривать приближение по малому параметру r_g/r_0 . В зависимости от величины этого отношения, разложение может быть достаточно точным. В данном разделе мы примем, что $r_g \ll r_0$.

Для этого сделаем замену $x = r_0 u$, тогда уравнение (13) примет вид

$$\left(\frac{dx}{d\varphi}\right)^2 + (1-x)x^2 =$$

$$= \left(\frac{r_0}{h}\right)^2 \left(\epsilon^2 - 1 + \frac{r_g}{r_0}x\right) \frac{1-x}{1 - \frac{r_g}{r_0}x}.$$
 (22)

Новая переменная x лежит в интервале $0 \le x \le \le 1$. В принятом нами приближении величиной $(r_g/r_0)x$ можно пренебречь по сравнению с единицей, но нельзя пренебрегать по сравнению с величиной $\epsilon^2 - 1$, которая сама является малой. Поэтому уравнение (16) упрощается и имеет вид

$$\left(\frac{dx}{d\varphi}\right)^2 + (1-x)x^2 =$$
$$= \left(\frac{r_0}{h}\right)^2 \left(\epsilon^2 - 1 + \frac{r_g}{r_0}x\right)(1-x).$$

Это уравнение можно преобразовать к виду

$$\left(\frac{dx}{d\varphi}\right)^2 = f(u) = (1-x)\left(A + Bx - x^2\right).$$
(23)

Введем обозначения

$$A \equiv \left(\frac{r_0}{h}\right)^2 \left(\epsilon^2 - 1\right),$$
$$B \equiv \left(\frac{r_0}{h}\right)^2 \frac{r_g}{r_0} = \frac{2r_0}{p}.$$

Форма геодезических определяется корнями функции f(u). Она представляет собой полином третьей степени и, соответственно, имеет три корня. Первый корень, очевидно, есть $x_1 = 1$, два других корня —

$$x_{2} = \frac{r_{0}}{p} (1+e),$$

$$x_{3} = \frac{r_{0}}{p} (1-e).$$
(24)

Первый корень полинома третьей степени (x_1) представляет собой орбиту, находящуюся на горловине КН, второй корень (x_2) является расстоянием в апоцентре орбиты в ньютоновском приближении, а третий корень (x_3) — расстоянием в перицентре. Соотношение между корнями представляется в зависимости от параметра орбиты p. В случае, когда $p > 2r_0$, соотношение между корнями имеет вид $x_1 > x_2 > x_3$. В случае, когда $r_0 \le p \le 2r_0$, соотношение между корнями имеет вид $x_2 > x_3$.

Разложив многочлен третьей степени в произведение линейных членов, получим уравнение

$$\left(\frac{dx}{d\varphi}\right)^2 = f(x) = (1-x)(x_2-x)(x-x_3).$$
 (25)

Решением этого уравнения является эллиптический интеграл первого рода. Рассмотрим решение для орбиты пробной частицы вокруг КН. Для этого в уравнении (18) сделаем подстановку [12]:

$$x = \frac{r_0}{p} \left(1 + e \cos \chi \right).$$

Здесь χ — новая переменная, которую можно назвать «релятивистской аномалией». Производная от функции x по переменной χ есть

$$\frac{dx}{d\chi} = -e\frac{r_0}{p}\sin\chi.$$

Введем новый параметр задачи $\rho = r_0/p$. Тогда можно написать уравнения для линейных членов и производной в виде

$$1 - x = 1 - \rho - e\rho \cos \chi,$$

$$x_2 - x = e\rho (1 - \cos \chi),$$

$$x - x_3 = e\rho (1 + \cos \chi),$$

$$\left(\frac{dx}{d\varphi}\right)^2 = (e\rho)^2 \sin^2 \chi \left(\frac{d\chi}{d\varphi}\right)^2.$$

Теперь для релятивистской аномалии получаем уравнение

$$\left(\frac{d\chi}{d\varphi}\right)^2 = \left(1 - \rho - e\rho\cos\chi\right).$$

Отсюда следует, что параметр орбиты p в случае эксцентричных орбит не может быть меньше, чем $(1 + e \cos \chi)r_0$. Это неравенство соответствует тому, что в случае эксцентричных орбит расстояние от центра не может быть менее, чем r_0 :

$$r(\varphi) > \frac{1+e}{1+e\cos\chi}r_0.$$

Переобозначим $\alpha = \pi/2 - \chi/2$ и запишем окончательно уравнение для величины α :

$$\frac{d\alpha}{d\varphi} = \pm \frac{q}{2}\sqrt{1 - k^2 \sin^2 \alpha},$$

где

$$k^{2} = \frac{1 e\rho}{1 + e\rho - \rho},$$
$$q^{2} = 1 + e\rho - \rho.$$

2eo

Решением этого уравнения является эллиптический интеграл первого рода:

$$\int_{0}^{\alpha} \frac{d\tau}{\sqrt{1-k^2 \sin^2 \tau}} = \pm \frac{q}{2} \Delta \varphi(\alpha),$$

где $\Delta \varphi(\alpha)$ — изменение угловой координаты φ при изменении «релятивистской аномалии» от $\pi - 2\alpha$ до π .

Эти решения можно записать в виде функций Якоби:

$$\sin \alpha = \sin \left(\frac{q}{2} \Delta \varphi(\alpha) \right), \quad \cos \alpha = \operatorname{cn} \left(\frac{q}{2} \Delta \varphi(\alpha) \right).$$

Соответственно выражение для «релятивистской аномалии» есть

$$\cos(\chi) = \operatorname{cn}^2\left(\frac{q\varphi}{2}\right) - \operatorname{sn}^2\left(\frac{q\varphi}{2}\right).$$

Здесь сп и sn — эллиптические косинус и синус соответственно.

Таким образом, уравнение траектории пробной частицы на орбите вокруг КН имеет вид

$$r = \frac{p}{1 + e\left(\operatorname{cn}^2\left(\frac{q\varphi}{2}\right) - \operatorname{sn}^2\left(\frac{q\varphi}{2}\right)\right)}.$$

5.2. Энергия пробной частицы

Выведем теперь формулу для постоянной энергии в случае пробной частицы на орбите вокруг КН.

Используем первые интегралы задачи о движении:

$$1 = \frac{\epsilon^2}{1 - r_q/r} - \frac{1}{1 - r_0/r} \frac{dr^2}{ds^2} - r^2 \frac{d\varphi^2}{ds^2}.$$

Преобразуем это уравнение как

$$\left(\epsilon^2 - 1 + \frac{r_g}{r}\right) \left(1 - \frac{r_0}{r}\right) =$$

$$= \left(1 - \frac{r_g}{r}\right) \frac{dr^2}{ds^2} - \left(1 - \frac{r_g}{r}\right) \left(1 - \frac{r_0}{r}\right) r^2 \frac{d\varphi^2}{ds^2}.$$

В этом уравнении мы можем пренебречь множителем $(1 - r_q/r)$ в правой части, получаем уравнение

$$\left(\epsilon^2 - 1 + \frac{r_g}{r}\right)\left(1 - \frac{r_0}{r}\right) = \frac{dr^2}{ds^2} - \left(1 - \frac{r_0}{r}\right)r^2\frac{d\varphi^2}{ds^2}$$

теперь сделаем подстановку

$$r^2 \frac{d\varphi}{ds} = h.$$

Воспользуемся также подстановкой для траектории, которую, как и в [12], в случае e < 1 будем называть «релятивистским эллипсом»,

$$\frac{1}{r} = \frac{1}{p} \left(1 + e \cos \chi \right)$$

$$\frac{dr}{ds} = r^2 \frac{e \sin \chi}{p} \frac{d\chi}{ds},$$

И

а также

$$\left(\frac{d\chi}{ds}\right)^2 = (1 - \rho - e\rho\cos\chi)\left(\frac{d\varphi}{ds}\right)^2 = (1 - \rho - e\rho\cos\chi)\frac{h^2}{r^4},$$

окончательно получим

$$\begin{aligned} \epsilon^2 - 1 + \frac{r_g}{p} \left(1 + e \cos \chi \right) = \\ = \frac{h^2}{p^2} \left(1 + e^2 \right) + \frac{2eh^2}{p^2} \cos \chi. \end{aligned}$$

Приравнивая члены при функции $\cos \chi$ получаем выражение для h(p):

$$h^2 = \frac{1}{2}r_g p, \qquad (26)$$

а также для $\epsilon(e, p)$:

$$\epsilon^2 = 1 - \frac{r_g}{2p} \left(1 - e^2 \right) = 1 - \frac{GM}{a}.$$
 (27)

Здесь *а* — большая полуось «релятивистского эллипса». Мы приняли, что

$$p = a \left(1 - e^2 \right).$$

В классической небесной механике [13] величина

$$W = -\frac{GM}{a}.$$

называется постоянной энергии. При этом W < 0 и e < 1 — эллиптическая орбита, W = 0 и e = 1 — параболическая орбита, W > 0 и e > 1 — гиперболическая орбита.

5.3. Анализ вида финитных траекторий

Рассмотрим вид траекторий при различных значениях параметров орбиты (или ϵ , h, или e и p) для приближенного решения. Ограничимся рассмотрением финитных траекторий. Независимо от свойств горловины КН (она может быть «проходимой» или «непроходимой»), геодезические в этом случае всегда можно построить.

Наиболее простой вид траектории имеют в случае

$$p \ge r_0 \left(1 + e \right).$$

В этом случае траектория полностью находится на одной поле пространства, касаясь горловины КН в одной точке, когда параметр $p = r_0 (1 + e)$. В случае

103

финитных траектории они имеют вид «релятивистского» эллипса, другими словами, почти эллиптической траектории со смещением перицентра орбиты.

Выпишем неравенства, которым должны удовлетворять параметры геодезической. Прежде всего напишем значения апоцентра и перицентра траектории:

$$r_a = \frac{p}{1-e}$$
$$r_p = \frac{p}{1+e}$$

Из неравенства $r \ge r_0$ следует, что

$$p \ge r_0 \left(1 + e \cos \chi\right). \tag{28}$$

Также получаем

$$1 - \rho - e\rho \cos \chi \ge 0. \tag{29}$$

Отметим, что неравенства (28) и (29) эквивалентны.

Отсюда получаем неравенство, которое определяет интервал изменения χ :

$$\frac{p-r_0}{er_0} \ge \cos \chi \ge -1.$$

В случае

$$p = r_0 \left(1 + e \right)$$

угол χ содержится в интервале $\pi \geq \chi \geq 0$. Для меньших значений p интервал значений угла χ меньше, чем π . Возникает «дефицит угла», аналогичный геометрии пространства с космической струной [14]. Например, при

$$p = r_0 \left(1 + \frac{1}{2}e \right)$$

интервал значений χ есть $\pi \ge \chi \ge 60^{\circ}$.

Будем также считать, что имеют место две вселенные: «первая вселенная» (или верхняя пола пространства, или верхняя вселенная) и «вторая вселенная» (или нижняя пола пространства, или нижняя вселенная). Будем также полагать, что апоцентр рассматриваемой системы (траектории или геодезической) находится в «первой вселенной». Положение траектории может быть только в «первой вселенной» или может находиться частично в «первой вселенной», частично во «второй вселенной».

Рассмотрим эти случаи в зависимости от соотношения между параметрами, которые определяют траектории движения. Положение траектории зависит от трех параметров: p, r_0 и e. Если $p \ge r_0(1+e)$, то траектория полностью лежит в «первой вселенной», причем траектория касается горловины КН в

одной точке только при $p = r_0(1 + e)$. Далее, если $p < r_0(1 + e)$, то траектория переходит во «вторую вселенную». Когда траектория располагается в обеих вселенных («первой» и «второй»), угол χ меняется в интервале

$$\frac{p-r_0}{er_0} \ge \cos\chi \ge -1,$$

или

$$\pi \ge \chi \ge \arccos \frac{p - r_0}{e r_0}.$$

В случае, когда $p < r_0$, интервал есть

$$\pi \ge \chi \ge \frac{\pi}{2}.$$

В случае, когда $r_0(1+e) \ge p \ge r_0$ интервал есть

$$\frac{\pi}{2} \ge \chi \ge 0.$$

Полученные численно примеры характерных траекторий движения пробной частицы вблизи КН приведены в Приложении.

6. ОЦЕНКИ СМЕЩЕНИЯ ПЕРИЦЕНТРА

Как известно, смещение перигелия планеты Меркурий явилось первым тестом ОТО. Существует значимое расхождение между предсказаниями ньютоновской теории гравитации и наблюдаемым смещением перигелия. Оно составляет примерно 43" за 100 лет.

С тех пор смещение перицентра различных релятивистских объектов в двойных системах превратилось в один из самых мощных тестов исследования двойных звездных систем. В частности, после открытия первого двойного пульсара PSR 1913+16 этот тест позволил точно измерить массы компонент двойной системы.

Для вычисления смещения перицентра проинтегрируем уравнение (17):

$$\int_{-\pi}^{\pi} \frac{d\chi}{\sqrt{1-\rho-e\rho\cos\chi}} = \Delta\varphi.$$

В случае $\rho \ll 1$ интеграл имеет простой вид:

$$\int_{-\pi}^{\pi} d\chi \left(1 + \frac{\rho}{2} + \frac{e\rho}{2} \cos \chi \right) = \Delta \varphi.$$

Смещение угловой координаты φ при полном обороте по «релятивистской аномалии» $-\pi \leq \chi \leq \pi$

(здесь мы отсчитываем «релятивистскую аномалию» от апоцентра) составит

$$\Delta \varphi = 2\pi + \frac{\pi r_0}{p}$$

Отметим, что связь между периодом пробной частицы на орбите вокруг КН и ее большой полуосью определяется гравитационным радиусом КН, в то время как смещение перицетра орбиты определяется радиусом горловины КН. В рассматриваемом случае, когда $r_0 \gg r_g$, смещение перицентра может значительно превосходить величину, предсказываемую ОТО для ЧД. Это может служить критерием для различения КН от ЧД при астрономических наблюдениях.

В случае, когда радиус головины превосходит три гравитационных радиуса $(r_0 > 3r_g)$ и все круговые орбиты вокруг КН являются устойчивыми, величина смещения перицентра пробной частицы на орбите вокруг КН превосходит смещение перицентра этой частицы на орбите ЧД с таким же гравитационным радиусом.

7. ЗАКЛЮЧЕНИЕ

В связи с растущей точностью наблюдений и новым наблюдательным каналом — гравитационно-волновой астрономией — отличия движения вещества вблизи ЧД и КН могут стать различимыми.

Для будущих поисков наблюдательных эффектов, отличающих именно КН, необходимо знать формы характерных траекторий тел (пробных частиц) вблизи КН. В предлагаемой работе выведены уравнения движения пробной частицы в метрике КН, а также рассмотрены наиболее интересные свойства этих движений. Выведено общее уравнение геодезических в метрике КН и рассмотрены некоторые свойства этих геодезических. Проанализированы точное решение для круговых орбит пробных частиц вокруг КН, а также приближенное аналитическое решение уравнений геодезических. Рассмотрены смещение перицентра орбиты пробной частицы в поле КН и обсуждены возможные наблюдательные следствия. Представлены примеры траекторий движения пробных частиц у КН, полученные путем численного моделирования.

Рис. 1. (В цвете онлайн) Геодезическая начинается в зеленой точке, доходит до горловины КН, переходит на вторую полу пространства («вторую вселенную») и кончается в черной точке. Для такой траектории момент количества движения h = 0, т.е. пробная частица движется только по радиусу. Полная энергия $\epsilon \approx 0.949$. Минимальное расстояние от центра КН $r_{min} = r_0$. Траектория в «первой вселенной» накладывается на траекторию во «второй вселенной», поэтому в проекции r, ϕ две части траектории сливаются

$r_{min} = r_0$

ПРИЛОЖЕНИЕ

Моделирование финитных траекторий

Рассмотрим теперь вид траекторий при различных значениях параметров орбиты ϵ , h или e, p (см. (26), (27)).

Рис. 3. (В цвете онлайн) Данная траектория представляет наибольший интерес. Она начинается, как и прежде, в зеленой точке, доходит до горловины, входит во «вторую вселенную», совершает половину одного оборота, возвращается к горловине, проходит через нее и заканчивается в черной точке. Небольшой разрыв в траектории соответствует смещению апоцентра. Момент количества движения $h = r_g$. Полная энергия $\epsilon \approx 0.953$. Минимальное расстояние от центра КН $r_{min} = r_0$

Рис. 4. (В цвете онлайн) Траектория, представленная на рис. 3, изображенная в искусственной виртуальной проекции, которая графически разделяет верхнюю и нижнюю полы пространства

Наиболее простой вид траектории имеют в случае

 $p \ge r_0$.

В этом случае траектория полностью находится на одной поле пространства, касаясь горловины КН в одной точке, в случае, когда параметр $p = r_0 -$ см.

Рис. 5. (В цвете онлайн) Траектория, аналогичная изображенным на рис. 1, 2. Момент количества движения $h = 1.9r_g$. Полная энергия $\epsilon \approx 0.966$. Минимальное расстояние от центра КН $r_{min} = r_0$

Рис. 6. (В цвете онлайн) Траектория, аналогичная изображенным на рис. 1, 2. Момент количества движения $h = 2r_g$. Полная энергия $\epsilon \approx 0.973$. Минимальное расстояние от центра КН $r_{min} = r_0$

рис. 1. В случае финитных траекторий они имеют вид «релятивистского» эллипса, другими словами, почти эллиптической траектории со смещением перицентра орбиты.

Приведем несколько примеров финитных траекторий вблизи КН (рис. 2–7). Все рисунки сделаны в координатах r, ϕ , за исключением рис. 4, который

Рис. 7. (В цвете онлайн) Траектория, аналогичная изображенным на рис. 1, 2. Момент количества движения $h = 2.3r_g$. Полная энергия $\epsilon \approx 0.973$. Минимальное расстояние от центра КН $r_{min} = r_0$

представляет качественный вид траектории, когда луч зрения лежит в плоскости горловины КН. Параметры траектории представлены в единицах гравитационного радиуса (r_g) КН. Максимальное удаление (апоцентр) траектории от центра КН для всех траекторий есть $r_{max} = 10r_g$. Черные линии — горизонт ЧД. Фиолетовые линии — положение горловины КН. Зеленая точка — точка старта геодезической, черная точка — точка окончания геодезической. Зеленая точка находится при $\phi = 0$.

ЛИТЕРАТУРА

- А. М. Черепащук, Тесные двойные звезды, Физматлит, Москва (2013).
- B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016).
- 3. K. Bronnikov, Acta Phys. Polon. B 4, 251 (1973).
- M. Morris and K. Thorn, Amer. J. Phys. 56, 395 (1988).
- 5. C. Bambi and D. Stojkovic, arXiv:2105.00881v2.
- Н. С. Кардашев, Л. Н. Липатова, И. Д. Новиков, А. А. Шацкий, ЖЭТФ 146, 75 (2014).

- **7**. И. Д. Новиков, Н. С. Кардашев, А. А. Шацкий, УФН **177**, 1017 (2007).
- 8. И. Д. Новиков, С. В. Репин, Астрон. ж. 98, 1 (2021).
- Л. Д. Ландау, Е. М. Лифшиц, *Теория поля*, Наука, Москва (1988).
- **10**. Г. Голдстейн, *Классическая механика*, Наука, Москва (1975).
- 11. В. Ф. Журавлев, Основы теоретической механики, Физматлит, Москва (2001).
- **12**. С. Чандрасекар, *Математическая теория черных дыр*, Мир, Москва (1986).
- **13**. В. Е. Жаров, *Сферическая астрономия*, Век-2, Фрязино (2006).
- 14. M. V. Sazhin and O. S. Sazhina, La Rivista del Nuovo Cimento, https://doi.org/10.1007/s40766-021-00022-x (2021).