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DIMENSIONLESS PHYSICS: CONTINUATION
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Several approaches to quantum gravity (including
the model of superplastic vacuum; Diakonov tetrads
emerging as the bilinear combinations of the fermionis
fields [1–4]; BF -theories of gravity; and effective acous-
tic metric [5, 6] ) suggest that in general relativity the
metric must have dimension 2, i.e. [gμν ] = 1/[L]2, ir-
respective of the dimension of spacetime. This leads
to the "dimensionless physics" discussed in the review
paper [7]. We continue to exploit this issue.

Elasticity tetrads. The 3 + 1-dimensional vacuum
crystal is the plastic (malleable) medium [8], described
in terms of the elasticity tetrads [9–12]:

Ea
μ =

∂Xa

∂xμ
, (1)

where equations Xa(x) = 2πna are equations of the
(deformed) crystal planes. The functions Xa play the
role of the geometric U(1) phases and are dimension-
less. The elasticity tetrads play the role of the gauge
fields (translation gauge fields) and have the same di-
mension 1 as the dimension of gauge fields:

[Ea
μ] =

1

[L]
. (2)

The dimension n of quantity A means [A] = [L]−n,
where [L] is dimension of length. The matrix Ea

μ is not
necessarily quadratic. The extension of tetrads to the
rectangular vilebein is considered in Ref. [13].

Elasticity tetrads in Eq.(1) give rise to the metric,
which is the bilinear combination of tetrads:

gμν = ηabE
a
μE

b
ν . (3)
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The metric gμν has dimension n = 2, while the con-
travariant metric gμν has dimension n = −2:

[gμν ] =
1

[L]2
, [gμν ] = [L]2 . (4)

The tetrad determinant has dimension n = 4 in the
4-dimensional spacetime and dimension n = N in the
N -dimensional spacetime, where the dimensions of the
metric elements are the same as in Eq.(4):

[e] = [
√−g ] =

1

[L]N
. (5)

Eq.(5) makes the spacetime integration dimensionless:

[ ∫
dNx

√−g
]
= [1] = 0 , (6)

which leads to the dimensionless Lagrangian L:
[
S
]
=
[ ∫

dNx
√−gL] = [

∫
dNx

√−g
]·[L] = [1]·[1] = [1] .

(7)
Classical dynamics of particle is described by action:

S = M

∫
ds , (8)

where with Eq.(3) the interval is dimensionless:

ds2 = gμνdx
μdxν , [s2] =

1

[L]2
· [L]2 = [1] = 0 . (9)

The variation of action gives the Hamilton–Jacobi
equation in terms of the contravariant metric:

gμν∂μS∂νS +M2 = 0 . (10)

Since the action and the interval are dimensionless, the
mass M in Eq.(8) is also dimensionless, [M ] = [1] = 0,
for any dimension N of spacetime.
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In the spacetime crystal, the interval between the
events is counted in terms of the lattice points, and this
is the geometric reason why the interval is dimension-
less. One may say that dynamics comes from geom-
etry. In the Diakonov theory, the interval determines
the dynamics of the particle, rather than the geometric
distance, i.e. the geometry follows from dynamics.

Scalar fields. The quadratic terms in the action for
the scalar field Φ in the N -dimensional spacetime are:

S =

∫
dNx

√−g
(
gμν∇μΦ

∗∇νΦ +M2|Φ|2) . (11)

From Eqs. (4) and (6) it follows that the scalar field is
dimensionless, [Φ] = [1] = 0, for arbitrary spacetime di-
mension N . This universal zero dimension differs from
the N -dependent dimension n = (N − 2)/2 of scalar
fields in the conventional approach.

Wave function. Expanding the Klein-Gordon
equation over 1/M one obtains the non-relativistic
Schrödinger action for the wave function ψ:

Φ(r, t) =
1√
M

exp
(
iMt/

√
−g00

)
ψ(r, t) , (12)

SSchr =

∫
d3xdt

√−gL , (13)

2L = i
√

−g00 (ψ∂tψ
∗ − ψ∗∂tψ) +

gik

M
∇iψ

∗∇kψ . (14)

The normalization condition for the wave function is:∫
d3r

√
γ |ψ|2 = 1 , (15)

where √
γ =

√−g
√
−g00 is the determinant of the

space part of the metric. This corresponds to the parti-
cle number conservation in the nonrelativistic quantum
mechanics, see e.g. Eq.(13) in Ref. [14].

Since the dimension of this determinant is
[
√
γ ] = 1

[L]3 , the wave function is dimensionless.
This is distinct from the conventional Schrödinger
equation without gravity, where the dimension of ψ

is [ψ] = [L]−(N−1)/2 for the N dimensional space-
time. Inclusion of gravity provides the natural zero
dimension for the probability amplitude in quantum
mechanics, [ψ] = 0, for any spacetime dimension.

The same result can be obtained from overlap of the
quantum states, which is naturally dimensionless:

< r | r′ >=
1√
γ
δ(r− r′) . (16)

Then for the wave function

ψ(r) =< r |ψ > , |ψ >=

∫
dN−1r

√
γ ψ(r)| r > ,

(17)

one obtains Eq.(15) for normalization:

1 =< ψ |ψ >=

∫
dN−1r

√
γ |ψ|2 . (18)

From Eq.(18) it follows that the wave function is di-
mensionless, which is the consequence of the presence
of the metric field. This demonstrates the connection
between quantum mechanics and general relativity.

The action (13) and Lagrangian (14) do not contain
�. The role of � in the conventional relation between
the energy levels and frequency, Em − En = �ωmn,
is now played by

√
g00 in the red shift equation

Mm − Mn =
√
g00 ωmn [15]. The dimensional met-

ric leads to the difference between the dimensional fre-
quency, [ωmn] = 1/[L], and the dimensionless mass:

[M ] = [
√
g00][ω] = [L] · 1

[L]
= [1] = 0 . (19)

Weyl and Dirac fermions. The dimensional tetrads
[Ea

μ] = 1/[L] are obtained directly from the zero dimen-
sion of wave functions, which gives rise to the dimen-
sionless Weyl and Dirac fields, [Ψ] = 0, in the action:

S =

∫
d4x e eμaΨ̄γa∇μΨ , (20)

where e is the tetrad determinant. Since the ac-
tion is dimensionless, then assuming that the quan-
tum field operators Ψ are dimensionless, one obtains
[e eμa ] = 1/[L]3, which gives the dimensional tetrads:

[eμa ] = [L] , [Ea
μ] =

1

[L]
, [e] =

1

[L]4
. (21)

This is in agreement with the Diakonov theory [1–4],
where tetrads emerge as the bilinear combinations:

Ea
μ ∝< Ψ̄γa∇μΨ > , [Ea

μ] =
1

[L]
, (22)

and metric gμν is the quadrilinear combination of the
fermionic fields, < Ψ̄ΨΨ̄Ψ >. This approach also al-
lows the rectangular vilebein [13], where spin a and
coordinate μ spaces have different dimensions.

The Hamiltonian for massless Dirac fermions has di-
mension 1, i.e. the same as the dimension of frequency:

H =

∫
x0=const

d3r e eiaΨ̄γa∇iΨ , [H ] = [ω] =
1

[L]
.

(23)
The dimension of the Hamiltonian does not coincide
with the dimension of mass M , which is dimensionless.

Gauge fields. The action for the U(1) gauge field in
the N -dimensional spacetime is:

S ∼
∫

dNx
√−g gμνgαβFμαFνβ . (24)
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In case of the conventional dimensionless tetrads, the
action in Eq.(24) is dimensionless only for N = 4.

With dimensionful tetrads the action (24) is dimen-
sionless for arbitrary N , since

[gμν ] = [L]2 , [Fμν ] =
1

[L]2
, [

√−g] =
1

[L]N
. (25)

Acoustic metric also has dimension 2. The effective
acoustic metric [5,6] describes propagation of sound in
a non-homogeneous flowing fluid and also phonons in
moving superfluids and other Goldstone modes, such as
magnons and collective modes of magnon Bose conden-
sate [16]. The action for Goldstone mode (the phase φ

of the Bose condensate) is similar to the action (11):

S =

∫
d4x

√
−g̃ g̃μν∇μφ∇νφ . (26)

From the action (26) it follows that the effective con-
travariant metric g̃μν has the conventional dimension
−2, i.e. [g̃μν ] = [l]2. This is also seen form the effective
interval in terms of hydrodynamic variables [6, 17]:

ds̃2 = g̃μνdx
μdxν =

n

ms
[−s2dt2+(dxi−vidt)(dxi−vidt)] .

(27)
Here n is the density of atoms in the liquid; m is the
mass of the atom; s is the speed of sound; and vi is the
velocity of the liquid, which coincides with the shift vec-
tor N i in the Arnowitt-Deser-Misner formalism. Using
the conventional dimensions of hydrodynamic variables
one obtains the dimension 2 for the covariant metric:

[g̃μν ] = [n] · 1

[m]
=

1

[l]3
· [l] = 1

[l]2
, (28)

and the dimensionless interval. The dimension of
avoustic metric follows from the dynamics of the su-
perfluid: geometry comes from dynamics.

General relativity. Let us consider the GR action on
example of q-theory – the class of theories which avoid
the cosmological constant problem. The huge contribu-
tions of zero point energy to the cosmological constant
is cancelled in the equilibrium state of the vacuum due
to thermodynamics [18–20]. For the particular q-theory
on “brane” the action is [21, 22]:

S = −
∫

d4x
√−g

[
ε(q) +

R

16πGN(q)
+ Λ0 + LM [ψ, q]

]

+μ

∫
d4x n , q =

n√−g
. (29)

Here n is the 4D analog of the particle density in the
quantum vacuum (density of the "spacetime atoms"),
which has the same dimension 4 as tetrad determinant

[n] = [
√−g] =

1

[L]4
, (30)

q is the vacuum variable, and μ plays the role of the
chemical potential in the vacuum thermodynamics. In
the expanding Friedmann-Robertson-Walker universe:

ds2 = gμνdx
μdxν = −dτ2 + a2(τ)dr2 , H(τ) =

da/dτ

a(τ)
, (31)

where τ is the conformal time; a(τ) is the scale factor;
and H(τ) is time-dependent Hubble parameter. The
scale factor a(τ) has dimensions 1, [a(τ)] = 1

[L] , while
the following quantities are dimensionless:

[q] = [μ] = [ε] = [R] = [GN ] = [Λ0] =

= [H ] = [τ ] = [ψ] = [M ] = [1] = 0 . (32)

Some of the dimensionless quantities can be fundamen-
tal, or correspond to some integer valued topological in-
variants. For example, the "chemical potential" μ may
correspond to the topological invariant, μ = ±1, which
changes sign at the Big-Bang quantum phase transition
[20]. Since masses of particles are dimensionless, and
there is no fundamental mass scale, one can choose any
convenient mass as a unit mass.

Note also that the dimensionless interval in Eq.(9)
does not mean the existence of the fundamental length,
such as Planck length. First, because the gravitational
coupling 1/GN is not necessarily fundamental. Sec-
ond, in the model of the superplastic vacuum there is
no equilibrium value of the distance between the neigh-
bouring lattice points. As distinct from the solid state
crystals, arbitrary deformations of the vacuum crys-
tal are possible. In Diakonov model [1] the metric is
emergent, and on the fundamental level the distance
between the spacetime points is not determined.

Unruh and Hawking. In terms of the dimensionful
metric, the acceleration is dimensionless [7]:

a2 = gμν
d2xμ

ds2
d2xν

ds2
, (33)

[a2] = [gμν ][x
μ][xν ] =

1

[l]2
· [l]2 = [1] = 0 . (34)

This leads to the dimensionless Unruh temperature:

TU =
a

2π
, [TU] = [1] = 0 . (35)

The Gibbons-Hawking temperature of the cosmological
horizon is also dimensionless, as follows from Eq.(32):

TH =
H

2π
, [TH ] = [H ] = [1] = 0 . (36)

Eqs. (35) and (36) look fundamental: they do not
contain parameters. However, for the temperature of
the Hawking radiation from the black hole horizon,
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TBH = 1/8πGNM , situation is different. Although
the Hawking temperature is dimensionless ([TBH] = [1],
since [GN ] = [M ] = [1]), it does not look fundamental,
since it depends on the dimensionless parameter GN .
The same concerns the Bekenstein-Hawking entropy:

SBH =
A

4GN
. (37)

It is dimensionless due to dimensionless horizon area:

dA =
√
dSikdSik , [A] = [1] = 0 , (38)

A =

∫ π

0

dθ

∫ 2π

0

dφ
√
gφφgθθ , [gφφ] = [gθθ] = [A] = 0 .

(39)
The Bekenstein-Hawking entropy (37) determines the
black hole thermodynamics, but similar to the Hawking
temperature it does not look as fundamental, since it
contains the gravitational coupling 1/GN . Also it is not
clear why the microscopic degrees of freedom responsi-
ble for the black hole entropy should be characterized
by the Planck length [23]. In the superplastic vacuum
[8] the Planck length scale is absent, since there is no
equilibrium value of the distance between the lattice
points: this vacuum can be arbitrarily deformed.

On the other hand, since the area is dimensionless,
one may suggest that the entropy of the black hole hori-
zon can be expressed in terms of the area only:

SBH = ηA , [η] = [SBH] = [A] = [1] = 0 . (40)

Here η is some fundamental dimensionless parameter,
like the topological invariant. In this case one may take
the point of view that Einstein’s gravity equations can
be derived solely from thermodynamics [24]. The con-
stant of proportionality η between the entropy and the
area determines gravitational coupling 1/GN = 4η. In
this thermodynamic approach, 1/GN becomes funda-
mental due to the fundamentality of the parameter η.

However, in the thermodynamic approach to grav-
ity there is the "species problem" [25]: the gravita-
tional coupling GN may depend on the number of
fermionic and bosonic quantum fields [26–28]. This
destroys many conjectures, which are based on posi-
tivity of the gravitational coupling [29], and prevents
1/GN to be the fundamental parameter. But this "no-
go theorem" can be avoided, if 1/GN is the quantum
number related to symmetry and/or topology. Then
the parameter 1/GN does not depend on interaction
between gravity and quantum field, though it may ex-
perience jumps during the topological quantum phase
transitions. This takes place in topological materials
when one varies the parameters of interaction [30, 31]
and may take place when the Big Bang is crossed [20].

Einstein-Cartan, Barbero-Immirzi, Nieh-Yan and
topology. Topological invariants relevant for the quan-
tum vacuum are known in the crystalline matter
[10, 11, 32] and can be extended to the superplastic
vacuum. The topology in the crystalline quantum
vacua is enriched due to the dimensional elasticity
tetrads in Eq.(1), which come from the geometric U(1)

phases. This topological approach may take place in
the Einstein-Cartan-Sciama-Kibble theory, which is ex-
pressed in terms of tetrads, and thus is more funda-
mental than the conventional Einstein gravity based on
metric. Such type of gravity emerging in superplastic
crystals has been discussed in Ref. [33]. The action in
the Einstein-Cartan gravity can be expressed in terms
of the differential forms, which contain the elasticity
tetrads as the translational gauge fields:

SEC ∼ εabcd

∫
d4xEa ∧Eb ∧Rcd . (41)

This action is dimensionless because the one-form
tetrad has dimension 1, [Ea

μ] =
1
[L] , while the curva-

ture two-form Rab has dimension 2:

[Rab
μν ] =

1

[L]2
. (42)

With the dimensional elasticity tetrads the topology
of the 3 + 1 crystalline phases [10, 11, 32] may provide
the fundamental topological prefactor in Eq.(41), with
1/GN as integer or fractional topological number.

The same can be valid for the dimensionless param-
eter in the Barbero-Immirzi action:

SBI ∼
∫

d4xEa ∧ Eb ∧Rab . (43)

Eq.(43) looks similar to the Nieh-Yan term in the ac-
tion, see e.g. Ref. [34]. Due to dimensional tetrads the
prefactors in the Nieh-Yan and in the Barbero-Immirzi
actions are dimensionless, and thus can be fundamen-
tal [7]. It is not excluded that these parameters are
the topological invariants similar to that in topological
insulators, semimetals and superconductors [10].

The dimensional metric and tetrads appear also in
such topological field theories as the BF -theoryl. For
example, the composite metric (Schönberg-Urbantke
metric [35–40]) is formed by triplet of the 2-form fields:

√−ggμν =
1

12
eabce

αβγδBa
μαB

b
βγB

c
δν . (44)

The 2-forms in the BF action
∫
B ∧F have dimension

2, [B] = [F ] = 1/[L]2. Then the composite metric in
Eq.(44) has also dimension 2, [gμν ] = 1/[L]2. In the
same way the two-form field B can be represented as
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the bilinear combination of the tetrads [37]: B = E∧E.
These one-form tetrads have dimension 1, [Ea

μ] = 1/[L].
Arnowitt-Deser-Misner (ADM) formalism [41] is

used for the Hamiltonian formulation of general relativ-
ity. Let us consider this formalism and its application
using the dimensional metric. One has the following
metric elements and their dimensions:

gik = γik , [γik] =
1

[L]2
, (45)

g0i = Ni = γikN
k , [Ni] =

1

[L]2
, [N i] = 0 , (46)

g00 = γikN
iNk −N2 = N iNi −N2 , [N ] =

1

[L]
, (47)

g00 = − 1

N2
, [g00] = [L]2 , (48)

g0i =
N i

N2
, [g0i] = [L]2 , (49)

gik = γik − N iN j

N2
, [γik] = [L]2 , (50)

√−g = N
√
γ , [

√
γ ] =

1

[L]3
, (51)

γikγkl = δil . (52)

Here N and N i are lapse and shift functions corre-
spondingly, and γik are space components of metric.

The ADM formalism allows to consider dynamics
in curved space in terms of the Poisson brackets. Let
us consider this on example of Poisson brackets for the
classical 3 + 1 electrodynamics in curved space:

{Ai(r), D
k(r′)} = δki δ(r− r′) , (53)

which in terms of the gauge invariant fields is:

{Bi(r), Dk(r′)} = eikl∇lδ(r− r′) . (54)

HereB is magnetic field, and the vectorD is the electric
induction of the quantum vacuum (electric displace-
ment field). The electric induction D is expressed in
terms of the electric field Ei = F0i:

Dk =
1

α

√
γ

N
γikEi . (55)

Here α is the dimensionless fine structure constant,
which determines the dielectric constant – the electric
permittivity of the relativistic quantum vacuum, εvac,
and the magnetic permeability of the vacuum, μvac:

εvac =
1

μvac
=

1

α
. (56)

In spite of the dimensional metric, electric induc-
tance D has the same dimension 2 as electric field E:

[Di] = [Ei] =
1

[L]2
. (57)

This follows from Eqs.(45), (48) and (51) for dimen-
sions of the ADM metric elements in 3 + 1 spacetime.

The corresponding quadratic Hamiltonian for the
electromagnetic field is:

H =

∫
d3r

2

N√
γ
γik

(
αDiDk +

1

α
BiBk

)
. (58)

The Hamiltonian has dimension 1, i.e. [H ] = 1/[L].
Both the Hamiltonian in Eq.(58) and the Poisson
bracket in Eq. (54) do not contain the gauge poten-
tials. The gauge potentials also do not enter the Pois-
son brackets for charged particle, {pi, pj} = qFij and
{pi(r), Dk(r′)} = −qδki δ(r − r′), where q is the dimen-
sionless electric charge of the particle in terms of the
electric charge of the electron.

The quantization of electromagnetic field is ob-
tained by the substitution of the Poisson brackets (54)
by commutation relations between D and B. The Pois-
son brackets in Eqs. (53) and (54) look as fundamental.
They do not depend on the metric and do not contain
physical parameters of the quantum vacuum. However,
the function D in Eq.(55) breaks this fundamentality.
It is the phenomenological variable, which describes the
response of the vacuum to electric field. This response
contains the electromagnetic coupling 1/α, which is
not fundamental because of the corresponding "species
problem": it depends on the fluctuating bosonic and
fermionic fields in the quantum vacuum, and is space-
dependent. While the gravitational coupling 1/GN can
be fundamental due to topology, there are no topologi-
cal invariants which could support the fundamentality
of the electromagnetic coupling 1/α. This is in favour
of the scenario in which the quantum electrodynamics
is the effective low-energy theory, where for example
the gauge fields emerge as the bilinear combinations of
the fermionic fields, or/and the gauge fields emerge in
the vicinity of the topologically stable Weyl points in
the fermionic spectrum [17,42–44]. This, however, does
not exclude the other possible pre-quantum and pre-
spacetime theories, see Ref. [45] and references therein.

Conclusion. Several approaches to quantum gravity
(including the model of superplastic vacuum; Diakonov
tetrads emerging as the bilinear combinations of the
fermionis fields; BF -theories of gravity; and effective
acoustic metric) suggest that in general relativity the
metric has dimension 2, i.e. [gμν ] = 1/[L]2, irrespective
of the dimension of spacetime. One consequence of such
dimension of the metric is that the wave function in
quantum mechanics is dimensionless, [ψ(x)] = [1] = 0.
This also leads to the dimensionless quantum fields.

On the other hand, if one starts with the conjecture
that in quantum mechanics the wave function is natu-
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rally dimensionless, one obtains dimension 2 for metric.
This suggests the close connection between quantum
mechanics and general relativity.
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