СТРУКТУРНЫЙ И МАГНИТНЫЕ ФАЗОВЫЕ ПЕРЕХОДЫ В МУЛЬТИФЕРРОИКЕ НоFe₃(ВО₃)₄ ПО ДАННЫМ МЕССБАУЭРОВСКОЙ СПЕКТРОСКОПИИ И РЕНТГЕНОВСКОЙ ДИФРАКЦИИ

К. В. Фролов^{а*}, О. А. Алексеева^a, И. С. Любутин^a, В. Ксенофонтов^{b,c},

Е. С. Смирнова^a, В. Л. Темеров^d, И. А. Гудим^d, М. В. Любутина^a

^а Институт кристаллографии им. А.В. Шубникова ФНИЦ «Кристаллография и фотоника» Российской академии наук 119333, Москва, Россия

^b Институт неорганической и аналитической химии Университета им. И. Гутенберга 55128, Майнц, Германия

> ^с Инстиут химии Общества Макса Планка 55128, Майнц, Германия

^d Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

> Поступила в редакцию 15 мая 2022 г., после переработки 19 июня 2022 г. Принята к публикации 20 июня 2022 г.

Температурные зависимости структурных параметров в монокристалле HoFe₃(BO₃)₄, изученные методом рентгеновской дифракции ниже и выше структурного фазового перехода при $T_S = 365$ K, хорошо коррелируют с поведением мессбауэровского параметра квадрупольного взаимодействия. Однако две структурные позиции ионов железа Fe1 и Fe2, формирующиеся в фазе с пространственной группой $P3_121$, возникающей при температурах ниже T_S , не удается различить методом мессбауэровской спектроскопии на ядрах ⁵⁷Fe. Это возможно сделать только ниже температуры Нееля T_N . Установлено, что ниже T_N ионы железа формируют трехмерный магнитный порядок изинговского типа с критическим параметром $\beta = 0.283(1)$ и размерностью параметра порядка n = 1. Уточненное значение температуры Нееля $T_N = 37.42(1)$ K. Наблюдаемая вблизи температуры T = 4.4 K динамика поведения мессбауэровских параметров квадрупольного смещения ε и магнитного сверхтонкого поля B_{hf} для ионов железа в позициях Fe1 и Fe2 указывает на переориентацию магнитных моментов железа. Это коррелирует со спин-переориентационным переходом для ионов Fe и Ho, ранее наблюдавшимся в HoFe₃(BO₃)₄ методом нейтроной дифракции.

DOI: 10.31857/S0044451022110128 **EDN:** KZZWCB

1. ВВЕДЕНИЕ

Редкоземельные ферробораты $RFe_3(BO_3)_4$ (R = Y, La, Ce–Er) относятся к новому классу мультиферроиков (II типа) [1–4], в которых сегнетоэлектричество возникает только в магнитоупорядоченном состоянии преимущественно циклоидального и геликоидального типа [5–10]. Кристаллы $RFe_3(BO_3)_4$ демонстрируют разнообразие свойств и фазовых переходов в зависимости от ионного радиуса R-элементов [11]. В частности, магнитоэлектрический эффект обнаружен в соединениях с R = Ho, Gd, Nd, Sm [12–16]. Наличие двух магнитных подсистем, ионов железа и ионов R, привлекает особое внимание и позволяет рассматривать редкоземельные ферробораты как интересные модельные соединения для изучения магнитных

^{*} E-mail: green@crys.ras.ru

взаимодействий и спиновой динамики в мультиферроиках II типа. В GdFe₃(BO₃)₄ обнаружен каскад структурных и магнитных фазовых переходов [17–19], в том числе спонтанная низкотемпературная спиновая переориентация, найденная также в $HoFe_3(BO_3)_4$ [20,21]. Соразмерно-несоразмерное преобразование магнитной структуры ионов железа ниже температуры Нееля T_N было обнаружено в $GdFe_3(BO_3)_4$ [22] и $NdFe_3(BO_3)_4$ [23, 24]. Магнитные свойства HoFe₃(BO₃)₄ также активно изучаются [12, 25-30], однако полного понимания взаимосвязи кристаллической структуры, магнитных и сегнетоэлектрических свойств пока не достигнуто даже в рамках специальной теоретической модели [31, 32]. В настоящей работе методами рентгеноструктурного анализа (РСА) и мессбауэровской спектроскопии (МС) в интервале температур T = 3.5-500 К исследованы динамика структурных и магнитных фазовых переходов, тип и размерность магнитного порядка в кристаллах $HoFe_3(BO_3)_4.$

2. ОПИСАНИЕ ЭКСПЕРИМЕНТА

Высококачественные монокристаллы deppoбората гольмия HoFe₃(BO₃)₄ были выращены из раствора-расплава тримолибдата висмута по методике, подробно описанной в работах [33, 34]. РСА-исследования параметров решетки монокристаллов HoFe₃(BO₃)₄ проводились в интервале температур T = 11-500 К с шагом 5-20 К. Полученные результаты подробно описаны в нашей предыдущей работе [35]. Измерения проводились на канале BM01 синхротронной станции SNBL ESRF с использованием дифрактометра PILATUS@SNBL, оснащенного криостатами с открытым ламинарным потоком газа Oxford Cryostream 700+ и модифицированным в ESRF Oxford Helijet, и на лабораторном рентгеновском дифрактометре Rigaku Oxford CCD Xcalibur EOS S2, оснащенном криостатом с открытым ламинарным потоком газа Oxford Cobra Plus.

МС-измерения проводились на порошковом образце, приготовленном из монокристалла HoFe₃(BO₃)₄. Мессбауэровские спектры поглощения на ядрах ⁵⁷Fe получены в интервале температур T = 3.5-80 K на стандартном спектрометре Wessel с гелиевым криостатом замкнутого цикла (C2 Montana Instruments). В диапазоне температур T = 90-480 K использовался стандартный спектрометр MC-1104Eм, оснащенный проточным азотным криостатом и высокотемпературной резистивной печью MRF-750K. Источник гамма-излучения 57 Co(Rh) Ritverc MCo7.114 [36] находился при комнатной температуре. Значения изомерных сдвигов измерялись относительно эталонного поглотителя Ritverc MRA.2.6 (фольга α -Fe толщиной 30 мкм, при комнатной температуре) [36]. Компьютерный анализ мессбауэровских спектров был выполнен с помощью программы Univem-MS (входит в комплект поставки спектрометра MC-1104Eм), программы Recoil [37] и программы SpectrRelax [38].

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Измерения методом РСА

Результаты детального РСА-исследования монокристаллов HoFe₃(BO₃)₄ представлены в нашей предыдущей статье [35]. Показано, что выше температуры структурного фазового перехода $T_S \approx 365 \text{ K}$ кристаллическая структура HoFe₃(BO₃)₄ трансформируется из пространственной группы симметрии $P3_121$ в R32 (рис. 1а). При температурах $T > T_S$ слои атомов, состоящие из тригональных призм НоО₆ и октаэдров FeO₆ меньшего размера, располагаются перпендикулярно оси $c(C_3)$. Атомы бора образуют с атомами кислорода треугольники [BO₃]³⁻ двух типов. Треугольники первого типа [B1O₃] соединены своими вершинами только с октаэдрами FeO₆. Остальные треугольники [B2O₃] соединены одной вершиной с двумя октаэдрами FeO₆, а каждая из двух других вершин соединена с октаэдром FeO₆ и призмой HoO₆. Октаэдры FeO₆ соединены ребрами и образуют спиральные цепочки, вытянутые вдоль оси с. В процессе фазового перехода при $T_S \approx 365~{
m K}$ происходит изменение пространственной группы симметрии кристаллической структуры НоFe₃(BO₃)₄ с R32 на P3₁21 и возникают два типа октаэдрических позиций FeO₆ (Fe1O₆ и Fe2O₆), а также три типа групп BO₃ (рис. 1b). Заселенности двух кристаллографических позиций железа, Fe1 и Fe2, находятся в соотношении 1 : 2.

Установлено, что при охлаждении ниже $T_S \approx 365$ К параметр ячейки *с* монотонно уменьшается. В диапазоне температур от 150 до 60 К он выходит на плато, оставаясь практически постоянным. Затем в диапазоне от 60 до 30 К он возрастает, демонстрируя «отрицательное» тепловое расширение, и, наконец, снова уменьшается вплоть до температуры T = 10 К (рис. 2а). Такой эффект для параметра *с* в монокристалле HoFe₃(BO₃)₄ впервые наблюдался методом высокоточной емкостной

дилатометрии [12]. Магнитоэлектрическая связь в мультиферроиках и магнитоэлектрических соединениях может быть вызвана ионными смешениями. которые обычно приводят к макроскопическим искажениям или деформациям решетки вдоль кристаллографических осей. Поэтому выяснение причин и особенностей эффекта «отрицательного» теплового расширения представляет особый интерес [31, 32, 39, 40]. Например, подобное «отрицательное» расширение в мультиферроиках HoMnO₃ [39] и DyMn₂O₅ [40] трактуется как признак сильных магнитных корреляций и спин-решеточных взаимодействий, связанных с большой магнитной анизотропией. В редкоземельных ферроборатах при T < T_N магнитный сверхобмен Fe–O–Fe в цепочках вдоль оси с значительно сильнее любых других сверхобменов в *ab*-плоскостях между ионами железа и/или между ионами железа и редкоземельных элементов [41]. Кроме того, показано [42], что низкотемпературные (при T < 150 K) аномалии упругих констант могут наблюдаться в редкоземельных ферроборатах и должны быть связаны с симметрией локального окружения ионов R и с f-d-взаимодействием между подсистемами ионов FeиR.

Недавно мы обнаружили «отрицательное» тепловое расширение параметра c при темпераутрах ниже $T \approx 90$ К в монокристаллах GdFe₃(BO₃)₄ [43], YFe₃(BO₃)₄ [44, 45] и NdFe₃(BO₃)₄ [46, 47]. В монокристаллах NdFe₃(BO₃)₄, кроме того, наблюдалось «отрицательное» тепловое расширение параметра ячейки a при охлаждении ниже T = 200 К. Мы обсудили возможное влияние этой аномалии на нарушение локальной симметрии ионов Nd и Fe, что, в частности, хорошо демонстрирует температурная зависимость мессбауэровского сверхтонкого параметра квадрупольного расщепления $\Delta(T)$.

При охлаждении HoFe₃(BO₃)₄ ниже T = 30 K наблюдается заметное уменьшение параметра ячейки c (вставка на рис. 2а). Это область существования магнитоэлектрического эффекта, где возникает спонтанная сегнетоэлектрическая поляризация P, величина которой увеличивается с понижением температуры от 30 до 5 K [12].

3.2. Измерения методом МС при различных температурах в парамагнитном состоянии HoFe₃(BO₃)₄

Мессбауэровский спектр на ядрах 57 Fe HoFe₃(BO₃)₄, измеренный при комнатной температуре, представляет собой слегка асимметричный

квадрупольный дублет (рис. 3), указывающий на парамагнитное состояние ионов железа. Рассчитанные из этого спектра сверхтонкие параметры (изомерный сдвиг $\delta = 0.3891(3)$ мм/с, квадрупольное расщепление $\Delta = 0.3085(5)$ мм/с и ширина линии на полувысоте $\Gamma = 0.258(1)$ мм/с) имеют значения, характерные для высокоспинового состояния ионов железа $\mathrm{Fe}^{3+}(S = 5/2, 3d^5)$ в кристаллографических позициях с октаэдрическим кислородным локальным окружением.

При комнатной температуре кристаллическая решетка HoFe₃(BO₃)₄ описывается пространственной группой P3₁21 и содержит два типа неэквивалентных позиций ионов железа Fe1 и Fe2. Ранее мы показали, что асимметрия парамагнитного дублета обусловлена текстурным эффектом, который может возникнуть при приготовлении порошкового образца из измельченных монокристаллов. Этот эффект не связан с двумя неэквивалентными позициями железа Fe1 и Fe2, поэтому разделить их вклады в спектр при комнатной температуре невозможно [35]. Во всем диапазоне температур T = 40-480 К в парамагнитном состоянии HoFe₃(BO₃)₄ мессбауэровские спектры аналогичны спектру при комнатной температуре (рис. 3) и также не позволяют различить позиции Fe1 и Fe2. Две неэквивалентные позиции ионов железа проявляются при охлаждении лишь в некотором уширении спектра, при этом четкого расщепления линий не наблюдается. Такой же результат ранее мы получили для соединений GdFe₃(BO₃)₄ и YFe₃(BO₃)₄ [43, 44]. Сверхтонкие параметры, рассчитанные из мессбауэровских спектров, измеренных при различных температурах в парамагнитном состоянии $HoFe_3(BO_3)_4$, приведены в табл. 1. Температурное поведение изомерного сдвига $\delta(T)$ характерно для эффекта Доплера второго порядка [35].

В МС параметр Δ очень чувствителен к изменению симметрии локального окружения, включающего все координационные сферы вокруг атомов Fe. Температурная зависимость квадрупольного расщепления $\Delta(T)$ для HoFe₃(BO₃)₄ имеет сложный характер в процессе структурного фазового перехода при $T_S \approx 365$ K (рис. 2b), что коррелирует с поведением температурной зависимости параметра ячейки c(T). Используя наши данные PCA [35] и новый программный инструмент PolyDis [48], мы рассчитали для ионов Ho, Fe1 и Fe2 относительное отклонение окружающих их первых координационных кислородных полиэдров от идеальной симметричной формы, а также относительное смещение этих ионов от положения «центра масс» их кис-

Рис. 1. (В цвете онлайн) Кристаллическая структура HoFe₃(BO₃)₄ при температурах выше температуры структурного фазового перехода (а) с пространственной группой *R*32 и ниже перехода (b) с пространственной группой *P*3₁21

Таблица 1. Сверхтонкие параметры, рассчитанные из мессбауэровских спектров $HoFe_3(BO_3)_4$, измеренных в парамагнитной области температур (δ — изомерный сдвиг, Δ — квадрупольное расщепление)

T, K	$\delta,{ m mm/c}$	Δ , mm/c
440	0.296(1)	0.302(1)
380	0.338(1)	0.306(2)
340	0.360(1)	0.307(1)
295	0.389(1)	0.309(1)
210	0.440(1)	0.308(1)
120	0.485(1)	0.309(1)
90	0.494(1)	0.309(1)
60	0.501(1)	0.310(1)
40	0.501(1)	0.313(1)

лородных полиэдров при различных температурах (рис. 4). Хорошо видно, что для ионов Но и Fe1 оба параметра при температурах выше точки структурного фазового перехода $T_S \approx 365~{
m K}$ практически не изменяются, а ион Но находится точно в «центре масс» своего кислородного полиэдра. При температурах $T < T_S$ кристаллографическая позиция железа разделяется на две неэквивалентные позиции, Fe1 и Fe2, и значения обоих параметров, показанных на рис. 4, заметно расходятся. При дальнейшем охлаждении от 360 до 90 К оба параметра для ионов Но, Fe1 и Fe2 изменяются незначительно. Наиболее заметные изменения в этом температурном интервале происходят в отклонении ионов Но от положения «центра масс» и в искажении формы кислородного октаэдра ионов Fe2. В парамагнитной области динамика изменения формы кислородных октаэдров ионов железа при охлаждении в основном коррелирует с увеличением параметра квадрупольного расщепления Δ , выявленным из МС-измерений. Слож-

Рис. 2. (В цвете онлайн) Температурные зависимости параметра элементарной ячейки c монокристалла HoFe₃(BO₃)₄ (a) и мессбауэровского параметра квадрупольного взаимодействия Δ (b)

Рис. 3. (В цвете онлайн) Мессбауэровские спектры, измеренные при различных температурах в парамагнитном состоянии HoFe₃(BO₃)₄. Красная сплошная линия показывает результат аппроксимации спектров одним дублетом

Рис. 4. (В цвете онлайн) Температурные зависимости структурных параметров в $HoFe_3(BO_3)_4$, свидетельствующие об отклонении кислородных полиэдров от идеальной симметрии в фазах $P3_121$ и R32

ное поведение этого параметра указывает на необходимость учета влияния всего локального окружения, а не только первой координационной сферы.

3.3. Измерения методом МС при низких температурах в магнитоупорядоченном состоянии HoFe₃(BO₃)₄

Ниже $T \approx 38$ К в мессбауэровских спектрах соединения HoFe₃(BO₃)₄ наблюдается характерное расщепление резонансных линий, свидетельствующее о магнитном упорядочении ионов железа (рис. 5). Из результатов нейтронной дифракции, СКВИД-магнитометрии и измерений теплоемкости [20, 21] известно, что непосредственно ниже температуры Нееля $T_N=37.4~\mathrm{K}$ магнитные моменты железа и гольмия образуют магнитную структуру с легкой плоскостью ab. Магнитные моменты в подсистемах ионов Fe2 и Но лежат в плоскостях ab и упорядочены ферромагнитно в каждой плоскости, но антиферромагнитно в соседних плоскостях. Магнитный момент ионов Fe1 наклонен относительно плоскости ab так, что его компонента в плоскости ферромагнитно связана с моментами Fe2, и, кроме того, есть ненулевая компонента вдоль оси с (рис. 6а). Величина компоненты момента Fe1 вдоль

Рис. 5. (В цвете онлайн) Низкотемпературные мессбауэровские спектры, измеренные в магнитоупорядоченном состоянии HoFe₃(BO₃)₄. Для спектра при T = 4.7 K показана аппроксимация двумя секстетами, соответствующими кристаллографическим позициям Fe1 (синий) и Fe2 (зеленый)

оси с монотонно возрастает с понижением температуры вплоть до спонтанной спиновой переориентации при $T_{SR} = 4.7$ К. При температурах $T < T_{SR}$ подсистемы железа и гольмия упорядочены антиферромагнитно с магнитными моментами, направленными вдоль оси с. При этом магнитные моменты ионов Fe1 и Fe2 лежат строго вдоль оси c, а моменты Ho несколько отклоняются от оси c, образуя распространяющуюся вдоль нее спиновую спираль [26] (рис. 6b).

При самой низкой экспериментальной температуре T = 3.5 К мессбауэровский спектр HoFe₃(BO₃)₄ хорошо аппроксимируется только одним секстетом, хотя имеет небольшую асимметрию по внешним линиям, где шестая спектральная линия секстета на 0.5–0.8 % интенсивнее первой. При небольшом повышении температуры форма спектра меняется, и уже при T = 4.7 К первая Структурные и магнитные фазовые переходы...

спектральная линия заметно интенсивнее последней. Эта асимметрия сохраняется до температуры T = 25 K и указывает на то, что для интерпретации мессбауэровских спектров в магнитном состоянии при температурах между 4.5 и 25 K следует учитывать по крайней мере две позиции железа. Как будет показано в разд. 3.4, изменение формы спектра при температуре $T \approx 4.4$ K хорошо согласуется с температурным диапазоном спиновой переориентации.

При температурах от 3.5 до 37 К мессбауэровские спектры хорошо аппроксимируются двумя псевдофойгтовскими секстетами S1 и S2 с отношением площадей A1 : A2 = 1 : 2. Это коррелирует с отношением заселенностей (1 : 2) двух кристаллографических позиций железа Fe1 и Fe2, полученным из измерений РСА [35]. Выше температуры $T \approx 37$ К спектр становится слишком широким, поэтому модель, основанная на двух секстетах, уже неприменима, и адекватно аппроксимировать спектры можно только методом распределения сверхтонких параметров. Сверхтонкие параметры, полученные из низкотемпературных мессбауэровских спектров, представлены в табл. 2. Ионы Fe³⁺ в позициях Fe1 и Fe2 имеют практически одинаковые изомерные сдвиги δ , но немного разные значения параметров квадрупольного смещения ε и сверхтонких магнитных полей $B_{hf1} > B_{hf2}$. Ранее аналогичный результат был получен нами для соединения GdFe₃(BO₃)₄ [43], где вклад двух позиций железа удалось учесть только в мессбауэровских спектрах, полученных при $T < T_N$. В то же время для соединения $YFe_3(BO_3)_4$, не содержащего второй магнитной подсистемы редкоземельных ионов, вклад двух позиций железа не удалось разделить даже в магнитоупорядоченном состоянии [45]. Это указывает на различие обменного f-d взаимодействия редкоземельных ионов с ионами железа в неэквивалентных кристаллографических позициях Fe1 и Fe2.

На рис. 7 показана температурная зависимость среднего значения магнитного сверхтонкого поля $\langle B_{hf} \rangle$ на ядрах ⁵⁷Fe. Ранее было обнаружено небриллюэновское поведение температурной зависимости полного магнитного момента железа в HoFe₃(BO₃)₄ [20], что объяснялось сильным влиянием подсистемы железа на магнетизм редкоземельных элементов. Мы уточнили температуру магнитного фазового перехода T_N в HoFe₃(BO₃)₄ и определили тип и размерность магнитного упорядочения подсистемы железа способом, ранее использованным в наших работах [43, 45, 47]. Экспериментальная зависимость

Рис. 6. (В цвете онлайн) Схема ориентации магнитных моментов ионов Fe1, Fe2 и Ho при температурах выше (a) и ниже (b) $T_{SR} = 4.7$ K

Рис. 7. (В цвете онлайн) Температурная зависимость среднего магнитного сверхтонкого поля $\langle B_{hf} \rangle$ на ядрах железа. На вставке показано изменение величины B_{hf} в области переориентации магнитных моментов ионов железа Fe1 и Fe2

 $B_{hf}(T)$ вблизи T_N была аппроксимирована расчетной кривой (рис. 7) с использованием модели критических коэффициентов $B(T) = B_0(1 - T/T_N)^{\beta}$ [49]. Значение коэффициента β позволяет определить размерность d магнитной решетки и размерность n

Рис. 8. (В цвете онлайн) Температурные зависимости квадрупольного смещения ε в мессбауэровских спектрах для секстетов S1 и S2, соответствующих ионам железа в неэквивалентных кристаллографических позициях Fe1 и Fe2

параметра порядка (табл. 3). Значение d = 1 соответствует одномерным магнитным цепочкам, d = 2 — слоистой магнитной структуре или поверхности, d = 3 — объемному магнитному материалу. Параметр n определяется моделью, описывающей магнитную систему: модель Изинга (n = 1) допускает двумерный и трехмерный дальний порядок, а низкоразмерный порядок (d = 1 и d = 2) отсутствует в моделях ХҮ (n = 2) и Гейзенберга (n = 3). Дальний порядок для всех n существует только

Таблица 2. Сверхтонкие параметры, рассчитанные из мессбауэровских спектров HoFe₃(BO₃)₄, измеренных при низких температурах T < 38 К (δ — изомерный сдвиг, ε — квадрупольное смещение, B_{hf} — магнитное сверхтонкое поле на ядрах ⁵⁷ Fe, $\langle B_{hf} \rangle$ — среднее магнитное сверхтонкое поле, рассчитанное методом распределения сверхтонких параметров; S1 и S2 — магнитные секстеты, связанные с кристаллографическими позициями ионов железа соответственно Fe1 и Fe2; звездочкой обозначено среднее значение, рассчитанное методом распределения сверхтонких параметров)

T, K	$\delta,~{ m mm}/{ m c}$		$arepsilon,~{ m mm}/{ m c}$		$B_{hf},$ Тл		$\langle B_{hf} \rangle$, Тл
	S1	S2	S1	S2	S1	S2	
3.5	0.466(2)	0.475(1)	-0.092(1)	-0.079(1)	52.89(2)	51.86(2)	52.21(2)
4.1	0.487(3)	0.499(1)	-0.090(1)	-0.092(1)	52.94(2)	51.83(2)	52.18(2)
4.4	0.486(2)	0.494(1)	0.017(1)	-0.037(1)	53.13(2)	51.84(1)	52.24(2)
4.7	0.497(2)	0.499(1)	0.066(1)	0.013(1)	53.04(1)	51.92(1)	52.30(1)
4.9	0.494(2)	0.500(1)	0.073(1)	0.021(1)	53.04(1)	51.92(1)	52.29(1)
5.4	0.496(2)	0.499(1)	0.073(1)	0.025(1)	52.99(1)	51.90(1)	52.25(1)
6.1	0.496(2)	0.499(1)	0.077(1)	0.030(1)	52.91(1)	51.82(1)	52.18(1)
7.1	0.497(2)	0.500(1)	0.077(1)	0.032(1)	52.76(1)	51.72(1)	52.07(1)
10.1	0.495(2)	0.499(1)	0.081(1)	0.036(1)	52.14(1)	51.17(1)	51.50(1)
15.1	0.498(2)	0.498(1)	0.072(1)	0.044(1)	50.30(1)	49.48(1)	49.78(1)
20.0	0.494(2)	0.499(1)	0.066(1)	0.044(1)	47.53(1)	46.72(1)	47.03(1)
25.0	0.498(1)	0.499(1)	0.056(1)	0.053(1)	43.66(2)	42.71(1)	43.13(1)
30.1	0.500(1)	0.497(1)	0.053(1)	0.054(1)	37.97(2)	36.75(2)	37.30(2)
35.0	0.499(1)	0.498(2)	0.056(2)	0.060(2)	27.49(2)	25.62(2)	26.61(2)
37.1	$0.498(2)^*$		$0.062(2)^*$		-	-	15.81(2)

Таблица 3. Значения критического коэффициента β при различных значениях параметров d и n [51]

d		2		
n	1	2	3	1
β	0.31	0.33	0.35	0.125

при d = 3 [50, 51].

В результате расчетов для HoFe₃(BO₃)₄ были получены значения $T_N = 37.42(1)$ К и $\beta = 0.283(1)$ (n = 1). Значение коэффициента β характерно для трехмерной модели Изинга.

3.4. Спиновая переориентация

На рис. 8 представлены температурные зависимости квадрупольных смещений ε_1 и ε_2 в секстетах S1 и S2, соответствующих неэквивалентным позициям железа Fe1 и Fe2 в структуре HoFe₃(BO₃)₄. Форма и динамика этих зависимостей аналогичны наблюдаемым нами ранее при исследовании спин-переориентационного перехода в соединении $GdFe_3(BO_3)_4$ [43]. В $HoFe_3(BO_3)_4$ значения ε_1 и ε_2 отрицательны при температурах ниже T = 4.4 К. При небольшом повышении температуры до T = 4.7 K обе величины резко возрастают в сторону положительных значений, при этом абсолютное значение $|\varepsilon_1|$ больше, чем $|\varepsilon_2|$ (рис. 8). Как показано на вставке к рис. 7, магнитные сверхтонкие поля B_{hf} на ионах железа в позициях Fe1 и Fe2 демонстрируют аномалию при той же температуре. Такое аномальное поведение мессбауэровского параметра хорошо коррелирует с обнаруженным ранее спин-переориентационным переходом в обеих магнитоупорядоченных подсистемах ионов Но и Fe [20, 21, 30], происходящим одновременно с резким ростом сегнетоэлектрической поляризации P от 5 до 90 мкКл/м² [12]. При дальнейшем нагреве до $T_N = 37.4$ К значения ε_1 и ε_2 остаются положительными и изменяются незначительно, при этом $\varepsilon_1 > \varepsilon_2$ в интервале температур 4.1–25 К. В этом же интервале температур

Таблица 4. Расстояния между атомами О противоположными друг другу относительно иона Н	е и углы между
всеми связями O-Fe-O в полиэдрах Fe1O $_6$ и Fe2O $_6$ в кристаллической структуре HoFe $_3(BO_3)_4$ н	при температуре
T = 90 K	

Полиэдр Fe1O ₆				Полиэдр Fe2O ₆			
Противо-	$d, \mathrm{\AA}$	Угловая	Угол,	Противо-	$d, \mathrm{\AA}$	Угловая	Угол,
лежащая		тройка	градусы	лежащая		тройка	градусы
пара				пара			
		01–Fe– <i>O</i> 1′	87.58(3)			O5–Fe–O7	89.81(3)
		O1-Fe-O6'	93.89(3)			O5-Fe-O2'	96.60(3)
		O1–Fe–O3	85.28(4)			O5–Fe–O2	75.95(3)
		O1–Fe–O6	77.36(3)			O5–Fe–O4	94.85(3)
O1–O3′	3.9791(7)	O1-Fe-O3'	167.31(4)	O5-O5'	4.0093(10)	O5-Fe-O5'	166.52(4)
		O1'-Fe-O6'	77.36(4)			O7-Fe-O2'	82.00(3)
01′-03	3.9790(11)	O1′–Fe–O3	167.31(3)	O7–O2	3.9616(13)	O7–Fe–O2	160.41(2)
		O1′–Fe–O6	93.89(3)			O7–Fe–O4	101.05(4)
		O1'–Fe– $O3'$	85.28(3)			O7-Fe-O5	99.88(4)
		O6'–Fe– $O3$	92.65(4)			O2′–Fe–O2	86.30(3)
O6′-O6	3.9811(9)	O6′–Fe–O6	167.99(5)	O2′–O4	4.0051(10)	O2′–Fe–O4	168.17(3)
		O6'–Fe– $O3'$	94.77(3)			O2'–Fe– $O5'$	75.70(3)
		O3–Fe–O6	94.77(3)			O2–Fe–O4	93.60(4)
		O3'–Fe– $O3$	103.55(4)			O2-Fe-O5'	92.33(4)
		O3′–Fe–O6	92.65(3)			O4-Fe-O5'	92.49(3)

Рис. 9. (В цвете онлайн) Полиэдры Fe1O₆ (a) и Fe2O₆ (b) в структуре HoFe₃(BO₃)₄ при T = 90 K. Зелеными линиями показаны связи Fe–O–Fe в геликоидальных цепочках

обнаружены сильные магнитопьезоэлектрический и магнитопластический эффекты [29], которые могут влиять на кристаллическую структуру. Поведение мессбауэровского параметра квадрупольного смещения ε очевидно определяется особенностями локального окружения ионов железа, в том числе искажениями кислородных октаэдров Fe1O₆ и Fe2O₆ (сжатие против удлинения). На рис. 9 показаны формы полиэдров и положения атомов железа для кристаллографических позиций Fe1 и Fe2. В табл. 4 приведены расстояния между атомами O, противоположными друг другу относительно иона Fe, и углы между всеми связями O–Fe–O для полиэдров Fe1O₆ и Fe2O₆ в HoFe₃(BO₃)₄ при T = 90 K, рассчитанные по нашим PCA-данным [35]. Результаты расчетов показывают, что менее искаженный полиэдр Fe1O₆ лишь немного вытянут в направлении O6'–O6, тогда как значительно более искаженный полиэдр Fe2O₆ заметно уплощен в направлении O7–O2.

При температуре T = 25 К квадуропльные смещения ε_1 и ε_2 практически выравниваются и не изменяются при дальнейшем нагреве до температуры Нееля T_N . Отметим, что в интервале температур 15–20 К обнаружено изменение знака константы магнитоупругого взаимодействия [29], а в интервале T = 20–30 K спонтанная сегнетоэлектрическая поляризация Р уменьшается и исчезает [12]. С другой стороны, нейтронографические измерения на монокристалле HoFe₃(BO₃)₄ показали, что при охлаждении ниже температуры T = 25 К магнитный момент ионов Fe2 начинает быстро отклоняться от плоскости ab к оси c, что в конечном итоге приводит к спонтанной спиновой переориентации как в железной, так и в гольмиевой подсистемах при температуре $T_{SR} = 4.7$ K [20, 30].

В наших мессбауэровских измерениях, помимо резкого скачка значений квадрупольных смещений ε_1 и ε_2 при температуре $T \approx 4.4$ К (см. рис. 7), мы обнаружили одновременное увеличение сверхтонкого магнитного поля B_{hf} на ядрах ⁵7Fe в кристаллографических позициях Fe1 и Fe2, как показано на вставке к рис. 7. Отметим, что увеличение B_{hf1} для ионов железа в позициях Fe1 более выражено; оно начинается при температуре $T \approx 4$ К и заканчивается при $T \approx 4.4$ К, а для ионов железа в менее симметричных позициях Fe2 рост значения B_{hf2} начинается при температуре $T \approx 4.4$ K и заканчивается при $T \approx 4.7$ K. Ранее скачок магнитного момента ионов железа в процессе спиновой переориентации при температуре $T_{SB} = 4.7 \text{ K}$ был обнаружен методами нейтронографии и СКВИД-магнитометрии [20].

4. ЗАКЛЮЧЕНИЕ

Низкотемпературные измерения методом MC на ядрах 57 Fe установили, что ионы железа в

НоFe₃(BO₃)₄ создают трехмерный магнитный порядок изинговского типа с критическим параметром $\beta = 0.289(1)$ и размерностью параметра порядка n = 1. Уточненное значение температуры Нееля $T_N = 37.54(1)$ К.

Согласно данным РСА, при температурах ниже структурного фазового перехода, $T < T_S = 365$ K, кристаллическая структура HoFe₃(BO₃)₄ изменяет пространственную группу симметрии R32 на P3₁21, в которой возникают две неэквивалентные структурные позиции ионов железа, Fe1 и Fe2. В то же время мессбауэровские измерения не различают ионы железа в позициях Fe1 и Fe2 при температурах выше T_N (в парамагнитном состоянии) из-за одинаковых сверхтонких параметров, однако эти позиции можно различить ниже T_N .

Наблюдаемая динамика мессбауэровских параметров квадрупольных смещений $\varepsilon_1(T)$ и $\varepsilon_2(T)$, а также магнитных сверхтонких полей $B_{hf1}(T)$ и $B_{hf2}(T)$ при температуре $T \approx 4.4$ К хорошо коррелирует со спин-переориентационным переходом. Более того, наблюдаемые аномалии в поведении параметров ε и B_{hf} указывают на прямую связь между искажениями симметрии локального окружения ионов железа в позициях Fe1 и Fe2 и силой обменных взаимодействий Fe–Fe и Fe–Ho. В свою очередь, это приводит к формированию геликоидальной магнитной структуре ионов Ho.

Финансирование. Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации в рамках Государственного задания ФНИЦ «Кристаллография и фотоника» РАН и с применением оборудовании ЦКП «Структурная диагностика материалов» ФНИЦ «Кристаллография и фотоника» РАН.

ЛИТЕРАТУРА

- Г. А. Смоленский, И. Е. Чупис, УФН 137, 415 (1982) [Sov. Phys. Usp. 25, 475 (1982)].
- 2. H. Schmid, Ferroelectrics 162, 317 (1994).
- 3. D. I. Khomskii, J Magn. Magn. Mater. 306, 1 (2006).
- 4. D. Khomskii, Physics 2, 20 (2009).
- А. П. Пятаков, А. К. Звездин, УФН 182, 593 (2012) [Phys. Usp. 55, 557 (2012)].
- Y. Tokura, S. Seki, and N. Nagaosa, Rep. Prog. Phys. 77, 076501 (2014).

- S. Dong, J. M. Liu, S. W. Cheong et al., Adv. Phys. 64, 519 (2015).
- M. Fiebig, T. Lottermoser, D. Meier et al., Nat. Rev. Mater. 1, 16046 (2016).
- S. Luo and K. Wang, J. Alloys Compd. 726, 833 (2017).
- A. Scaramucci, H. Shinaoka, M. V. Mostovoy et al., Phys. Rev. X 8, 011005 (2018).
- A. M. Кадомцева, Ю. Φ. Попов, Γ. Π. Воробьев и др., ΦΗΤ 36, 640 (2010) [Low Temp. Phys. 36, 511 (2010)].
- R. P. Chaudhury, F. Yen, B. Lorenz et al., Phys. Rev. B 80, 104424 (2009).
- А. К. Звездин, С. С. Кротов, А. М. Кадомцева и др., Письма в ЖЭТФ 81, 335 (2005) [JETP Lett. 81, 272 (2005)].
- А. К. Звездин, Г. П. Воробьев, А. М. Кадомцева и др., Письма в ЖЭТФ 83, 600 (2006) [JETP Lett. 83, 509 (2006)].
- 15. J. E. Hamann-Borrero, S. Partzsch, S. Valencia, et al., Phys. Rev. Lett. 109, 267202 (2012).
- 16. Ю. Ф. Попов, А. П. Пятаков, А. М. Кадомцева и др., ЖЭТФ 138, 226 (2010) [JETP 111, 199 (2010)].
- 17. A. D. Balaev, L. N. Bezmaternykh, I. A. Gudim et al., J. Magn. Magn. Mat. 258–259, 532 (2003).
- R. Z. Levitin, E. A. Popova, R. M. Chtsherbov et al., Письма в ЖЭТФ 79, 531 (2004) [JETP Lett. 79, 423 (2004)].
- 19. А. И. Панкрац, Г. А. Петраковский, Л. Н. Безматерных, О. А. Баюков, ЖЭТФ 126, 887 (2004) [JETP 99, 766 (2004)].
- 20. C. Ritter, A. Vorotynov, A. Pankrats et al., J. Phys.: Condens. Matter 20, 365209 (2008).
- A. Pankrats, G. Petrakovskii, A. Kartashev et al., J. Phys.: Condens. Matter 21, 436001 (2009).
- 22. H. Mo, C. S. Nelson, L. N. Bezmaternykh et al., Phys. Rev. B 78, 214407 (2008).
- M. Janoschek, P. Fischer, J. Schefer et al., Phys. Rev. B 81, 094429 (2010).
- 24. S. Hayashida, M. Soda, S. Itoh et al., Phys. Rev. B 92, 054402 (2015).
- 25. А. А. Демидов, Д. В. Волков, ФТТ 53, 926 (2011)
 [Phys. Solid State 53, 985 (2011)].

- 26. D. K. Shukla, S. Francoual, A. Skaugen et al., Phys. Rev. B 86, 224421 (2012).
- 27. А. М. Кадомцева, Г. П. Воробьев, Ю. Ф. Попов и др., ЖЭТФ 141, 930 (2012) [JETP 114, 810 (2012)].
- 28. Д. А. Ерофеев, Е. П. Чукалина, Л. Н. Безматерных и др., Опт. и спектр. 120, 588 (2016) [Opt. and Spectr. 120, 558 (2016)].
- 29. М. П. Колодяжная, Г. А. Звягина, И. В. Билыч и др., ФНТ 544, 1712 (2018) [Low Temp. Phys. 44, 1341 (2018)].
- 30. M. N. Popova, E. P. Chukalina, D. A. Erofeev et al., Phys. Rev. B 103, 094411 (2021).
- 31. A. I. Popov, D. I. Plokhov, and A. K. Zvezdin. Phys. Rev. B 87, 024413 (2013).
- 32. T. Kurumaji, K. Ohgushi, and Y. Tokura. Phys. Rev. B 89, 195126 (2014).
- 33. I. A. Gudim, E. V. Eremin, and V. L. Temerov, J. Cryst. Growth 312, 2427 (2010).
- 34. I. A. Gudim, E. V. Eremin, and M. S. Molokeev, Sol. St. Phen. 215, 364 (2014).
- 35. E. S. Smirnova, O. A. Alekseeva, A. P. Dudka et al., Acta Cryst. B 75, 954 (2019).
- **36**. https://ritverc.com/en/products/sources-scientificapplication/mossbauer-sources/57co
- 37. K. Lagarec and D. G. Rancourt. Recoil Mössbauer Spectral Analysis Software for Windows. Department of Physics, University of Ottawa, Ottawa, ON, Canada (1998), version 1.0. https://denisrancourt.ca/Recoil-Manual.pdf
- 38. M. E. Matsnev and V. S. Rusakov. AIP Conf. Proc. 1489, 178 (2012).
- 39. C. R. dela Cruz, F. Yen, B. Lorenz et al., Phys. Rev. B 71, 060407(R) (2005).
- 40. C. R. dela Cruz, F. Yen, B. Lorenz et al., Phys. Rev. B 73, 100406(R) (2006).
- 41. D. Fausti, A. A. Nugroho, P. H. M. van Loosdrecht et al., Phys. Rev. B 74, 024403 (2006).
- 42. Д. В. Волков, А. А. Демидов, Н. П. Колмакова, Л. В. Такунов, ΦТТ 50, 1613 (2008) [Phys. Sol. St. 50, 1677 (2008)].
- 43. K. V. Frolov, I. S. Lyubutin, E. S. Smirnova et al., J. Alloys Compd. 671, 545 (2016).
- 44. E. S. Smirnova, O. A. Alekseeva, A. P. Dudka et al., Acta Cryst. B 74, 226 (2018).
- 45. K. V. Frolov, I. S. Lyubutin, O. A. Alekseeva et al., J. Alloys Compd. **748**, 989 (2018).

- 46. E. S. Smirnova, O. A. Alekseeva, A. P. Dudka et al., Acta Cryst. B 78, 1 (2022).
- 47. K. V. Frolov, I. S. Lyubutin, O. A. Alekseeva et al., J. Alloys Compd. 909, 164747 (2022).
- 48. D. Stoiber and R. Niewa, Z. Kristallogr. 234, 201 (2019).
- **49**. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Clarendon

Press, Oxford (1971), p. 42.

- 50. J-P. Renard, in Organic and Inorganic Low-Dimensional Crystalline Materials, ed. by P. Delhaes and M. Drillon, Plenum Press, New York, London (1987), p. 125.
- **51.** L. J. de Jongh, in *Magnetic properties of layered transition metal compounds*, ed. by L. J. de Jongh, Kluwer Acad. Publ., Netherlands (1990), p. 1.