ХИМИЧЕСКАЯ ФИЗИКА АТМОСФЕРНЫХ ЯВЛЕНИЙ

УДК 541.128.13+551.510.42

ФОРМИРОВАНИЕ ЛЕДЯНЫХ ЧАСТИЦ АЭРОЗОЛЯ В НИЖНЕЙ СТРАТОСФЕРЕ

© 2019 г. А. Е. Алоян¹, А. Н. Ермаков^{2*}, В. О. Арутюнян¹

¹Институт вычислительной математики Российской академии наук, Москва, Россия ²Институт энергетических проблем химической физики им. В.Л. Тальрозе Российской академии наук, Москва, Россия

*E-mail: ayermakov@chph.ras.ru Поступила в редакцию 10.04.2018; после доработки 10.04.2018; принята в печать 21.05.2018

В работе рассматриваются данные натурных наблюдений ледяных частиц аэрозоля в нижней стратосфере и результаты лабораторного моделирования микрофизики их формирования. Приводится описание модели возникновения ледяных частиц в нижней стратосфере, построенной в рамках классической теории нуклеации. По результатам численных экспериментов найдено, что формирование ледяной фазы в жидких частицах STS (Super Cooled Ternary Solutions) возможно лишь в условиях значительного их переохлаждения (~3 K), что согласуется с данными натурных наблюдений.

Ключевые слова: лед, аэрозольные частицы, гомогенная нуклеация, микрофизика, полярные стратосферные облака.

DOI: 10.1134/S0207401X19010035

введение

Несмотря на многочисленные исследования (см. работы [1, 2] и др.), физико-химические свойства воды в переохлажденном состоянии остаются во многом неопределенными, что затрудняет, в частности, расчеты динамики формирования зародышей ледяной фазы [3]. Знание кинетики этого фазового перехода является ключевым при описании формирования ледяных частиц в атмосферных облаках, в том числе и в нижней стратосфере, где их нахождение принято связывать с глобальным влиянием на климат, а также с так называемой галогенной активацией в период полярных зим. В известных моделях [4, 5] формирование ледяных частиц в нижней стратосфере рассматривается, как правило, без учета микрофизики фазового перехода "вода 与 лед". Для согласования с данными натурных измерений (см., например, работу [6] и др.) их формирование в таких моделях предписывают заданному переохлаждению капель STS (Super Cooled Ternary Solutions) [4]. Цель настоящей работы – построить модель формирования ледяных частиц в каплях STS с явным учетом микрофизики этого процесса и проследить за температурным порогом их формирования в характерных условиях нижней стратосферы.

ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ

Появление ледяных частиц в нижней стратосфере связывают обычно с гомогенной нуклеацией в частицах STS [4]. В ряде работ рассматривается также возможность гетерогенной нуклеации льда [7]. Осуществление этого процесса рассматривается при этом в объеме частиц STS как на поверхности формирующегося при низких температурах *T* твердого тетрагидрата серной кислоты (TГ, $H_2SO_4 \cdot 4H_2O$) [6], так и на внутренней поверхности капель, характеризующейся избытком свободной энергии [4].

Термодинамически фазовый переход "вода—лед" в STS возможен по достижению так называемого насыщения по парам воды: $S_{ice, therm} = a_{w, STS}/a_{w, ice} = 1$, где $a_{w, STS}$ и $a_{w, ice}$ — активности воды в холодных каплях в равновесии с паром и со льдом соответ-ственно. При давлениях $P_{H_2O} = 5$ ppm, $P_{HNO_3} = 10$ ppb и $P_{H_2SO_4} = 0.5$ ppb, характерных для нижней стратосферы, переход "вода \rightarrow лед" в STS может про-исходить, например, при $T_{ice} \sim 188-189$ К. В противовес этому о регистрации ледяных частиц по данным натурных измерений сообщается при температурах, на 3–4 К более низких, что свидетельствует о наличии активационного барьера при их формировании [4]. Сами частицы STS в нижней стратосфере легко возникают в результате быстрого синоптического или орографическо-

го охлаждения воздушных масс, которое сопровождается поглощением частицами слоя Юнге паров воды и азотной кислоты [8]. В отличие от ледяных частиц их образование не связано с преодолением активационного барьера, а состав STS непрерывно меняется при колебаниях температуры, относительной влажности и содержания в воздухе паров серной и азотной кислот.

БОКСОВАЯ МОДЕЛЬ

В работе [9] нами сообщалось о результатах 3D-моделирования формирования и переноса газовых и аэрозольных микропримесей, в том числе частиц полярных стратосферных облаков (ПСО) в атмосфере обоих полушарий: NAT (Nitrous Acid Trihydrate, $HNO_3 \cdot 3H_2O_{(TB)}$, тип 1a), STS (тип 1b) и ледяные частицы (тип II) [4]. Расчеты их массовых концентраций выполнялись применительно к зимнему периоду (январь в северном полушарии) в верхней тропосфере и нижней стратосфере. Их результаты показали, что пространственно-временная структура распределения концентраций сульфатного аэрозоля и частиц ПСО в нижней стратосфере неоднородна и критически зависит от температуры. Так, на высотах z == 10400-11500 м наиболее холодной по данным ECMRWF (European Centre for Medium-Range Weather Forecasts) является атмосфера в полярных и северных широтах (~ 209 K), а на высоте z == 18000 м, наоборот, наиболее холодной (~186 K) оказывается атмосфера в тропической атмосфере. В северных широтах при этом по данным расчетов отмечалось формирование лишь частиц слоя Юнге, а в атмосфере над тропиками удалось выявить и локальные области формирования частиц ПСО: капли STS, а также ледяные частицы. При этом в расчетах полагалось, что возникновение ледяной фазы происходит по достижении $S_{ice, therm} \approx 1$.

В соответствии же с классической теорией нуклеации (КНТ) образование зародышей ледяной фазы в STS требует учета влияния растворенных компонентов (в данном случае азотной и серной кислот) на поверхностное натяжение на границе раздела фаз "лед/раствор" и активационный барьер диффузии молекул воды при переходе через эту границу. Их результирующее влияние на динамику нуклеации льда в STS удалось удовлетворительно воспроизвести в работе [10], опираясь при этом лишь на активности воды в растворах в равновесии с паром $(a_{w, STS})$ и ледяной фазой (*a_{w, ice}*). Такой вывод базируется на выявленной в этой публикации глубокой аналогии в закономерностях снижения температур замерзания (T_3) и плавления (T_{пл}) водных растворов при росте концентрации растворенных веществ в мелких каплях (1-10 мкм), а также при повышении над ними внешнего давления. Результаты анализа массива этих данных указали и на отсутствие влияния природы растворенных компонентов (электролиты и неэлектролиты, всего 18 индивидуальных веществ) на T_3 и $T_{пл}$. Их численные значения и разность ($T_{пл} - T_3$) при вариациях концентраций растворенных компонентов вплоть до 25 кг/моль (!) определяется лишь разностью $a_{w, STS}$ и $a_{w, ice}$ в растворах: $\Delta a_w = a_{w, STS} - a_{w, ice}$, названной в работе [9] "water-activity criterion". С использованием табулированных значений скорости нуклеации льда $J_{ice}(a_w = 1)$ для чистой воды [11] и данных экспериментов по динамике охлаждения и замерзания мелких капель, а также Δa_w в работе [10] для J_{ice} было получено полуэмпирическое выражение для скорости нуклеации льда в STS:

$$J_{ice} \left[c M^{-3} \cdot c^{-1} \right] = 10^{-906.7 + 8502 \Delta a_w - 26924 \Delta a_w^2 + 29180 \Delta a_w^3},$$

где $\Delta a_w = 0.24 - 0.34$. С его применением удалось подтвердить, в частности, натурные данные по диагностике фазового состояния аэрозольных частиц в нижней стратосфере на высотах ~22 км при $T \sim 182$ К [12].

С учетом вышесказанного выполним оценки Δa_w и J_{ice} применительно к результатам наших 3D-расчетов [9]. Для частиц самой мелкой фракции (0.008 мкм), например, расчеты приводят соответственно к $\Delta a_w \approx 0.29$ и $J_{ice} \approx 5 \cdot 10^6$ см⁻³ · с⁻¹. Для характерного времени замерзания воды (τ_3) в таких каплях отсюда находим: $\tau_3 = (J_{ice}V)^{-1} \approx 10^{11}$ с (!), где V – объем капель рассматриваемой моды частиц STS. Это показывает, что корректные расчеты массовой концентрации ледяной фазы в нижней стратосфере необходимо проводить с учетом микрофизики этого процесса.

С этой целью нами была построена боксовая модель этого процесса применительно к условиям нижней стратосферы. Эта модель представляет собой систему из четырех обыкновенных дифференциальных уравнений 1-го порядка. Их обобщенный вид для H₂O или HNO₃ в газовой и конденсированной фазах приводится ниже:

$$\frac{d[X_{(ra3)}]_i}{dt} = -k_{t,X,i}L\bigg([X_{(ra3)}]_i - \frac{10^{-3}N_a P_{X,i}}{RT}\bigg),$$
$$\frac{dX_i}{dt} = -k_{t,X,i}L\frac{M_{X,i} \cdot 10^{12}}{N_a}\bigg([X_{(ra3)}]_i - \frac{10^{-3}N_a P_{X,i}}{RT}\bigg).$$

Поскольку серная кислота диссоциирует в водных растворах нацело, а давление ее паров насыщения при низких Tэкстремально мало [4], при построении модели было принято, что H_2SO_4 находится лишь в

жидкой фазе, в виде анионов $HSO_{4(x)}^{-}$ и $SO_{4(x)}^{2-}$.

Приведенные выше уравнения описывают динамику изменения объемных и массовых концентраций этих компонентов (при их переносе из газовой (индекс "газ") в жидкую фазу (индекс "ж" и обратно). Для парциальных давлений паров воды и азотной кислоты над каплями STS в условиях нижней стратосферы в расчетах использовались параметризованные выражения из [13]. В приводимых уравнениях $[X_{(газ)}]_i =$ = [H₂O_(газ)], [HNO_{3(газ)}] в см⁻³ и объемная доля жидкой фазы $L = 10^{-12} (X_{\text{H}_{2}\text{O}} + X_{\text{H}_{NO_3}} + X_{\text{H}_{2}\text{SO}_4}) / \rho$, где $X_{\rm H_2O}, X_{\rm HNO_3}, X_{\rm H_2SO_4}$ – соответственно массовые концентрации H₂O, HNO₃ и H₂SO₄ в частицах в мкг/м³ и ρ – зависящая от X_i и T плотность двух или трехкомпонентных растворов в г/см³. В этих уравнениях N_a — число Авогадро, k_{t, X_i} – суммы диффузионного и кинетического сопротивления вхождения/выхода молекул H₂O_(газ) HNO_{3(газ)} в/из частиц в с⁻¹, $M_{X,i}$ – молекулярная масса компонентов в г/моль, R – универсальная газовая постоянная в $\pi \cdot$ атм \cdot моль $^{-1} \cdot K^{-1}$, T - температура в K, *P*_{х і} – парциальные давления компонентов над переохлажденными каплями в атм. При вычислениях k_{t, X, i} использовались коэффициенты диффузии и аккомодации H₂O и HNO₃, заимствованные из [14, 15]. Фигурирующие в уравнениях численные коэффициенты отражают пересчет мкг в г и см³ в м³.

Численное моделирование динамики формирования капель STS и формирования в них ледяной фазы в нижней стратосфере проводилось с применением пакета программ Mathcad 15 (интегратор Rkadapt). Расчеты выполнялись для единичного объема газа (м³) при обшем давлении 50 мбар (0.049 атм), равномерно заполненного монодисперсными частицами аэрозоля ($r \sim 0.18$ мкм, массовая концентрация ~0.02 мкг/м³, счетная концентрация <1 см⁻³). Коалесценцией частиц (вследствие их низкой счетной концентрации $(<1 \text{ cm}^{-3})$ и короткого времени интегрирования. отвечающего появлению ледяной фазы) в сравнении с динамикой конденсационного роста частиц STS пренебрегали. Общее давление и температура по ходу эволюции системы считались постоянными. В расчетах в качестве начальных использовались следующие концентрации компонентов: $[\text{HNO}_{3(\text{газ})}] = 1.7 \cdot 10^{10} (10 \text{ ppb}) \text{ и} [\text{H}_2 \text{SO}_{4(\text{газ})}] = 1.03 \cdot 10^{10} \text{ (10 ppb)}$ $\cdot 10^{9} \, \text{см}^{-3}$ (0.5 ppb). Содержание паров воды в нижней стратосфере в расчетах варьировалось в пределах 3-7 ррт [14].

Для упрощения картины в расчетах рассматривалась лишь начальная стадия формирования ледяной фазы, когда массовая концентрация частиц (g_{ice} , мкг/м³) многократно меньше массовой концентрации воды (g_{H_2O} , мкг/м³) в частицах STS. Начальное содержание растворенных компонентов в частицах подбиралось при этом близким к их равновесным концентрациям по отношению к газовой фазе [14] (см. также ниже), что позволило не только обеспечить близкие к постоянным значения концентраций [$H_2O_{(газ)}$] и [HNO_{3(газ)}], но и

ХИМИЧЕСКАЯ ФИЗИКА том 38 № 1 2019

сократить время интегрирования. Для моделирования температурного порога возникновения зародышей ледяной фазы с учетом микрофизики их образования необходимое пересыщение находили из выражения: $S_{ice, kin} = S_{ice, therm} + \Delta a_w/a_{w, ice} \approx 1 + (0.3 \pm 0.05)/0.48 \approx 1.6$. Здесь $\Delta a_w = (0.3 \pm 0.05) -$ усредненное значение, а $a_{w, ice} = 0.48 -$ близкая к постоянству активность воды в равновесии с ледяной фазой в диапазоне температур T = 182 - 188 К.

В первом (термодинамическом) случае в правую часть уравнения для содержания газовых молекул воды (см. выше) дополнительно вводили член $(10^{-12}k_{t,H_2O}g_{ice}([H_2O_{(ra3)}] - 10^{-3}P_{H_2O,ice} \times N_a/RT)/\rho_{ice})$, см⁻³ · с⁻¹. При этом поправку на расходование воды в частицах STS ввиду малости $g_{ice}(g_{ice}/g_{H_{2}O} \ll 1)$ не вводили. Во втором (*кинетическом*) случае в правую часть уравнения для $g_{\rm H_2O}$ вводился член $JVL\rho \cdot 10^{12}(S_{ice, kin} - 1)$, мкг/м³, учитывающий расход воды в STS на образование ледяной фазы по достижению насыщения. При этом учитывая, что $g_{ice}/g_{H,O} \ll 1$, считали, что рост частиц ледяной фазы происходит лишь за счет убыли воды в частицах STS, а убылью газовых молекул H₂O при этом пренебрегали. Динамику роста ледяных частиц и их влияние на газовый и аэрозольный состав в условиях $g_{ice}/g_{H_{2}O} \ge 1$ планируется исследовать в дальнейшем в рамках обновленной версии 3D-модели переноса и формирования газовых и аэрозольных примесей в атмосфере [9], учитывающей в явном виде микрофизику формирования ледяной фазы. При этом планируется учитывать расход воды в капельной фазе и расход паров воды в воздухе.

РЕЗУЛЬТАТЫ РАСЧЕТОВ

С использованием построенной модели тестировалась эволюция химического и фазового состава капель в отсутствие ледяных зародышей ($J_{ice} = 0$) и в условиях их формирования. Результаты расчетов ($J_{ice} = 0$) указали на существование температурного порога образования частиц STS: ~195 К (см. рис. 1). По его достижении объемная доля частиц STS (L_{STS}) в нижней стратосфере быстро нарастает при дальнейшем снижении температуры. При содержании серной и азотной кислот 0.5 ppb и 5–15 ppb, соответственно, а также $[H_2O_{(газ)}] = 5$ ppm, например, и снижении температуры на 10 К величина L_{STS} возрастает в ≈50 раз. Причина этого – снижение активности воды в STS и, как следствие, уменьшение давления ее паров над каплями, а также экспоненциальный рост растворимости HNO₃, вызванный не только снижением температуры, но и уменьшением концентрации серной кислоты [4, 14]. Это происходит вследствие увеличения

Рис. 1. Пример температурной зависимости объемной доли частиц STS в нижней стратосфере (ПСО, тип 1b). Общее давление – 50 мбар, содержание $H_2O_{(ra3)}$, $HNO_{3(ra3)}$ и $H_2SO_{4(ra3)}$ – соответственно 5 ppm, 5 и 0.5 ppb (черные кружки) и 5 ppm, 15 ppb и 0.5 ppb (светлые кружки). Кривые – данные расчетов [16]: I – содержание $H_2O_{(ra3)}$, $HNO_{3(ra3)}$ и $H_2SO_{4(ra3)}$ соответственно 5 ppm, 5 и 0.5 ppb, 2 – 5 ppm, 15 и 0.5 ppb.

Рис. 2. Температурная зависимость начальной стадии формирования ледяной фазы в каплях STS. Линия *1* отвечает $S_{ice, therm}$, а линия $2 - S_{ice, kin}$; общее давление – 50 мбар, $P_{H_2O} = 5$ ppm, $P_{HNO_3} = 10$ ppb, $P_{H_2SO_4} = 0.5$ ppb.

объема капель и разбавления нелетучей серной кислоты (спад wt_{H₂SO₄}) за счет поглощения из воздуха паров воды и азотной кислоты, а вместе с этим и снижения плотности растворов в STS. Здесь и далее wt_i – массовая доля в частицах STS воды, азотной и серной кислот. Так, если при T = 195 K, например, wt_{H₂SO₄ ≈ 0.51 , a wt_{HNO3} ≈ 0.015 , то при T = 185 K содержание H₂SO₄ в частицах STS снижается приблизительно в 30 раз, а wt_{HNO3} $\rightarrow 0.22$. Основными компонентами частиц STS в тропиках в}

зимний период в равновесных условиях оказываются, таким образом, вода и азотная кислота [4, 14].

На рис. 2 показаны примеры рассчитанных изменений $g_{ice} = f(T)$ на ранней стадии образования ледяной фазы в первоначально двухфазной системе ("газ-капли") в двух оговоренных выше случаях. В первом из них считалось, что температурный порог образования ледяной фазы в STS достигается при $S_{ice, therm} = 1$, а во втором – при $S_{ice, kin}$. Видно, что в согласии с ожиданиями и приводимыми выше оценками начало формирования ледяной фазы в STS происходит по достижении $T \sim 188.7$ К ($S_{ice, therm} = 1$). При этом весовое содержание в каплях серной и азотной кислот составляет соответственно wt_{H_2SO_4} \approx 0.07 и wt_{HNO_3} $\approx 0.44.$ Расчеты температурного порога образования ледяной фазы отвечающего S_{ice, kin} приводят к заметно более низкой температуре появления ледяных частиц: $T \sim 185.8$ K, см. кривую 2 на рис. 2. При T == 185.8 К и тех же концентрациях компонентов в газовой фазе $\Delta a_w \approx 0.3$, а $J_{ice} \approx 10^{10}$ см⁻³ · с⁻¹, что отвечает достаточно быстрому замерзанию даже капель малых размеров. Наблюдаемый при этом характер зависимости $g_{ice} = f(T)$ обусловлен высокой чувствительностью J_{ice} к T, что связано главным образом с зависимостью $a_{w, STS} = f(T)$. Проведенные расчеты показывают, что при учете микрофизики формирования ледяной фазы температурный порог оказывается ниже на 2.9 К, чем при Sice, therm = 1. При этом наблюдается ощутимый подъем в частицах STS массового содержания воды и азотной кислоты, что ведет к росту размеров капель и радикальному изменению их химического состава (см. рис. 3). Рисунок 3 показывает полученную нами в расчетах по данным работы [13] взаимосвязь температур образования льда (T_3) в каплях STS различного состава в равновесных условиях ($S_{ice, therm} = 1$) при различных содержаниях паров воды и азотной кислоты в нижней стратосфере (черные ромбы, кружки и квадраты). Видно, что при заданном содержании паров воды (3, 5 и 7 ppm) рассчитанные значения T_3 зависят от wt_{H,SO_4} и wt_{HNO_3} , что отражает в основном отклик *a*_{w. STS} на изменения концентраций серной и азотной кислот в частицах STS при понижении температуры. При этом чувствительность $a_{w, STS}$ к вариациям wt_{HNO2} оказывается гораздо более выраженной. Так, если при $wt_{HNO_2} = 0.4$, например, T_3 снижается на ~7-8 К (от ~191 до ~183 К) при возрастании wt_{H₂SO₄} от 0.01 до 0.02, то аналогичное по величине падение Т₃ при постоянстве $wt_{H_2SO_4}$ обеспечивает рост wt_{HNO_3} всего на несколько процентов (см. рис. 3). В сочетании с отмеченным выше увеличением растворимости HNO_3 при понижении T это и служит основной причиной снижения парциального давления па-

ХИМИЧЕСКАЯ ФИЗИКА том 38 № 1

2019

Рис. 3. Рассчитанные температуры образования частиц льда (T_3) в каплях STS различного состава при различных содержаниях в атмосфере паров воды (3, 5 и 7 ррт) и азотной кислоты (3–15 ррb), $S_{ice, therm} = 1$ (точечные линии). Сплошная линия – $wt_{H_2SO_4} \approx 0.038$, пунктирные линии (слева направо): $wt_{H_2SO_4} = 0.094$, 0.06 и 0.022. Черные точки – расчеты $S_{ice, therm}$ по уравнениям из [13]. Светлые точки – расчет T_3 по значению $S_{ice, kin}$.

ров воды над частицами, а вместе с тем и уменьшения T_3 . Понижение содержания паров воды в воздухе (от 7 до 3 ppm), ведущее к снижению T_3 и росту wt_{HNO_3} , также отражает снижение $a_{w, STS}$ и при близком к постоянству значении $a_{w, ice}$ определяет величину Δa_{w_2} а вместе с этим и величину J_{ice} .

На рис. 3 светлыми ромбами, кружками и квадратами показана полученная нами в расчетах взаимосвязь между T_3 и $wt_{\rm HNO_3}$ для различных содержаний в воздухе паров воды и азотной кислоты в условиях $S_{ice, kin} \approx 1.6$, что отвечает $\Delta a_w \approx 0.305$. Видно, что образование ледяной фазы в этом случае отвечает принципиально иным значениям wt_{HNO_3} и $wt_{H_2SO_4}$ в сравнении с $S_{ice, therm}$. При этом для каждого из рассматриваемых содержаний в газовой фазе паров воды и азотной кислоты $T_{3}(S_{ice, therm}) - T_{3}(S_{ice, kin}) \approx 2.5-3$ К. Проведенные расчеты выявили также и чувствительность времени задержки формирования ледяной фазы в частицах разного размера; частицы большего размера замерзают гораздо раньше, что обусловлено стохастической природой формирования зародышей ледяной фазы при гомогенной нуклеации [7].

ЗАКЛЮЧЕНИЕ

В работе рассматривается математическая модель микрофизики формирования ледяной фазы при замерзании переохлажденных капель трех-

ХИМИЧЕСКАЯ ФИЗИКА том 38 № 1 2019

компонентных растворов $H_2O/HNO_3/H_2SO_4$ (Super Cooled Ternary Solutions (STS)) в характерных условиях нижней стратосферы. Формирование льда рассматривается в рамках классической теории нуклеации с применением "water-activity criterion". Проведенные численные эксперименты указывают, что причиной наблюдаемого в натурных условиях переохлаждения капель STS для формирования ледяной фазы является низкая скорость нуклеации. Ее величина зависит не только от температуры, но и от активности воды в равновесии с паром и активности воды в равновесии с ледяной фазой. По результатам численных экспериментов найдено, что формирование ледяной фазы в жидких частицах STS в нижней стратосфере требует значительного их переохлаждения (\sim 3 K), что согласуется с данными натурных наблюдений.

Работа выполнена при поддержке грантом Российского фонда фундаментальных исследований № 18-05-00289, а также при финансировании Госзаданий ИВМ РАН и ИНЭП ХФ РАН им. В.Л. Тальрозе (тема 0047-2018-0008).

СПИСОК ЛИТЕРАТУРЫ

- Angell C.A. // Ann. Rev. Phys. Chem. 1983. V. 34. P. 593; doi: 10.1146/annurev.pc.34.100183.003113
- Mishima O., Stanley H.E. // Nature. 1998. V. 396. № 6709. P. 329.
- Koop Th. Murray B.J. // J. Chem. Phys. 2016. V. 145. P. 211915; doi: 10.1063/1.4962355
- 4. *Lowe D., MacKenzie R.* // J. Atmosph. and Sol.-Terr. Phys. 2008. V. 70. № 1. P. 13.
- Kirner O., Ruhnke R., Buchholz-Dietsch J. et al. // Geosci. Model Dev. 2011. V. 4. P. 169.
- Dye J.E., Baumgardner D., Gandrud B.W. et al. // J. Geophys. Res. 1992. V. 97. № 8. P. 8015.
- Djikaev Y.S., Tabazadeh A., Hamill P., Reiss H. // J. Phys. Chem. A. 2002. V. 106. № 43. P. 10247.
- 8. Koop T., Carslaw K.S. // Science. 1996. V. 272. P. 1638.
- 9. Алоян А.Е., Ермаков А.Н., Арутюнян В.О. // Оптика атмосферы и океана. 2018. Т. 31. № 2. С. 136.
- 10. *Koop T., Luo B., Tsias A., Peter T. //* Nature. 2000. V. 406. № 6797. P. 611.
- 11. *Pruppacher H.R., Klett J.D.* Microphysics of Clouds and Precipitation. Second ed. Dordrecht, The Netherlands: Kluwer Acad. Publ., 1997. P. 79, 205.
- 12. Carslaw K.S., Wirth M., Tsias A. et al. // J. Geophys. Res. 1998. V. 103. P. 5785.
- 13. *Luo B., Carslaw K.S., Peter N. et al.* // Geoph. Res. Let. 1995. V. 22. № 3. P. 247.
- 14. Carslaw K.S., Peter T., Clegg S.L. // Rev. Geophys. 1997. V. 35. P. 125.
- 15. http://jpldataeval.jpl.nasa.gov/
- Kawa S.R., Fahey D.W., Kelly K.K. et al. // J. Gephys. Res. 1992. V. 97. № D8. P. 7925.