ХИМИЧЕСКАЯ ФИЗИКА АТМОСФЕРНЫХ ЯВЛЕНИЙ

УДК 504.3.054;541.124;541.124.7

ВРЕМЯ ЖИЗНИ НЕЧЕТНОГО КИСЛОРОДА

© 2019 г. И.К. Ларин*

Институт энергетических проблем химической физики им. В.Л. Тальрозе Российской академии наук, Москва, Россия *E-mail: iklarin@narod.ru Поступила в редакцию 09.01.2019; после доработки 09.01.2019; принята в печать 21.01.2019

Представлены данные о времени жизни нечетного кислорода O_x в Северном полушарии в диапазоне широт 10° – 80° в декабре и июне 1995 года. Данные для расчетов были получены с помощью интерактивной радиационно-химической двумерной модели SOCRATES, в которой была предварительно рассчитана суммарная скорость гибели O_x в каталитических циклах O_x , HO_x , NO_x , ClO_x и Br O_x , а также концентрация O_x , равная сумме концентраций $O_3, O(^3P)$ и $O(^1D)$ для указанных выше условий, которые необходимо знать для расчета времени жизни O_x . В качестве начальных условий для расчетов по модели SOCRATES использовался сценарий Межправительственной группы экспертов по изменению климата RCP 4.5 для условий декабря и июня 1995 года. Показано, что в июне значения атмосферного времени жизни O_x лежат в достаточно узком высотно-широтном интервале, причем величины времен жизни для декабря и июня в нижней стратосфере низких широт одинаковы, что объясняется одинаковыми условиями в этой зоне в эти сезоны. Показано также, что на бо̀льших высотах и широтах времена жизни нечетного кислорода в декабре заметно больше, чем в июне, что объясняется главным образом различием в скоростях гибели нечетного кислорода в декабре и июне.

Ключевые слова: нечетный кислород, атмосферное время жизни, каталитические циклы, лимитирующая стадия, цепной процесс, скорость разрушения озона.

DOI: 10.1134/S0207401X19100066

введение

В работе автора [1] уже частично обсуждались вопросы, связанные со временем жизни нечетного кислорода. Напомним, что в [1] впервые атмосферное время жизни нечетного кислорода было рассчитано с учетом его гибели в известных каталитических циклах, тогда как ранее в подобных расчетах учитывалась гибель О_х только в кислородном цикле (см., например, [2, 3]), что приводило к завышению искомой величины. Укажем также, что приведенные в [1] данные были получены только для одной широты и одного сезона. Оставалось неясным, каким образом этот экологически важный параметр будет меняться при изменении широты и сезона. В связи с этим были выполнены расчеты атмосферного времени жизни нечетного кислорода в диапазоне широт 10°-80° Северного полушария в декабре и июне 1995 года. Расчеты атмосферного времени жизни О_х, τ_{O_z} , проводились по формуле

$$\tau_{\mathbf{O}_x} = \frac{[\mathbf{O}_x]}{\sum W_x (-\mathbf{O}_x)},\tag{1}$$

где $[O_x]$ — концентрация компонент нечетного кислорода, равная сумме концентраций O_3 , $O({}^3P)$ и $O({}^1D)$, а $\sum W_x (-O_x)$ — суммарная скорость разрушения O_x в каталитических циклах O_x , HO_x , NO_x , CIO_x и BrO_x . В свою очередь, скорость гибели нечетного кислорода в каждом конкретном цикле, $W_x(-O_x)$, рассчитывалась по формуле [4]

$$W_{x}(-O_{x}) = 2\sum_{i=2}^{i=n} \left(\frac{1}{W_{i}(X)}\right)^{-1},$$
 (2)

где n – число реакций продолжения цепи в цикле, $W_i(X)$ – скорость *i*-той реакции продолжения це-

пи в цикле X,
$$\sum_{i=2}^{i=n} \left(\frac{1}{W_i(X)}\right)^{-1}$$
 – скорость продол-

жения цепи в цикле Х. Коэффициент "2" означает, что в реакциях продолжения цепи погибают две частицы нечетного кислорода. Концентрации компонент, участвующих в реакциях каталитических циклов, были получены с помощью интерактивной радиационно-химической двумерной модели SOCRATES [5], позволяющей получать данные с разрешением 1 км в диапазоне высот от 0 до 120 км в

широтном диапазоне от 85° ю.ш. до 85° с.ш. с разрешением 5°. В качестве начальных условий для расчетов с помощью модели SOCRATES использовался сценарий Межправительственной группы экспертов по изменению климата (ІРСС) RCP 4.5 [6] для условий декабря и июня 1995 года. Указанный год был выбран в качестве референтного потому, что в этом году наблюдалось максимальное снижение общего солержания озона в Северном полушарии. обусловленное воздействием антропогенных хлорфторуглеродов на озоновый слой [7]. Ниже приводятся данные расчетов атмосферного времени жизни нечетного кислорода для указанных выше условий, для чего в соответствии с формулой (1) необходимо было рассчитать суммарную скорость гибели нечетного кислорода в каталитических циклах O_r , HO_r , NO_r , ClO_r и BrO_r и концентрацию нечетного кислорода в указанном выше диапазоне широт для условий декабря и июня 1995 гола.

О СКОРОСТИ РАЗРУШЕНИЯ НЕЧЕТНОГО КИСЛОРОДА В КАТАЛИТИЧЕСКИХ ЦИКЛАХ

При расчете скорости гибели нечетного кислорода учитывались следующие свойства каталитических циклов.

1. Кислородный цикл О_х

В этом цикле, открытым Чепменом в 1930 году [8], скорость гибели нечетного кислорода во все сезоны определяется одной единственной реакцией:

$$O({}^{3}P) + O_{3} \xrightarrow{\kappa_{O(3_{P})+O_{3}}} O_{2} + O_{2}, \qquad (I)$$

скорость которой рассчитывается по формуле

$$W_{O_x}(-O_3) = 2k_{O^{(3_P)}+O_3}[O^{(3_P)}][O_3].$$
 (3)

Так как кислородный цикл не является цепным процессом, то скорость гибели O_x в этом цикле рассчитывается не по формуле (2) (как в других циклах), а по формуле (3), которая непосредственно следует из прямой реакции (I).

2. Водородный цикл НО_х

Водородный цикл был открыт Дж. Хэмпсоном в 1964 году¹. Детальный анализ показывает, что в декабре основной вклад в разрушение нечетного кислорода вносят следующие каталитические водородные циклы [4]. Цикл V:

$$OH + O_3 \xrightarrow{k_{OH+O_3}} HO_2 + O_2, \qquad (II)$$

$$\frac{\text{HO}_2 + \text{O} \xrightarrow{k_{\text{HO}_2+\text{O}}} \text{OH} + \text{O}_2}{\text{O}_3 + \text{O} \rightarrow 2\text{O}_2}.$$
 (III)

Цикл II:

$$OH + O \xrightarrow{k_{OH+O}} H + O_2, \qquad (IV)$$

$$H + O_2 + M \xrightarrow{k_{H+O_2+M}} HO_2 + M, \qquad (V)$$

$$\underbrace{\mathrm{HO}_{2} + \mathrm{O} \xrightarrow{k_{\mathrm{HO}_{2}+\mathrm{O}}} \mathrm{OH} + \mathrm{O}_{2}}_{(\mathrm{III})}$$

$$O + O \rightarrow O_2$$
.

Отметим также, что в декабре максимум разрушения О, резко сдвинут в сторону низких широт.

Можно показать, что в июне основную роль в разрушении нечетного кислорода играют следующие циклы [4].

Цикл III (на высотах ≈15-30 км):

$$OH + O_3 \xrightarrow{k_{OH+O_3}} HO_2 + O_2, \qquad (II)$$

$$\underline{\mathrm{HO}_{2} + \mathrm{O}_{3} \xrightarrow{k_{\mathrm{HO}_{2}+\mathrm{O}_{3}}} \mathrm{OH} + 2\mathrm{O}_{2}} \tag{VI}$$

$$O_3 + O_3 \rightarrow 3O_2.$$

Цикл I (на высотах ≈30-40 км):

$$OH + O \xrightarrow{k_{OH+O}} H + O_2, \qquad (IV)$$

$$\frac{\mathrm{H} + \mathrm{O}_{3} \xrightarrow{k_{\mathrm{H}} + \mathrm{O}_{3}} \mathrm{OH} + \mathrm{O}_{2}}{\mathrm{O} + \mathrm{O}_{3} \rightarrow \mathrm{O}_{2} + \mathrm{O}_{2}}$$
(VII)

3. Азотно-окисный цикл NO_x

Азотно-окисный цикл открыл Пауль Крутцен в 1971 году [9]. Как показывает анализ, в декабре основной вклад в разрушение озона в NO_x-цикле вносит следующий цикл [4].

Цикл I:

$$NO + O_3 \xrightarrow{k_{NO+O_3}} NO_2 + O_2, \qquad (VIII)$$

$$\underbrace{\mathrm{NO}_2 + \mathrm{O} \xrightarrow{k_{\mathrm{NO}_2 + \mathrm{O}}} \mathrm{NO} + \mathrm{O}_2}_{(\mathrm{IX})}$$

$$O_3 + O \rightarrow O_2 + O_2.$$

В широтной полосе $30^{\circ}-50^{\circ}$ в нижней стратосфере некоторый небольшой вклад вносит также следующий цикл [4].

Цикл II:

$$NO + O_3 \xrightarrow{k_{NO+O_3}} NO_2 + O_2,$$
 (VIII)

$$NO_2 + O_3 \xrightarrow{k_{NO_2+O_3}} NO_3 + O_2,$$
 (X)

$$\frac{\text{NO}_3 + hv \xrightarrow{J_{\text{NO}_3} \to \text{NO}} \text{NO} + \text{O}_2}{\text{O}_3 + \text{O}_3 \to 3\text{O}_2}.$$
 (XI)

ХИМИЧЕСКАЯ ФИЗИКА том 38 № 10 2019

¹ Hampson J. "Chemical Instability of the Stratosphere", paper presented at the International Association of Meteorology and Atmospheric Physics (IUGG) Symposium on Atmospheric Radiation. Leningrad, USSR, 1994.

На широтах более 60° цикл II перестает "работать" из-за высоких зенитных углов Солнца (превышающих 90°), которые рассчитывались с применением параметризации, предложенной в работе [10]. В июне 1995 года максимум разрушения озона приходится примерно на те же высоты, но существенное разрушение озона происходит на всех широтах.

4. Хлорный цикл ClO_x

Хлорный цикл разрушения стратосферного озона был впервые и одновременно предложен Столярским и Цицероном [11] и Вофси и Макэлроем [12] в 1974 году. В декабре 1995 года максимальная скорость разрушения O_x в ClO_x-цикле происходит на высоте ≈45 км в широтной полосе $10^{\circ}-50^{\circ}$, после чего довольно резко падает. Гибель озона в хлорном цикле в декабре на всех высотах и широтах определяется следующим циклом [4].

Цикл I:

$$Cl + O_3 \xrightarrow{\kappa_{Cl+O_3}} ClO + O_2,$$
 (XII)

$$\underline{\text{ClO} + \text{O} \xrightarrow{k_{\text{ClO+O}}} \text{Cl} + \text{O}_2}$$
(XIII)

$$O_3 + O \rightarrow O_2 + O_2$$
.

В июне, как и в декабре, разрушение озона обусловлено циклом I.

5. Бромный цикл BrO_x

Первые два цикла разрушения O_x бромными компонентами были предложены Вовси с сотр. [13] в 1975 г. В 1980 г. Юнг и с соавт. [14] предложили еще четыре цикла с участием бромных частиц.

В декабре максимальное разрушение O_x происходит в двух зонах: на высоте 24–26 км в широтной полосе 10° –40° и на высоте 42–44 км в широтной полосе 10° –50°.

Разрушение О_x в нижнем максимуме в декабре 1995 года обусловлено главным образом следующими циклами [4].

Цикл III:

$$Br + O_3 \xrightarrow{\kappa_{Br+O_3}} BrO + O_2,$$
 (XIV)

$$Cl + O_3 \xrightarrow{k_{Cl+O_3}} ClO + O_2,$$
 (XII)

$$BrO + ClO \xrightarrow{k_{ClO+BrO}} Br + Cl + O_2$$
 (XV)

$$O_3 + O_3 \rightarrow 3O_2.$$

Цикл IV:

$$Br + O_3 \xrightarrow{\kappa_{Br+O_3}} BrO + O_2,$$
 (XIV)

 $BrO + NO_2 + M \xrightarrow{k_{BrO+NO_2+M}} BrONO_2 + M$, (XVI)

ХИМИЧЕСКАЯ ФИЗИКА том 38 № 10 2019

$$BrONO_2 + hv \xrightarrow{J_{BrONO_2}} Br + NO_3,$$
 (XVII)

$$NO_3 + hv \xrightarrow{J_{NO_3 \to NO}} NO + O_2,$$
 (XI)

$$\underbrace{\text{NO} + \text{O}_3 \longrightarrow \text{NO}_2 + \text{O}_2}_{k_{\text{NO}+\text{O}_3}} \rightarrow \text{NO}_2 + \text{O}_2 \qquad (\text{VIII})$$

$$O_3 + O_3 \rightarrow 3O_2.$$

Разрушение O_x в верхнем максимуме обусловлено действием следующего цикла [4].

Цикл I:

$$Br + O_3 \xrightarrow{k_{Br+O_3}} BrO + O_2, \qquad (XIV)$$

$$\underline{\operatorname{BrO} + \operatorname{O} \xrightarrow{k_{\operatorname{BrO}+O}} \operatorname{Br} + \operatorname{O}_2}$$
(XVIII)

$$O_3 + O \rightarrow 2O_2$$
.

В июне 1995 года разрушение озона в бромном цикле происходит в двух широких максимумах — на высотах $\approx 15-25$ и $\approx 40-45$ км, прилегающих к высоким широтам: в нижнем максимуме в широтной полосе $\approx 40^{\circ}-80^{\circ}$, а в верхнем — в широтной полосе $\approx 60^{\circ}-80^{\circ}$.

Данные о суммарной скоростигибели нечетного кислорода в каталитических циклах O_x , HO_x , NO_x , ClO_x и BrO_x в широтной полосе $10^\circ - 80^\circ$ с.ш. в декабре 1995 года приводятся в табл. 1, а в июне того же года — в табл. 2. Можно видеть, что максимальный вклад в разрушение озона в декабре и в июне вносит азотно-окисный цикл, далее идут водородный и кислородный циклы. Укажем также, что в декабре максимальная скорость разрушения нечетного кислорода происходит в верхней стратосфере низких широт, а в июне интенсивное разрушение нечетного кислорода имеет место на всех широтах в верхней стратосфере.

О ВРЕМНИ ЖИЗНИ НЕЧЕТНОГО КИСЛОРОДА В СЕВЕРНОМ ПОЛУШАРИИ

Атмосферное время жизни нечетного кислорода, τ_{O_x} , рассчитывалось по формуле (1), в которой в качестве знаменателя использовались данные, приведенные в табл. 1 и 2, а в качестве числителя — концентрации O_x , рассчитанные с помощью модели SOCRATES для соответствующих условий, которые приведены в табл. 3 и 4.

Расчеты атмосферного времени жизни O_x по формуле (1) показали, однако, что в некоторых случаях (в декабре) величина τ_{O_x} сравнима или превосходит величину характеристического времени турбулентного переноса, τ_d , которая рассчитывается по формуле

$$\tau_d = H^2 / k_{zz}, \qquad (4)$$

где H – высота однородной атмосферы, равная RT/mg (R – универсальная газовая постоянная, T – абсолютная температура, m – средний моле-

ЛАРИН

Высота, км	Суммарная скорость, см $^{-3} \cdot c^{-1}$								
	10°	20°	30°	40°	50°	60°	70°	80°	
15	1936.82	2421.12	3922.45	5675.67	6603.79	1980.11	54.25203	9.0552	
20	13062.8	17839.81	22867.33	23818.27	19245.31	8368.14	105.79	5.064	
25	127142	117979.9	110629.6	90981.15	68047.68	17839.27	53.53629	0.66144	
30	965596	786556	656073	463340.3	305395.1	18119.59	97.33237	0.5609	
35	3.16E+06	2.64E+06	2.08E+06	1.35E+06	793030.6	54544.47	366.2555	4.34926	
40	4.35E+06	3.77E+06	2.87E+06	1.91E+06	1.13E+06	267366.9	617.0913	15.87713	
45	2.91E+06	2.67E+06	2.16E+06	1.62E+06	1.20E+06	403011.7	570.4417	14.27428	
50	1.56E+06	1.46E+06	1.25E+06	1.05E+06	815594.1	449140.4	336.0152	5.90811	

Таблица 1. Суммарная скорость разрушения нечетного кислорода в каталитических циклах O_x, HO_x, NO_x, ClO_x и BrO_x в широтной полосе 10°-80° с.ш. в декабре 1995 года

Таблица 2. Суммарная скорость разрушения нечетного кислорода в каталитических циклах O_x, HO_x, NO_x, ClO_x и BrO_x в широтной полосе 10°-80° с.ш. в июне 1995 года

Высота, км	Суммарная скорость, см $^{-3} \cdot c^{-1}$								
	10°	20°	30°	40°	50°	60°	70°	80°	
15	2673.53	2526.31	4010.22	9584.39	28775.61	51838.87	64468.63	71781.9	
20	12631.21	20179.49	37199.56	67028.1	105177.5	142352.5	197856.6	202503.7	
25	156192.7	206544.2	283109.9	378265.3	468532.9	524365	618069.4	510318.6	
30	1.20E+06	1.42E+06	1.63E+06	1.81E+06	1.89E+06	1.88E+06	1.98E+06	1.61E+06	
35	3.73E+06	4.04E+06	4.21E+06	4.26E+06	4.11E+06	3.96E+06	4.21E+06	3.85E+06	
40	4.95E+06	5.18E+06	5.31E+06	5.26E+06	5.06E+06	4.92E+06	5.52E+06	5.47E+06	
45	3.18E+06	3.32E+06	3.42E+06	3.52E+06	3.62E+06	3.80E+06	4.84E+06	4.86E+06	
50	1.69E+06	1.79E+06	1.86E+06	1.96E+06	2.08E+06	2.27E+06	3.14E+06	3.16E+06	

Таблица 3. Концентрация О_х в широтной полосе 10°-80° с.ш. в декабре 1995 года

Высота, км	Концентрация O_x , см ⁻³								
	10°	20°	30°	40°	50°	60°	70°	80°	
15	3.07E+11	4.98E+11	8.34E+11	1.34E+12	2.16E+12	3.17E+12	3.88E+12	3.78E+12	
20	1.49E+12	2.18E+12	2.87E+12	3.50E+12	4.18E+12	5.06E+12	5.88E+12	6.01E+12	
25	3.85E+12	4.06E+12	4.27E+12	4.49E+12	4.74E+12	5.04E+12	5.14E+12	5.06E+12	
30	4.07E+12	3.82E+12	3.57E+12	3.21E+12	2.99E+12	2.87E+12	2.80E+12	2.77E+12	
35	1.96E+12	1.88E+12	1.78E+12	1.62E+12	1.43E+12	1.28E+12	1.30E+12	1.32E+12	
40	7.24E+11	7.42E+11	7.54E+11	7.68E+11	7.39E+11	6.19E+11	5.80E+11	5.58E+11	
45	2.07E+11	2.18E+11	2.32E+11	2.60E+11	3.01E+11	2.83E+11	1.90E+11	1.55E+11	
50	5.90E+10	6.10E+10	6.32E+10	6.87E+10	8.10E+10	9.95E+10	5.28E+10	4.38E+10	

кулярный вес воздуха, g — ускорение свободного падения), а k_{zz} — коэффициент турбулентной диффузии по высоте. Это означает, что помимо фотохимических процессов на время жизни O_x оказывают влияние и динамические процессы. Как было показано в работе [1], учесть это влияние можно через введение комбинированного времени жизни O_x, которое можно определить с помощью формулы

$$\tau_x = \frac{\tau_{O_x} \tau_d}{\tau_{O_x} + \tau_d},\tag{5}$$

ВРЕМЯ ЖИЗНИ НЕЧЕТНОГО КИСЛОРОДА

Высота, км	Концентрация O_x , см ⁻³								
	10°	20°	30°	40°	50°	60°	70°	80°	
15	2.80E+11	3.82E+11	5.58E+11	9.69E+11	2.19E+12	3.73E+12	4.32E+12	4.15E+12	
20	1.27E+12	1.74E+12	2.63E+12	3.85E+12	4.89E+12	5.38E+12	5.31E+12	5.09E+12	
25	4.00E+12	4.40E+12	4.87E+12	5.26E+12	5.30E+12	4.92E+12	4.21E+12	3.65E+12	
30	4.37E+12	4.35E+12	4.23E+12	3.98E+12	3.63E+12	3.23E+12	2.75E+12	2.43E+12	
35	2.02E+12	1.95E+12	1.85E+12	1.76E+12	1.67E+12	1.55E+12	1.42E+12	1.37E+12	
40	6.73E+11	6.37E+11	6.10E+11	5.92E+11	5.77E+11	5.49E+11	5.32E+11	5.38E+11	
45	1.88E+11	1.77E+11	1.69E+11	1.63E+11	1.57E+11	1.49E+11	1.39E+11	1.32E+11	
50	5.54E+10	5.27E+10	5.08E+10	4.91E+10	4.74E+10	4.45E+10	4.03E+10	3.77E+10	

Таблица 4. Концентрация О_к в широтной полосе 10°-80° с.ш. в июне 1995 года

где τ_{O_x} — рассчитывается по формуле (1), а τ_d — по формуле (4). Рассчитанные по формуле (5) атмосферные времена жизни O_x для декабря и июня 1995 года показаны соответственно на рис. 1 и 2.

Можно видеть, что на высотах 15–20 км в широтной полосе 10° – 30° с.ш. атмосферные времена жизни нечетного кислорода в декабре и июне 1995 года практически одинаковы, что объясняется одинаковостью условий в этой области широт и высот. На больших высотах и широтах времена жизни нечетного кислорода в декабре и июне существенно различаются, причем τ_x в декабре существенно выше, чем в июне. Это можно объяснить следующим образом. В декабре на вы

сотах более 35 км в широтной зоне $30^{\circ}-60^{\circ}$ с.ш. $\tau_{O_x} \ll \tau_d$, где $\tau_d \approx 10^8$ с, и, следовательно, можно положить $\tau_x \approx \tau_{O_x}$ (соответствующие данные для τ_{O_x} приведены на рис. 3). Принимая тогда, что основную роль в изменении τ_x в указанной области играют изменения τ_{O_x} , различие в поведении τ_x в декабре и июне можно объяснить тем, что в декабре концентрация O_x (числитель в формуле (1)) больше, а скорость гибели O_x (знаменатель в формуле (1)) – меньше, что и обуславливает декабрьский рост τ_x . На широтах 70° , 80° с.ш. в декабре $\tau_{O_x} \gg \tau_d$, следовательно, $\tau_x \approx \tau_d$, как это и видно из данных, приведенных на рис. 1.

Рис. 1. Атмосферное время жизни нечетного кислорода для условий декабря 1995 года, рассчитанное по формуле (4). Цифрами указаны широты Северного полушария.

ХИМИЧЕСКАЯ ФИЗИКА том 38 № 10 2019

Рис. 2. То же, что и на рис. 1, но для условий июня 1995 года.

Рис. 3. Атмосферное время жизни нечетного кислорода, для условий декабря 1995 года, рассчитанное по формуле (1). Цифрами указаны широты Северного полушария.

В июне 1995 года $\tau_{O_x} \ll \tau_d$ выше 25 км в широтной зоне 30°—80°. Поэтому в этой зоне можно положить $\tau_x \approx \tau_{O_x}$ и считать, что здесь динамические факторы не оказывают существенного влияния на атмосферное время жизни нечетного кислорода. То же можно сказать и о поведении атмосферного времени жизни нечетного кислорода в декабре в широтной зоне 30°—60° с.ш. выше 35 км.

выводы

1. Выполнены расчеты атмосферного времени жизни нечетного кислорода в Северном полушарии в диапазоне широт 10°-80° с.ш. для условий декабря и июня 1995 года.

2. Показано, что в июне значения атмосферного времени О_x лежат в достаточно узком высотноширотном интервале, так что на одной и той же высоте времена жизни O_x для разных широт различаются не более чем в два-три раза, причем величины τ_x для декабря и июня в нижней стратосфере низких широт одинаковы, что объясняется одинаковыми условиями в этой зоне в эти сезоны.

3. На бо̀льших высотах и широтах времена жизни нечетного кислорода в декабре заметно больше, чем в июне, что объясняется главным образом различием в скорости его гибели в декабре и июне.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ларин И.К. // Хим. физика. 2017. Т. 36. № 3. С. 87.
- 2. *Brasseur G., Solomon S.* Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere. Third revised and enlarged edition. Montreal, Canada: Springer, 2005. P. 644.
- 3. Jacob Daniel J. Introduction to Atmospheric Chemistry.Princeton: University Press, 1999. P. 267.

- 4. *Ларин И.К.* Химическая физика озонового слоя. М.: РАН, 2018.
- 5. http://acd.ucar.edu/models/SOCRATES/
- http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=welcome
- Scientific Assessment of Ozone Depletion: 2014. World MeteorologicalOrganization Global Ozone Research and Monitoring Project – Report No. 55.
- 8. Chapman S. // Phil. Mag. 1930. V. 10. P. 369.
- 9. Crutzen P.J. // J. Geophys. Res. 1971. V. 76. P. 7311.
- Gerrstl S.A.W., Zardecki A., Wiser H.L. // Nature. 1981. V. 294. P. 352.
- 11. Stolarski R.S., Cicerone R.J. // Can. J. Chem. 1974. V. 52. P. 1610.
- Wofsy S.C., McElroy M.B. // Can. J. Chem. 1974. V. 52. P. 1582.
- 13. Wofsy S.C., McElroy M.B., Yung Y.L. // Geophys. Res. Lett. 1975. V. 2. P. 215.
- Yung Y.L., Pinto J.P., Watson R.T., Sander S.P. // J. Atmos. Sci. 1980. V. 37. P. 339.