ХИМИЧЕСКАЯ ФИЗИКА ПОЛИМЕРНЫХ МАТЕРИАЛОВ

УДК 678.03

ТВЕРДОФАЗНОЕ ТЕРМООКИСЛЕНИЕ ПОЛИЭТИЛЕНА В СМЕСИ С ПОЛИЛАКТИДОМ

© 2019 г. Ю. В. Тертышная^{1, 2*}, М. В. Подзорова^{2, 3}, Т. В. Монахова¹, А. А. Попов^{1, 3}

¹Институт биохимической физики им. Н.М. Эмануэля Российской академии наук, Москва, Россия ²Федеральный научный агроинженерный центр ВИМ, Москва, Россия

³Российский экономический университет имени Г.В. Плеханова, Москва, Россия

**E-mail: moraxella@bk.ru*

Поступила в редакцию 06.08.2018; после доработки 31.08.2018; принята в печать 20.09.2018

В работе получены и изучены полимерные смеси полиэтилен — полилактид различного состава, в том числе с добавлением полиэтилена, подвергнутого старению. Методом сканирующей электронной микроскопии показана зависимость морфологии образцов от состава смеси. Процесс термического окисления исследовали при температурах 80, 90, 110°С и давлении 300 Торр. Установлено, что скорость окисления возрастает с повышением температуры; при этом скорость поглощения кислорода чистым полиэтилена в количестве до 30 мас.% ускоряет процесс термоокисления смесей, но не меняет вид кинетических кривых поглощения кислорода. Определено, что после 25 ч окисления смесей при 110°С полиэтилен подвергается термоокислению, а у полилактида происходит перестройка надмолекулярной структуры.

Ключевые слова: смеси полимеров, полилактид, термоокисление, кинетика поглощения кислорода, температура плавления.

DOI: 10.1134/S0207401X19030105

введение

Известно, что в процессе переработки и эксплуатации полимерные материалы подвергаются действию многих факторов: света, тепла, механических сил, химических реагентов. Одним из наиболее агрессивных факторов является кислород. Термоокисление представляет собой одновременное действие температуры и кислорода. Скорость термоокислительного распада полимеров обычно выше скорости их термического распада. Процессы термоокисления полимеров и в особенности смесей полимеров очень сложны по химической природе и изучаются не один десяток лет [1-3]. Кинетика процесса окисления в таких системах может сильно зависеть от состава полимерных примесей. Структура полимерной матрицы, граничных слоев, второго компонента оказывают сильное влияние на стадии зарождения и разветвления кинетических цепей окисления [4, 5]. В процессе могут принимать участие перекрестные реакции, что также осложняет эксперимент и до конца не изучено, поэтому исследования в области окисления гетерофазных систем проводятся и в настоящее время [6-8]. Что касается твердофазного термоокисления, то процесс осложняется низкой сегментарной подвижностью в полимерах, а значит,

процесс переноса свободной валентности может быть затруднен.

В данной работе изучается процесс твердофазного окисления смесей полиэтилена низкой плотности и полилактида (ПЭНП и ПЛА) при температурах 80, 90 и 110°С. Следует отметить, что значение температуры в 110°С на несколько градусов выше температуры плавления ПЭНП, однако ПЭНП не переходит в расплав, потому что, во-первых, при теплопередаче от термостата к манометрической установке происходят тепловые потери и реальная температура процесса чуть ниже, а во-вторых, смесевые композиции ПЭНП с ПЛА оказываются более термостойкими, чем чистый ПЭНП. Процесс протекает в твердой фазе.

Процессу окисления в вышеуказанных условиях подвергали предварительно охарактеризованные образцы смесей различного состава. Полиэтилен – хорошо известный синтетический полимер, а ПЛА – биодеградируемый и биосовместимый кристаллизующийся полимер, линейный полиэфир, получаемый из возобновляемых ресурсов, в частности из отходов сельскохозяйственного сырья, которое позволит полностью или частично заменить нефтяное сырье [9–12]. Изделия из ПЛА характеризуются высокой прочностью, прозрачностью и блеском. Из него получают пленку, волокно, упаковку для пищевых продуктов, его применяют в медицине [13–16].

Влияние различных факторов на структурные характеристики ПЛА, его биодеструкция, гидролитический распад изучены достаточно широко [17–20]. Данных по изучению процесса термоокисления ПЛА и смесевых композиций с ним очень мало, поэтому изучение кинетики твердофазных реакций в гетерофазных системах, содержащих ПЛА, представляется актуальной задачей.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения композиций были использованы ПЭНП марки 15803-020 (Россия), ПЛА марки 4032D производства компании Nature works (США), а также ПЭНП, подвергшийся старению при T = 90°C под воздействием кислорода воздуха в течение 250 ч (p = 750 Торр). Полимерные композиции получали путем предварительного смешения в смесителе Brabender при $T = (180 \pm 2)$ °C. Измельченный материал подвергали прессованию при 180°C с помощью ручного гидравлического пресса ПРГ-10 с электронным блоком для нагрева плит. Содержание ПЛА в смеси было следующим: 100, 70, 50, 30 мас.%.

Для оценки теплофизических характеристик полученных образцов, а также анализа смесевых композиций после термоокисления был использован метод дифференциальной сканирующей калориметрии (ДСК), а также был исследован процесс термоокисления образцов при разной температуре. Морфологию образцов изучали методом сканирующей электронной микроскопии (СЭМ).

Дифференциальная сканирующая калориметрия

Теплофизические характеристики определяли на приборе DSC 204 F1 Netzsch (Germany). Скорость сканирования составляла 8 град/мин, навеску варьировали в пределах 8–10 мг, калибровку осуществляли по индию с $T_{пл} = 156.6$ °C. Точность измерения *T* составляла 0.1 °C.

Величину степени кристалличности, χ_{кр}, рассчитывали по формуле

$$\chi_{\rm kp}\,(\%) = 100 \Delta H_{\rm nn} \big/ \Delta H_{\rm nn}^* \,,$$

где теплота плавления идеального кристалла ПЛА $\Delta H_{nn}^* = 93.1 \, \text{Дж/r} [21]$, в случае полиэтилена $\Delta H_{nn}^* = 293 \, \text{Дж/r} [22]$.

Кинетика поглощения кислорода

Кинетику поглощения кислорода изучали на манометрической установке с поглощением летучих продуктов твердым гидроксидом калия (КОН). Эксперимент проводили в следующем темпера-

ХИМИЧЕСКАЯ ФИЗИКА том 38 № 3 2019

турном интервале: выше температуры стеклования ПЛА (62–65°С) и не выше 110°С, когда ПЭНП не переходит полностью в расплав. Температуры в опытах были следующие: 80, 90 и 110°С, давление кислорода – 300 Торр. Интенсивность поглощения кислорода образцами фиксировалось с определенным временным интервалом.

Сканирующая электронная микроскопия

Морфологию пленок изучали методом СЭМ с использованием прибора HITACHI S-570 (Япония) на сколах, сделанных в среде жидкого азота. Микроскопию проводили при ускоряющем напряжении 20 кВ.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Как показано во многих работах, введение в полимерную матрицу второго высокомолекулярного компонента может неоднозначно отразиться на молекулярной структуре, свойствах материала и его стойкости к воздействию агрессивных сред [23–25]. Для оценки взаимного влияния полимеров в смеси был применен метод ДСК.

В табл. 1 представлены теплофизические характеристики исследуемых образцов. Из этой таблицы можно видеть, что температуры плавления полиэтилена и полилактида в смесях изменяются на 2–3 °С. При плавлении наблюдается два пика в областях 103-105, 163-165 °С, которые принадлежат ПЭНП и ПЛА, соответственно, что говорит о гетерофазности исследуемых смесей. В основном изменяется энтальпия плавления и, следовательно, степень кристалличности $\chi_{\kappa p}$ компонентов. Оба компонента смеси – кристаллизующиеся полимеры, что усложняет характер их взаимодействия на уровне макромолекул. Самые высокие значения степени кристалличности ПЛА – выше на 7-13% по сравнению с чистым ПЛА отмечаются в смесях содержащих 50 и 30 мас. % ПЛА, что можно объяснить возможным влиянием ПЭНП на процесс кристаллизации ПЛА. В свою очередь, величина χ_{кр} ПЭНП в смесях уменьшается на 5–9%, вероятно, из-за присутствия более жесткоцепного ПЛА.

На рис. 1 представлены микрофотографии СЭМ для образцов ПЛА : ПЭНП. Заметно, что морфология смесевых образцов значительно отличается от морфологии чистого ПЛА. На рис. 1*а* представлен чистый ПЛА с характерной для него структурой: гладкой поверхностью, без дыр и углублений. Смесевые композиции обладают другой морфологией. На микрофотографии образца, содержащего 30 мас.% ПЛА, отчетливо наблюдается наличие двух фаз, распределение которых близко к равномерному, а какие-либо явные дефекты отсутствуют. При содержании ПЛА 70 мас.%, возможно, межфазная адгезия улучшается (рис. 1*в*), при этом заметны области кристаллических струк-

ТЕРТЫШНАЯ и др.

ПЛА: ПЭНП, мас.%	<i>T</i> _{пл} , °С (ПЛА : ПЭНП)	ΔΗ, Дж/г (ПЛА : ПЭНП)	χ _{кр} , % (ПЛА : ПЭНП)
100:0	165 : -	42 :	45 :
70:30	163 : 105	37:36	39:12
50 : 50	164 : 104	54 : 57	58 : 19
30:70	164 : 104	49 : 46	52 : 16
0:100	-: 103	-:61	-:21
ПЛА : ПЭНП : ПЭНП _с , мас.%			
$30:60:10_{\rm c}$	165 : 104	47:40	50 : 14
$30:50:20_{\rm c}$	165 : 104	44:41	47:14
30:40:30 _c	165 : 104	41 : 47	45 : 16

Таблица 1. Теплофизические характеристики композиций ПЛА : ПЭНП

тур ПЛА размером 20–80 нм (рис. 1*г*). Скорее всего, содержащие 30 мас.% ПЛА образцы будут подвергаться процессу окисления быстрее, чем содержащие 70 мас.%, что будет проверено далее. В процессе исследования кинетики термического окисления полимеров на манометрических установках при 110 °С и давлении кислорода 300 Торр было выявлено, что ПЛА имеет низкую

Рис. 1. Микрофотографии СЭМ смесевых пленок ПЛА : ПЭНП, мас.%: *a* – 100 : 0 (увеличение 215×); *б* – 30 : 70 (увеличение 215×); *в* – 70 : 30 (увеличение 215×); *в* – 70 : 30 (увеличение 3300×).

Рис. 2. Кинетические кривые окисления композиций ПЛА : ПЭНП мас.%: *1* – 0 : 100, *2* – 30 : 70, *3* – 50 : 50, *4* – 70 : 30, *5* – 100 : 0, при температуре 110 °C и давлении кислорода 300 Торр.

степень поглощения кислорода по сравнению с чистым ПЭНП. Известно, что при протекании процесса окисления при температуре до 200 °С цепная реакция окисления почти всегда развивается по схеме

$$R^* + O_2 \rightarrow RO_2^*,$$

 $RO_2^* + RH \rightarrow ROOH + R^*.$

Разветвление цепей происходит при распаде гидроперекисей, чаще всего это не индивидуальные вещества, а фрагменты макромолекул, содержащие гидроперекисные группы наряду с другими группами, возникшими в полимере в результате его окисления: ROOH \rightarrow R* + *Неактивные продукты*.

Обрыв цепи происходит в результате рекомбинации или диспропорционирования радикалов R^* , RO_2^* и других и их реакций с примесями и добавками. Наряду с этим в окисляющемся полимере протекает большое число побочных реакций, различных для разных классов полимеров.

В нашем эксперименте (рис. 2) при добавлении к ПЭНП полилактида скорость окисления снижается. Это происходит по нескольким причинам. Во-первых, известно, что кристалличность полимеров оказывает влияние на процесс окисления [26]. Кристаллиты могут выступать в роли "ловушек" радикалов и тем самым снижать скорость термоокисления. У исследуемого ПЛА $\chi_{\rm kp} = 40\%$, что приблизительно в 2 раза больше, чем $\chi_{\rm kp}$ ПЭНП, поэтому фактор влияния кристалличности отрицать нельзя.

ХИМИЧЕСКАЯ ФИЗИКА том 38 № 3 2019

Во-вторых, если протекает процесс соокисления компонентов смеси, то схема процесса имеет вид

$$R_1^+ + O_2 \rightarrow R_1O_2^-,$$

$$R_2^* + O_2 \rightarrow R_2O_2^*,$$

$$R_1O_2^* + R_1H \rightarrow R_1OOH + R_1^*,$$

$$R_2O_2^* + R_2H \rightarrow R_2OOH + R_2^*,$$

а также имеют место перекрестные реакции продолжения цепи:

$$R_1O_2^* + R_2H \rightarrow R_1OOH + R_2^*,$$

$$R_2O_2^* + R_1H \rightarrow R_2OOH + R_1^*.$$

Аналогичным образом перекрестные реакции участвуют в разветвлении и обрыве цепи. Роль таких реакций заключается в том, что при введении одного компонента в другой увеличивается или уменьшается скорость цепной реакции в смеси по сравнению со скоростью каждого компонента. Однозначно сказать нельзя, какой фактор доминирует, но зависимость скорости окисления смесевых композиций ПЭНП : ПЛА от их состава очевидна.

До сих пор существует несколько подходов к описанию кинетики процесса окисления гетерогенных гетерофазных полимерных смесей. Одни исследователи считают, что окисление в полимерных смесях локализовано в каждом из компонентов и они окисляются независимо друг от друга [27]. Согласно мнению других, окисление протекает по закону сопряженного процесса при наличии перекрестных реакций компонентов

Рис. 3. Зависимость скорости окисления смесей ПЛА : ПЭНП от содержания ПЭНП в смеси при различных температурах (1 - 80 °C, 2 - 90 °C, 3 - 110 °C) и давлении кислорода 300 Торр.

Рис. 4. Кинетические кривые окисления композиций ПЛА : ПЭНП при 110 °С (1 - ПЛА : ПЭНП : ПЭНП_с 30 : 40 : 30, 2 - ПЛА : ПЭНП 30 : 70), 90 °С (3 - ПЛА : ПЭНП : ПЭНП_с 30 : 40 : 30, 4 - ПЛА : ПЭНП 30 : 70), 80 °С (5 - ПЛА : ПЭНП : : : ПЭНП_с 30 : 40 : 30, 4 - ПЛА : ПЭНП 30 : 70), 80 °С (5 - ПЛA : ПЭНП : : : ПЭНП_с 30 : 40 : 30, 4 - ПЛA : : : : ПЭНП 30 : 70).

смеси [28]. Существуют работы, в которых показано, что один компонент подвергается деструкции, распадается на низкомолекулярные радикалы и тем самым инициирует процесс окисления второго компонента полимерной композиции [29]. Несмотря на различные подходы, авторы отмечают, что структура и природа компонентов смеси играют огромную роль в кинетике процесса термоокисления.

Чтобы изучить влияние температуры на данный процесс, термоокисление проводили при 80, 90 и 110 °С. На рис. 3 представлена зависимость скорости поглощения кислорода от состава смеси при различных температурах, которую определяли по наклону кинетических кривых окисления dNO_2/dt на начальных участках, равных 10 ч. Согласно результатам эксперимента скорость поглощения кислорода увеличивается с повышением температуры и содержания ПЭНП в смеси.

Для оценки влияния структуры компонентов смеси на кинетику процесса окисления к композициям состава ПЭНП : ПЛА 70 : 30 был добавлен

84

Рис. 5. Термограммы смесей ПЛА : ПЭНП (мас.%) до и после термоокисления при 110 °С в течение 25 ч: a - 100 : 0; b - 70 : 30; a - 50 : 50; c - 30 : 70, $d - 30 : 40 : 30_c$; 1 - исходный образец, 2 - после окисления при вышеуказанных условиях.

третий компонент — подвергшийся старению ПЭНП_с как аналог вторсырья, теплофизические характеристики которого приведены в табл. 1.

Как видно из этой таблицы, наличие $\Pi \ni H\Pi_c$ практически не влияет на T_{nn} полилактида и полиэтилена. При увеличении содержания $\Pi \ni H\Pi_c$

Таблица 2. Время поглощения образцами 0.2 моль/кг кислорода при различных температурах

ПЛА : ПЭНП : ПЭНП _с , мас. % -	Время поглощения		
	80 °C	90 °C	110 °C
30:70:0	175	98	25.5
30:40:30	144	78	13.3

ХИМИЧЕСКАЯ ФИЗИКА том 38 № 3 2019

Рис. 5. Окончание.

степень кристалличности полиэтилена снижается на 5–7% относительно чистого ПЭНП. Величина $\chi_{\rm кp}$ ПЛА несколько увеличивается при наличии 10 мас.% состаренной фракции полиэтилена, которая, возможно, выступает в роли пластификатора, но при добавлении 20 или 30 мас.% ПЭНП_с данного эффекта не наблюдается и $\chi_{\rm кp}$ стремится к величине для чистого ПЛА. Теплофизические характеристики подтверждают тот факт, что введение в матрицу до 30 мас.% вторичного полимера не оказывает отрицательного влияния на структуру полимерного материала.

Для вышеуказанных смесей был проведен эксперимент по изучению кинетики поглощения кислорода при различных температурах. Из рис. 4 видно, что ПЭНП_с значительно ускоряет начало реакции окисления. Такая же зависимость сохраняется при проведении опыта при температурах 90 и 80 °С. Процесс окисления протекает быстрее по мере повышения температуры (табл. 2). Так, например, для поглощения 0.2 моль/кг кислорода смесевой композицией без ПЭНП_с понадобилось 25.5 ч при температуре 110 °С и почти в 7 раз больше времени при 80 °С. Подобная тенденция наблюдается для образца с аналогом вторичного полимера (соотношение 30 : 40 : 30). Из табл. 2 видно, что времена поглощения 0.2 моль/кг кислорода этим образцом при 80 и 110 °С различаются в 10 раз.

Чтобы понять, насколько термоокисление влияет на температуры фазовых переходов в исследуемых смесях, методом ДСК были получены термограммы плавления до и после процесса термоокисления при 110 °С в течение 25 ч (рис. 5). Из рис. 5а заметно, что за это время температура стеклования (*T*_c) чистого ПЛА повышается с 58 °C до 65 °C, пик кристаллизации исчезает, а $T_{\rm nn}$ увеличивается, но не так значительно, как $T_{\rm c}$, а на 3 °С. Для образца состава 50: 50 наблюдается тенденция, подобная чистому ПЛА – смещение пика стеклования и плавления ПЛА в область более высоких температур. Что касается ПЭНП, то его T_{пл} практически не изменяется, однако изменение формы пика и смещение начала плавления в область более низких температур по сравнению с исходным образцом указывают на возможное появление дефектов в кристаллитах и изменения в структуре, т.е. на протекание окислительного процесса. Для образцов, содержащих 30 мас.% ПЛА с ПЭНП_с и без него, смещения температур на термограммах ДСК аналогичны образцу состава 50 : 50.

выводы

На основании проведенных экспериментов можно заключить, что процесс поглощения кислорода зависит от состава смеси, т.е. от содержания в ней компонента с высокой степенью кристалличности – ПЛА. Добавление ПЭНП_с – аналога вторичного полимера к композициям, содержащим 30 мас.% ПЛА, ускоряет термоокисление смесей при всех температурах опыта.

При T = 80 и 90 °С образцы с высоким содержанием ПЛА, 50 мас.% и более, оказываются достаточно стойкими к действию кислорода, а свойства таких смесей определяются фазой ПЛА. При более высокой температуре (110 °С) после 25 ч окисления, согласно результатам ДСК, у ПЛА происходит совершенствование кристаллической структуры, в то время как фаза ПЭНП окисляется. Таким образом, под воздействием температуры сначала происходит достройка надмолекулярной структуры ПЛА, а затем — его участие в процессе окисления.

Возможно, при более высоких температурах: 130–150 °C, ПЛА подобно другому биоразлагаемому полиэфиру поли-3-гидроксибутирату будет активнее поглощать кислород и распадаться на низкомолекулярные радикалы, способные инициировать процесс окисления ПЭНП, как в композициях ПЭНП: ПГБ [30]. Однако данное предположение требует большой экспериментальной работы и будет исследовано в дальнейшем.

Работа выполнена с использованием приборов Центра коллективного пользования (ЦКП ИБХФ РАН) "Новые материалы и технологии".

СПИСОК ЛИТЕРАТУРЫ

- 1. Эмануэль Н.М., Бучаченко А.Л. Химическая физика старения и стабилизации полимеров. М.: Наука, 1988.
- 2. Денисов Е.Т. Окисление и деструкция карбоцепных полимеров. Л.: Химия, 1990.
- 3. Шибряева Л.С., Тертышная Ю.В., Ольхов А.А., Сидорова О.Г., Иорданский А.Л. // Высокомолекуляр. соединения. А. 2003. Т. 45. № 5. С. 785.
- 4. *Тертышная Ю.В., Шибряева Л.С., Попов А.А. //* Хим. физика. 2012. Т. 31. № 1. С. 43.
- Чапурина А.В., Недорезова П.М., Крашенинников В.Г. и др. // Высокомолекуляр. соединения. Б. 2016. Т. 58. № 5. С. 355.

- 6. Ol'khov A.A., Kucherenko E.L., Zhul'kina A.L. et al. // Intern. Polym. Sci. and Technol. 2017. V. 44. № 5. P. 11.
- Тертышная Ю.В., Ольхов А.А., Шибряева Л.С. // Хим. физика. 2015. Т. 34. № 5. С. 81.
- Монахова Т.В., Недорезова П.М., Польщиков С.В., Попов А.А., Марголин А.Л. // Хим. физика. 2014. Т. 33. № 11. С. 74.
- Cam D., Hyon S.-H., Ikada Y. // Biomaterials. 1995. V. 16. P. 833.
- Tsuji H., Suzuyoshi K. // Polym. Degrad. Stab. 2002. V. 75. P. 347.
- 11. Подзорова М.В., Тертышная Ю.В., Попов А.А. // Хим. физика. 2014. Т. 33. № 9. С. 57.
- 12. Garlotta D. // J. Polym. Environ. 2002. V.9. P. 63.
- 13. Young Y., Lee S.-W., Lee S.-J., Park W.-H. // Mater. Lett. 2006. V. 60. P. 1331.
- Obarzanek-Fojt M., Elbs-Glatz Yv., Lizundia E., Diener L., Sarasua J.R., Bruinink A. // Nanomedicine: Nanotechnol., Biology and Medicine. 2014. V. 10. Issue 5. P. 1041.
- 15. Coskun S., Korkusuz F., Hasirci V. // J. Biomat. Sci. Polym. 2005. V. 16. P. 1485.
- Lopes M.S., Jardini A.L., Filho M.R. // Procedia Eng. 2012. V. 42. P. 1402.
- 17. *Tsuji H., Ishida T. //* J. Appl. Polym. Sci. 2003. V. 87. P.1628.
- 18. *Cartier L., Okihara T., Ikada Y. et al.* // Polymer. 2000. V. 41. P. 8909.
- 19. Martin O., Avérous L. // Polymer. 2001. V. 42. P. 6209.
- 20. Подзорова М.В., Тертышная Ю.В., Попов А.А. // Все материалы. Энциклопед. справочник. 2016. № 8. С. 9.
- Lim L.-T., Auras R., Rubino M. // Prog. Polym. Sci. 2008. V.33. P. 820.
- 22. Подзорова М.В., Тертышная Ю.В., Монахова Т.В., Попов А.А. // Хим. физика. 2016. Т. 35. № 9. С. 64.
- 23. Jiang Ni, Abe H. // Polymer. 2015. V. 60. P. 260.
- 24. Arrieta M.P., Lopez J., Hernandez A., Rayon E. // Europ. Polym. J. 2014. V. 50. P. 255.
- 25. Тертышная Ю.В., Подзорова М.В. // ЖПХ. 2018. Т. 91. № 3. С. 377.
- Kpupa I., Luyt A.S. // Polym. Degrad. Stab. 2000. V. 70. P. 111.
- 27. Горелик Б.А., Соколова Л.А., Григорьев А.Г., Семененко Э.И., Костюченко Л.Н. // Высокомолекуляр. соединения. Б. 1990. Т. 32. № 5. С. 342.
- 28. Шибряева Л.С., Попов А.А. // Там же. А. 1994. Т. 36. № 8. С. 1362.
- Шибряева Л.С., Попов А.А., Заиков Г.Е. // ЖПХ. 2002. Т. 75. № 4. С. 633.
- 30. *Тертышная Ю.В., Шибряева Л.С.* // Высокомолекуляр. соединения. А. 2004. Т. 46. № 7. С. 1205.