ГОРЕНИЕ, ВЗРЫВ И УДАРНЫЕ ВОЛНЫ

УДК 577:541.124

ТЕРМИЧЕСКИЕ ПРЕВРАЩЕНИЯ 2,4-БИС(N,N-ДИМЕТИЛАМИНО)-6-ТРИНИТРОМЕТИЛ-1,3,5-ТРИАЗИНА

© 2019 г. В. В. Захаров¹, Н. В. Чуканов^{1*}, Г. В. Шилов¹, Г. В. Малков¹, А. В. Шастин¹, Б. Л. Корсунский^{1**}

¹Институт проблем химической физики Российской академии наук, Черноголовка, Московская обл., Россия

*E-mail: chukanov@icp.ac.ru **E-mail: kors@polymer.chph.ras.ru Поступила в редакцию 31.08.2018; после доработки 05.09.2018; принята в печать 20.09.2018

С целью прогнозирования термической стабильности энергоемких производных триазина, в том числе совместимости тринитрометильных заместителей с диалкиламиногруппами, термические превращения 2,4-бис(N,N-диметиламино)-6-тринитрометил-1,3,5-триазина (I) изучены в температурном интервале 170–623 К с применением методов дифференциального термического анализа, масс-спектрометрии, монокристальной и порошковой рентгеновской дифрактометрии. Соединение I характеризуется сильной анизотропией температурного расширения и при 365 К претерпевает полиморфное превращение α -I $\rightarrow \beta$ -I, которому предшествует скачкообразное падение плотности. Полиморфное превращение происходит с разрушением кристаллов и сопровождается частичным механохимическим разложения I. Плавление I при температуре около 396 К приводит к резкому ускорению разложения. Измерены тепловые эффекты полиморфного превращения и разложения I. По данным дифференциальной сканирующей калориметрии проведена оценка активационных параметров разложения I в расплаве. Определен состав образующихся газообразных продуктов и предложен механизм разложения I, согласно которому в лимитирующей стадии процесса происходит окисление диметиламиногруппой.

Ключевые слова: энергоемкие вещества, 2,4-бис(N,N-диметиламино)-6-тринитрометил-1,3,5-триазин, термическое разложение, полиморфные превращения, дифференциально-сканирующая калориметрия, термогравиметрия, масс-спектрометрия, рентгеновская дифрактометрия.

DOI: 10.1134/S0207401X19040137

введение

Тринитрометильные производные полиазотистых гетероциклических соединений являются потенциальными компонентами новых мошных энергоемких композиций [1–6]. В последнее время был опубликован ряд работ по исследованию кинетики и механизмов термического разложения тринитрометильных производных триазина [7-10]. Однако имеющиеся данные о термической стабильности таких соединений и совместимости тринитрометильной группы с другими функциональными группами недостаточны. С целью восполнения этого пробела был синтезирован 2.4-бис(N.N-диметиламино)-6-тринитрометил-1,3,5-триазин (I) — модельное соединение, содержащее, наряду с тринитрометильной группой, диметиламиногруппы.

Предварительные исследования показали, что при температурах ниже точки плавления разложение I происходит с очень низкими скоростями, а, плавление сопровождается резким возрастанием скорости разложения, что, с одной стороны, делает практически невозможным проведение корректных изотермических кинетических измерений в расплаве, а с другой стороны, свидетельствует о плохой совместимости тринитрометильной группы с диметиламиногруппой, с точки зрения термической стабильности. Однако при изучении поведения соединения I при температурах ниже точки плавления нами был обнаружен ряд аномальных явлений. Настоящая работа посвящена исследованию термических превращений I.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Соединение I синтезировано нуклеофильным замещением тринитрометильной группы в 2-диметиламино-4,6-бис(тринитрометил)-1,3,5-триазине под действием диметиламина по известной методике [11]. Температуры плавления, ЯМР ¹Н спектры I соответствовали литературным данным [11]. Чистота I подтверждена данными элементного анализа. Найдено (мас.%): С 29.03; Н 3.78; N 33.52; $C_7H_{11}N_7O_6$. Вычислено (мас.%): С 29.07; Н 3.83; N 33.90.

Термическое разложение I изучено в неизотермическом режиме методами дифференциально-сканирующей калометрии (ДСК) и термогравиметрии (ТГ) с применением синхронного термического анализатора NETZSCH STA 409С Luxx (Германия), сопряженного с квадрупольным масс-спектрометром OMS 403C Aeolos (диапазон температур 298-623 К, продувка аргоном со скоростью 40 мл/мин, скорость нагрева от 1 до 10 К/мин, масса навесок 3.2-7.3 мг). Интегрирование эндо- и экзотермических пиков на кривых ДСК и тем самым определение величин тепловых эффектов проводилось с использованием программного обеспечения NETZSCH Proteus® для термического анализа, лицензированного и установленного на синхронном термическом анализаторе. Масс-спектрометрический анализ газообразных продуктов термического разложения I проводился при энергии ионизирующих электронов, равной 70 эВ.

ДСК-эксперименты в режиме термоциклирования выполнены на дифференциальном сканирующем калориметре DSC821e (Mettler Toledo, Швейцария) для образца с массой 9 мг в диапазоне температур от 60 до 105°С со скоростью нагревания и охлаждения 10°С/мин; промежуточная выдержка при 60°С в течение 3 мин; частота фиксации данных составляла 1 Гц. Для постановки экспериментов использовались стандартные алюминиевые тигли емкостью 40 мкл (№ 00027331, Mettler Toledo, Швейцария), вещество предварительно измельчалось в агатовой ступке. Первичную обработку термограмм проводили с помощью программного обеспечения STAR 9.10 (Mettler Toledo, Швейцария).

Исследования поликристаллических образцов 2,4-бис(N,N-диметиламино)-6-тринитрометил-1,3,5-триазина (I) методом порошковой рентгеновской дифрактометрии выполнены с использованием дифрактометра ARL X'TRA (THERMO FISHER SCIENTIFIC, Швейцария). Геометрия

съемки θ - θ , Cu(K_{α})-излучение, твердотельный детектор, шаг сканирования 0.02°, время измерения в точке 1 с. Исследования проводились при температурах 298, 358 и 378 К. Скорость изменения температуры составляла 5 К/мин. Образцы для дифрактометрических исследований готовили в виде смесей порошка соединения I с небольшим количеством силиконового масла. Монокристальные дифрактометрические исследования выполнены на дифрактометре Agilent Xcalibur с детектором Eos CCD в температурном интервале 170–350 К.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Изменения, происходящие в соединении I при варьировании температуры от 170 до 378 К, изучены с применением дифрактометрических методов. Данные, полученные на монокристалле, свидетельствуют об отсутствии полиморфных переходов при температурах ниже 350 К. Дифрактометрические данные соответствуют моноклинной α-модификации I. Вплоть до температуры в 350 К кристалл сохраняет свою целостность, однако при более высоких температурах происходит его разрушение. В табл. 1 и на рис. 1, 2 приведены температурные зависимости параметров элементарной ячейки α-I, определенные из данных монокристальных исследований. Как видно из этих данных, температурное расширение α-I характеризуется сильной анизотропией, причем параметр b практически не изменяется с ростом температуры. Еще одной характерной особенностью α-І является резкое возрастание параметра с и менее резкий скачок параметра а при 350 К (рис. 1, 2). Возможно, резкое увеличение объема элементарной ячейки связано с разгрузкой внутренних напряжений в кристалле. С ростом температуры плотность кристалла уменьшается, но может не достигать равновесного значения из-за внутренних напряжений, создаваемых структурными дефектами. Тем не менее, при достаточно высокой температуре (особенно накануне фазового превращения) происходит мобилизация дефектов, что приводит к быстрому достижению равновесной при данной температуре плотности.

На графике температурной зависимости параметра *с* в области около 270 К наблюдается излом, свидетельствующий о возможном фазовом переходе второго рода. Можно предположить, что этот переход связан с изменением пространственной группы кристалла при сохранении моноклинной симметрии и параметров элементарной ячейки.

Анализ порошковых дифрактометрических данных показал, что при температуре 358 K большая часть рефлексов α -I сохраняется, но происходит существенное перераспределение их

интенсивностей (рис. 3), что может являться следствием разгрузки микронапряжений в кристаллах (см. выше) и/или текстурирования поликристаллического образца. При 378 К рефлексы α -I не наблюдаются, и порошковая рентгенограмма соответствует новой, высокотемпературной модификации I (β -I) (см. рис. 4 и табл. 2). Полиморфный переход α -I $\rightarrow \beta$ -I происходит с резким увеличением объема и сопровождается выбросом части вещества из кюветы. Процессы, протекающие в кристалле при нагревании до 378 К, носят обратимый характер: после охлаждения до комнатной температуры порошковая дифрактограмма α -I практически полностью восстанавливается в течение 1 ч.

Термические превращения соединения I в неизотермическом режиме были изучены с помощью синхронного ДСК-ТГ анализа. На рис. 5 показаны кривые ДСК и ТГ анализа, полученные при плавлении и термическом разложении I при скорости нагревания 1.0 К/мин; на рис. 6 – кривые ДСК в диапазоне температур 298–623 К, полученные при различных скоростях нагревания.

На кривых ДСК в диапазоне температур 366– 371 К наблюдается эндотермический пик ($-2.2 \pm \pm 0.2 \text{ кДж/моль}$), который соответствует полиморфному превращению α -I $\rightarrow \beta$ -I. В зависимости от скорости нагревания образцов I в диапазоне температур 396–409 К на кривых ДСК наблюдается также эндотермический пик, вызванный плавлением вещества, быстро переходящий в экзотермический вследствие высокой скорости термического разложения I в расплаве. Как видно из рис. 6, при увеличении скорости сканирования по температуре пики, соответствующие плавлению и максимальной скорости тепловыделения, смещаются в область более высоких температур.

Рис. 1. Зависимость параметра *а* элементарной ячейки α -**I** от температуры *T*.

ХИМИЧЕСКАЯ ФИЗИКА том 38 № 4 2019

Таблица 1. Температурные зависимости параметров элементарной ячейки α-I (по данным монокристальной дифрактометрии)

<i>Т</i> , К	<i>a</i> , Å	b, Å	<i>c</i> , Å	β, °	<i>V</i> , Å ³
170	8.846	12.625	13.303	108.57	1408.39
200	8.884	12.630	13.317	108.40	1417.89
230	8.926	12.629	13.331	108.22	1427.39
250	8.954	12.626	13.344	108.09	1434.08
270	8.982	12.624	13.359	107.93	1441.20
290	9.009	12.623	13.376	107.72	1449.03
300	9.024	12.624	13.390	107.58	1453.79
310	9.032	12.622	13.400	107.44	1457.37
320	9.048	12.613	13.417	107.36	1461.47
330	9.062	12.612	13.420	107.26	1464.75
340	9.075	12.610	13.435	107.14	1469.16
350	9.099	12.627	13.492	107.01	1482.45

Обратимость полиморфного превращения α -I $\rightarrow \beta$ -I, установленная на основании изучения порошковых дифрактограмм, была подтверждена методом ДСК при нагревании соединения I до 378 К и последующем его охлаждении. Кривые ДСК для полиморфных переходов α -I $\leftrightarrow \beta$ -I в режиме термоциклирования приведены на рис. 7, 8. В ходе повторяющихся циклов нагрева—охлаждения изменяются не только формы кривых ДСК, но и положения пиков и величины тепловых эффектов (рис. 9, 10).

Ступенчатый ход зависимостей на рис. 9 обусловлен дискретным шагом по температуре, равным 0.17 К. Важно отметить тот факт, что тепловые эффекты прямого и обратного полиморфных переходов уменьшаются с ростом номера цикла (за исключением второго цикла), причем в каж-

c, Å 13.50 13.45 13.40 13.35 13.30 150 200 250 300 7, K 350

Рис. 2. Зависимость параметра *с* элементарной ячейки α-**I** от температуры *T*.

Рис. 3. Порошковые дифрактограммы I, полученные при 298 К (1) и 358 К (2).

Рис. 4. Порошковые дифрактограммы I, полученные при 298 К (1) и 378 К (2).

дом цикле измеряемая абсолютная величина эндотермического эффекта при прямом переходе всегда ниже величины экзотермического эффекта при обратном переходе. Наиболее вероятное объяснение этих фактов заключается в том, что при прямом фазовом переходе, сопровождающемся увеличением объема, параллельно с процессом α -I $\rightarrow \beta$ -I происходит частичное разложение соединения I, имеющее механохимическую природу. Ранее мы уже сталкивались с подобным явлением при изучении полиморфного перехода $\varepsilon \rightarrow \gamma$ в кристаллах 2,4,6,8,10,12-гексанитро-2,4,6,8,10,12-гексаазаизовюрцитана [12]. Аномально высокие величины тепловых эффектов в первом цикле, скорее всего, обусловлены разложением термически нестабильной микропримеси, содержание которой в соединении I может составлять десятые доли процента.

Теплота разложения I в исследованном диапазоне температур 298—623 К найдена равной (139.1 \pm 13.5) кДж/моль. Конечная потеря массы вещества в изученных условиях достигает 77%.

Для определения кинетических параметров термического разложения I было использовано уравнение Киссинджера (1) [13]:

.

$$\ln\left(\frac{V}{T_{max}^2}\right) = -\frac{E}{RT_{max}} + \ln\left(\frac{AR}{E}\right),\tag{1}$$

где *v* – скорость нагревания образца, а T_{max} – значения температур, при которых скорости тепловыделения имеют максимальное значение при различных скоростях нагрева образцов. В результате получены следующие значения *v* (К/мин)/ T_{max} (К): 1.0/404.0, 1.0/404.1, 2.0/410.7, 5.0/423.7, 10.0/434.5 (при скорости нагревания 1.0 К/мин было проведено два ДСК исследования). Величины энергии активации и предэкспоненциального множителя термического разложения соединения I, определенные из уравнения (1), равны соответственно (102.0 ± 4.1) кДж/моль и 10^(7.3 ± 0.6) с⁻¹ (*r* = 0.9953).

При масс-спектрометрическом изучении газообразных продуктов разложения **I**, проведенном синхронно с исследованием тепловых эффектов, были зафиксированы пики при m/e = 15 (CH₃⁺), 18 (H₂O⁺), 30 (NO⁺), 31 (OCH₃⁺), 44 (N₂O⁺), 45 (HN₂O⁺) и 46 (NO₂⁺), что соответствует образованию метил- и/или метоксисодержащего летучего соединения, NO, N₂O, H₂O и NO₂ в качестве основных газообразных продуктов термического разложения **I**. Следует отметить, что максимальные значения всех этих пиков были зарегистрированы при одном и том же значении температуры (404.1 K), которое совпадало с температурой, при которой скорость тепловыделения максимальна при той же скорости нагревания.

Кинетика термического разложения соединений, содержащих тринитрометильную группу, изучена очень подробно [14–16]. Характерной чертой этой реакции являются аномально высокие значения предэкспоненциального фактора. В то время как большинство мономолекулярных реакций характеризуется предэкспоненциальными множителями $10^{13}-10^{14}$ с⁻¹, тринитрометильные соединения вследствие высокой энтропии активации обычно распадаются с предэкспоненциальными факторами, находящимися в диапазоне $10^{15}-10^{17}$ с⁻¹. Приведенная выше величина $10^{7.3}$ с⁻¹ явно аномально низкая. Можно предположить,

Таблица 2. Порошковые рентгенографические данные для α-I и β-I

298 K (α-I)			378 K (β-I)		
<i>I</i> , %	d, Å	hkl	<i>I</i> , %	d, Å	
14	8.927	011	4	8.125	
43	8.363	-101	8	7.965	
100	7.075	110	8	7.762	
91	6.276	020	85	7.087	
63	5.633	111	46	6.916	
56	5.029	-121	10	6.773	
37	4.471	-022	100	6.146	
32	4.362	-122	10	5.933	
41	4.233	-211	5	5.601	
11	4.130	-113	48	4.876	
97	4.026	013	52	4.551	
55	3.982	031	8	4.329	
32	3.663	-221	92	4.235	
63	3.546	220	53	4.100	
86	3.519	023	47	3.996	
85	3.492	131	18	3.811	
9	3.302	113	16	3.642	
29	3.217	221	80	3.587	
10	3.186	212	83	3.560	
23	3.068	-231	39	3.363	
30	3.011	033	37	3.326	
23	2.951	-232	16	3.006	
8	2.906	024	12	2.864	
10	2.791	-303	5	2.786	
6	2.650	-115	7	2.673	
15	2.586	232	7	2.613	
7	2.538	223			
24	2.508	-215			
13	2.425	-332			
46	2.328	214			

Примечание. Межплоскостные расстояния характеристических рефлексов α-**I** и β-**I** выделены жирным шрифтом.

что эта величина является эффективной и описывает не элементарную (одностадийную), а сложную реакцию.

Мы полагаем, что сложность реакции обусловлена присутствием в молекуле субстрата диметиламиногрупп. Действительно, если в молекуле соединения I аминогруппы заменить на метоксильные, то разложение будет происходить так же, как и для типичных тринитрометильных соединений, а именно в соответствии с кинетиче-

Рис. 5. Кривые ДСК и ТГ анализа, полученные при скорости нагревания I 1.0 К/мин.

Рис. 6. Кривые ДСК, полученные при различных скоростях нагревания I (К/мин): 1 (1), 2 (2), 5 (3), и 10 (4).

ским уравнением первого порядка и предэкспоненциальным фактором, равным $10^{15.4}$ с⁻¹ [16]. По-видимому, в исследованной реакции диме-

тиламиногруппа не просто выполняет роль заместителя, проявляющего индуктивный, резонансный или какой-либо еще эффект. Скорее всего,

Рис. 7. Кривые ДСК для полиморфного перехода α -I $\rightarrow \beta$ -I (цифры при кривых обозначают номер цикла).

Рис. 8. Кривые ДСК для полиморфного перехода β -I $\rightarrow \alpha$ -I (цифры при кривых обозначают номер цикла).

она принимает непосредственное участие в одной из лимитирующих стадий процесса. Будучи, как все амины, восстановителем, она может окисляться нитрогруппой, входящей в состав тринитрометильного заместителя. Об этом, в частности, свидетельствует приведенный выше состав газообразных продуктов реакции: продукты, содержащие метильную группу, воду и окислы азота, выделяются практически синхронно. В рамках обсуждаемого механизма становится понятным и резкое ускоре-

ХИМИЧЕСКАЯ ФИЗИКА том 38 № 4 2019

Рис. 9. Зависимости положения пика на кривой ДСК от номера цикла для полиморфных переходов α -**I** $\rightarrow \beta$ -**I** (*1*) и β -**I** $\rightarrow \alpha$ -**I** (*2*).

Рис. 10. Зависимости теплового потока от номера цикла для полиморфных переходов α -**I** \rightarrow β -**I** (*1*) и β -**I** $\rightarrow \alpha$ -**I** (*2*).

ние реакции при переходе от твердой фазы к расплаву. Для эффективного окисления диметиламиногрупп нитрогруппами необходима должная взаимная ориентация этих групп. Такая ориентация затруднена в кристалле и значительно легче достигается в жидкости.

выводы

Полученные результаты свидетельствуют о плохой кинетической совместимости тринитрометильных производных триазинов с диалкиламиногруппой. Обнаружен эффект аномального роста коэффициентов температурного уширения, предшествующий полиморфному переходу в I и приводящий к дополнительному снижению термической стабильности вследствие возрастания свободного объема в кристалле.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Нечипоренко Г.Н., Лемперт Д.Б., Согласнова С.И. //* Хим. физика. 2005. Т. 24. № 3. С. 74.
- Shastin A.V., Godovikova T.I., Golova S.P. et al. // Mendeleev Commun. 1995. V. 5. P. 17.
- 3. *Dharavath S., Zhang J., Imler G.H. et al.* // J. Mater. Chem. A. 2017. № 10; doi: 10.1039/C7TA00730B
- 4. Yuangang Xu, Cheng Shen, Qiuhan Lin et al. // J. Mater. Chem. A. 2016. V. 4. P. 17791.
- 5. *Haiges R., Christe K.O.* // Inorg. Chemistry. 2013. V. 52. № 12. P. 7249–7260.
- Wang Yuan, Qi Cai, Song Jian-Wei et al. // J. Mol. Model. 2013. V. 19. P. 1079–1087.
- Неделько В.В., Шастин А.В., Захаров В.В. // Матер. VII Всеросс. конф. "Энергетические конденсированные системы". Черноголовка Дзержинский, 17–19 декабря 2014 г. Черноголовка: ИПХФ РАН, 2014. С. 31.
- 8. *Неделько В.В., Шастин А.В., Конькова Т.С. и др.* // Горение и взрыв. 2015. Т. 8. № 2. С. 160.
- 9. Неделько В.В., Захаров В.В., Корсунский Б.Л. и др. // Хим. физика. 2015. Т. 34. № 12. С. 39.
- Kon'kova T.S., Miroshnichenko E.A., Nedel'ko V.V. et al. // Abstr. 18th Seminar on New Trends in Research of Energ. Mater. Pardubice, Czech Republic. 2015. P. 638.
- 11. Бахарев В.В., Гидаспов А.А., Якунина Н.Г., Булычев Ю.Н. // Хим.-фарм. журн. 2008. Т. 45. № 5. С. 11.
- 12. Chukanov N.V., Zakharov V.V., Korsounskii B.L. et al. // Cent. Eur. J. Energ. Mater. 2016. V. 13. № 2. P. 483.
- 13. *Kissinger H.E.* // Anal. Chem. 1957. V. 29. № 11. P. 1702.
- Назин Г.М., Манелис Г.Б. // Успехи химии. 1994. Т. 63. № 4. С. 327.
- 15. Назин Г.М. // Ibid. 1972. Т. 41. № 9. С. 1537.
- 16. *Неделько В.В., Захаров В.В., Корсунский Б.Л. и др. //* Хим. физика. 2015. Т. 34. № 12. С. 39.

ХИМИЧЕСКАЯ ФИЗИКА том 38 № 4 2019