УЛК 577.332

МОДЕЛИРОВАНИЕ ФОТОФИЗИЧЕСКИХ СВОЙСТВ КОМПОНЕНТОВ FRET-ПАР НА ОСНОВЕ ФЛАВИНСОДЕРЖАЩИХ ФЛУОРЕСЦЕНТНЫХ БЕЛКОВ И ИХ АНАЛОГОВ

© 2019 г. Ю. И. Метелешко¹, А. В. Немухин^{1,2}, М. Г. Хренова^{1,3*}

¹Московский государственный университет им. М.В. Ломоносова, Москва, Россия ²Институт биохимической физики им. Н.М. Эмануэля Российской академии наук, Москва, Россия ³Институт биохимии им. А.Н. Баха при Федеральном исследовательском центре "Фундаментальные основы биотехнологии" Российской академии наук, Москва, Россия

> *E-mail: khrenova.maria@gmail.com Поступила в редакцию 19.11.2018; после доработки 25.12.2018; принята в печать 21.01.2019

Для флуоресцентных белков на основе iLOV с полосами поглощения и флуоресценции, смещенными в длинноволновую область, методами молекулярного моделирования определены фотофизические свойства, необходимые для рационального дизайна FRET-пар.

Ключевые слова: белок iLOV, FRET-пары, флавин.

DOI: 10.1134/S0207401X19060074

ВВЕДЕНИЕ

Флуоресцентные белки на основе флавина становятся все более популярными маркерами для молекулярной биологии [1], а также являются перспективными объектами для использования в оптогенетике [2] и для дизайна FRET-пар (FRET — фёрстеровский резонансно-индуктивный перенос энергии). Они получены из LOV2-домена белка фототропина 2 растения *А. thaliana* введением специфической мутации C450A и последующим случайным мутагенезом [3, 4]. В результате были достигнуты улучшенные значения квантового выхода и фотостабильности. В частности, одним из наиболее перспективных вариантов оказался белок iLOV [3].

Известно, что все белки семейства LOV имеет близкие максимумы полос поглощения (около 450 нм) и флуоресценции (около 495 нм), обусловленными их хромофором — флавинмононуклеотидом. Эти значения находятся далеко от окна прозрачности (650—900 нм), в котором свет проникает через ткани млекопитающих, что затрудняет использование этих белков в живых организмах. Также эти белки невозможно использовать в многоцветной визуализации, для которой необходимо, чтобы максимумы полос флуоресценции были разнесены не менее чем на 50—60 нм. Поэтому расширение цветовой палитры и разработка новых вариантов флуоресцентных белков на основе флавина со спектрами флуоресценции, смещен-

ными в красную область, являются актуальными задачами.

В наших предыдущих работах [5-7] методы молекулярного моделирования использованы для исследования белковых систем с флавином и его производными, а также для систем с дополнительными точечными мутациями аминокислотных остатков в хромофорсодержащей области белка. В результате предложены варианты белка iLOV со смещенными в более длинноволновую область спектра полосами поглощения и флуоресценции. Для мутантных форм с флавинмонуклеотидом в качестве хромофора смещения рассчитанных энергий вертикальных переходов $S_{0,max} - S_1$ (поглощение) (см. табл. 2 и 3 в [5]) и $S_{1, min}^{-} - S_0$ (флуоресценция) составили соответственно до 50 и до 40 нм (см. табл. 2 и 3 в [5]), а для мутантных форм с аналогами флавина — от 50 до 160 нм и от 40 до 360 нм для энергий вертикальных переходов $S_{0,min}$ - S_1 и $S_{1,min}$ - S_0 (см. табл. 7 и 8 в [6]) соответ-

Фёрстеровский резонансно-индуктивный перенос энергии происходит между двумя близко расположенными в пространстве хромофорами. Его эффективность зависит от индивидуальных фотофизических свойств хромофоров, а также от взаимной ориентации дипольных моментов перехода для флуоресценции донора и поглощения акцептора [8]. Для эффективного переноса энер-

гии необходимо, чтобы полоса флуоресценции донора значительно перекрывалась с полосой поглощения акцептора, а также важны высокий квантовый выход флуоресценции донора и большой коэффициент экстинкции акцептора. Взаимное расположение донора и акцептора определяется ориентационным фактором — величиной, принимающей значения от 0 до 4 в зависимости от взаимной ориентации дипольных моментов перехода для флуоресценции донора и поглощения акцептора.

Среди рассматриваемых систем наиболее перспективными для создания новых FRET-пар являются [6]: 1) iLOV с iLOV-K489t (Q489K/L470T) и iLOV с iLOV-K392 (V392K/F410V/A426S), содержащие флавинмононуклеотид в качестве хромофора; 2) iLOV-а с iLOV-аK392 (V392K/F410V/A426S/Q489A) и iLOV-а с iLOV-аK489ss (Q489K/L470S/G487S), содержащие 8-аминофлавин. Для этих пар рассчитанные энергии вертикального электронного перехода $S_{1, min}$ — S_0 донора близки к энергиям вертикального перехода $S_{0, min}$ — S_1 акцептора.

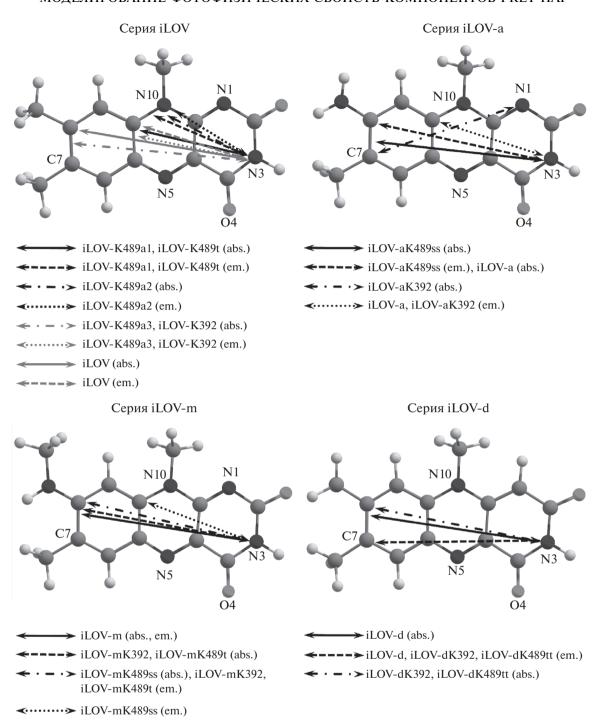
Цель данной работы — предоставление новых данных о флуоресцентных белках на основе флавина и его аналогов, которые необходимы для рационального дизайна FRET-пар, а также для разработки новых мутантов со спектрами поглощения и флуоресценции, смещенными в длинноволновую область.

МОДЕЛИ И МЕТОДЫ

Для исследуемых систем равновесные геометрические конфигурации, включающие белковую макромолекулу, хромофор и слой воды толщиной 5 Å, были рассчитаны в работах [5-7] комбинированным методом квантовой механики и молекулярной механики (КМ/ММ) в варианте КМ (PBE0-D3/cc-pvdz)/MM(AMBER) в программном пакете NWChem [9-12]. В качестве хромофоров рассматривались флавин, 8-аминофлавин, 8-метиламинофлавин и 1-деазафлавин. В квантовую часть входили изоаллоксазиновое кольцо хромофора и боковые цепи аминокислот, образующих водородные связи с хромофором, а для мутантных форм также боковая цепь лизина 392 или 489 и боковые цепи аминокислот и молекулы воды, образующие водородные связи с ним.

Дипольные моменты перехода рассчитаны методом XMCQDPT2/CASSCF(12/12)/сс-рvdz [13] для систем с флавином, 8-аминофлавином и 8-метиламинофлавином и XMCQDPT2/CASSCF(2/2)/ссpvdz для систем с 1-деазафлавином в программном пакете Firefly QC [14], частично основанном на исходном коде GAMESS (US) [15]. Равновесные геометрические конфигурации молекулярных кластеров для расчетов были взяты из работ [5–7].

Атомные заряды рассчитывались по схеме Малликена для основного электронного состояния, волновые функции были получены в расчетах CASSCF(12/12)/сс-рvdz [13] для систем с флавином, 8-аминофлавином и 8-метиламинофлавином и CASSCF(2/2)/сс-рvdz для систем с 1-деазафлавином с усреднением по двум низшим синглетным состояниям.


РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Дипольные моменты перехода

В работе рассматривается 16 модельных систем: четыре их них не содержат точечных мутаций в белковой макромолекуле и различаются хромофорами, двенадцать - содержат точечные мутации и различные хромофоры. Все дипольные моменты переходов, рассчитанные для исследуемых систем, находятся в плоскости изоаллоксазинового кольца хромофора (рис. 1). Для систем серий iLOV-m с 8-метиламинофлавином в качестве хромофора и iLOV-d с 1-деазафлавином направление дипольных моментов переходов меняется незначительно при введении точечных мутаций в белковую макромолекулу. Для систем серии iLOV-а наблюдается большая вариативность — для мутантной формы iLOV-aK489ss направление дипольного момента перехода $S_{0, min} - S_1$ сильно отличается от остальных систем. Возможно, это связано с окружением хромофора - набор мутаций для данной системы (V392K/F410V/A426S/Q489A) не повторяется полностью в системах с другими хромофорами и содержит мутацию в положении 489 на неполярную аминокислоту, в то время как в остальных моделях в позиции 489 находится полярная аминокислота. Для всех систем, кроме iLOV-aK489ss, направления дипольных моментов перехода лежат в промежутке между условно проведенными линиями, соединяющими атомы N3-N10 и N3-C7.

Заряды на атомах хромофора

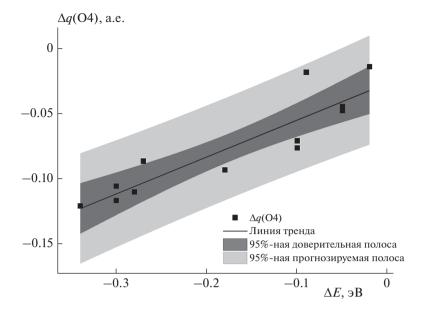

Для исследованных систем рассчитывались атомные заряды по Малликену и изучалась их зависимость от величины сдвига полос поглощения (табл. 1). Каждая мутантная форма содержит основную замену на лизин в положении 392 или 489, за счет которой и возникает красный сдвиг в спектрах поглощения и флуоресценции; образуются дополнительные водородные связи между атомами О4 или О4 и N5 хромофора и положительно заряженной аминогруппой лизина. Дополнительные компенсирующие замены аминокислот в хромофорсодержащей области предназначе-

Рис. 1. Дипольные моменты переходов $S_{0,min}$ — S_1 (abs.) и $S_{1,min}$ — S_0 (ет.) рассматриваемых систем.

ны для фиксации функциональной группы лизина вблизи хромофора. При возбуждении системы в первое синглетное возбужденное состояние наиболее значительные изменения электронной плотности происходят в области атомов О4, N5 и N1 [7]. При этом на атомах О4 и N5 электронная плотность увеличивается, а на атоме N1 — уменьшается. Эти атомы были выбраны для более детального

анализа. Нами не было обнаружено зависимостей между сдвигами энергий вертикальных переходов $S_{0,\,min}-S_1$ и $S_{1,\,min}-S_0$ переходов мутантных форм по отношению к флуоресцентным белкам с неизмененной аминокислотной последовательностью (ΔE_{abs}) и изменениями зарядов на атомах. В основном электронном состоянии заряд на атоме N1 практически не изменяется при введении то-

Рис. 2. Зависимость изменения заряда $\Delta q = 0.284\Delta E - 0.0265$ на атоме О4 хромофора в основном электронном состоянии в мутантных формах от величины сдвига энергии вертикального перехода $S_{0,min} - S_1$ мутантных форм по отношению к флуоресцентным белкам с соответствующими хромофорами без мутаций; $R^2 = 0.8113$.

чечных мутаций в белок, что, по всей видимости, связано с отсутствием изменений локального окружения этого атома. Заряд на атоме N5 изменяется в более широком диапазоне значений, однако четкой зависимости со сдвигом энергии вертикального электронного перехода не просматривается. Вероятнее всего, это связано с тем, что в части структур присутствует водородная связь

атома азота с протонированной группой лизина, а в других — нет. Подтверждением этому является наличие закономерности между изменением заряда на атоме О4 и смещением энергии вертикального перехода $S_{0, min}$ — S_1 ; атом О4 во всех мутантных формах образует водородную связь с лизином (рис. 2). Эта зависимость является общей для зарядов на атоме О4 всех мутантных форм с

Tаблица 1. Рассчитанные вертикальные энергии переходов $S_{0, min}$ — S_1 (E_{abs}) [5—7] и атомные заряды по Малликену (q) в основном электронном состоянии для исследованных систем

Система	E_{abs} , эВ	ΔE_{abs} , эВ	q(O4), a.e.	Δq (O4), a.e.	q(N5), a.e.	<i>q</i> (N1), a.e.
iLOV-out	2.82	0	-0.36	0	-0.24	-0.52
iLOV-K489a3	2.80	-0.02	-0.38	-0.01	-0.36	-0.50
iLOV-K489a2	2.77	-0.05	-0.41	-0.05	-0.32	-0.54
iLOV-K489a1	2.73	-0.09	-0.38	-0.02	-0.33	-0.53
iLOV-K489t	2.64	-0.18	-0.46	-0.09	-0.24	-0.51
iLOV-K392	2.52	-0.3	-0.47	-0.11	-0.31	-0.49
iLOV-a	2.70	0	-0.31	0	-0.26	-0.53
iLOV-aK392	2.42	-0.28	-0.42	-0.11	-0.33	-0.50
iLOV-aK489SS	2.36	-0.34	-0.43	-0.12	-0.35	-0.49
iLOV-d	2.36	0	-0.36	0	-0.15	_
iLOV-dK392	2.09	-0.27	-0.44	-0.09	-0.23	_
iLOV-dK489TT	2.06	-0.3	-0.48	-0.12	-0.27	_
iLOV-m	2.59	0	-0.38	0	-0.24	-0.54
iLOV-mK489SS	2.54	-0.05	-0.43	-0.04	-0.28	-0.53
iLOV-mK392	2.49	-0.1	-0.46	-0.08	-0.28	-0.52
iLOV-mK489T	2.49	-0.1	-0.45	-0.07	-0.26	-0.51

флавином или его аналогами. Полученная зависимость (рис. 2) является линейной и демонстрирует, что концентрация отрицательного заряда на атоме O4 приводит к уменьшению энергии вертикального перехода $S_{0,min}$ — S_1 .

ЗАКЛЮЧЕНИЕ

Методами молекулярного моделирования определены направления дипольных моментов переходов, соответствующих поглощению и флуоресценции белков на основе iLOV. Установлена зависимость между изменением значения заряда на атоме O4 хромофора в основном электронном состоянии и сдвигом вертикальной энергии перехода $S_{0, min}$ — S_1 в случае добавления точечных мутаций в белковую макромолекулу.

Работа выполнена при финансовой поддержке Российским научным фондом (проект № 17-13-01051) с использованием оборудования Центра коллективного пользования сверхвысокопроизводительными вычислительными ресурсами МГУ им. М.В. Ломоносова.

СПИСОК ЛИТЕРАТУРЫ

 Elgamoudi B.A., Ketley J.M. // Res. Microbiol. 2018. V.169. P. 108.

- Losi A., Gardner K.H., Möglich A. // Chem. Rev. 2018. V. 118, P. 10659.
- Chapman S., Faulkner C., Kaiserli E. et al. // Proc. Natl. Acad. Sci. U. S. A. 2008. V. 105. P. 20038.
- Christie J.M., Hitomi K., Arvai A.S. et al. // J. Biol. Chem. 2012. V. 287. P. 22295.
- Khrenova M.G., Meteleshko Y.I., Nemukhin A.V. // J. Phys. Chem. B. 2017. V. 121. P. 10018.
- Meteleshko Y.I., Nemukhin A.V., Khrenova M.G. // Photochem. Photobiol. Sci. 2018; https://doi.org/10.1039/c8pp00361k
- Khrenova M.G., Nemukhin A.V., Domratcheva T. // J. Phys. Chem. B. 2015. V. 119. P. 5176.
- 8. *Lakowicz J.R.* Principles of Fluorescence Spectroscopy. 3rd ed. Berlin: Springer, 2006.
- Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. P. 6158.
- Grimme S., Antony J., Ehrlich S., Krieg H. // Ibid. 2010.
 V. 132. P. 154104.
- 11. Cornell W.D., Cieplak P., Bayly C.I. et al. // J. Amer. Chem. Soc. 1995. V. 117. P. 5179.
- 12. *Valiev M., Bylaska E.J., Govind N. et al.* // Comput. Phys. Comm. 2010. V. 181. P. 1477.
- 13. *Granovsky A.A.* // J. Chem. Phys. 2011. V. 134. P. 214113.
- 14. http://classic.chem.msu.su/gran/firefly/index.html
- Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. V. 14. P. 1347.