ГОРЕНИЕ, ВЗРЫВ И УДАРНЫЕ ВОЛНЫ

УДК 662.19; 539.91

Светлой памяти А.А. Борисова посвящается

ОСОБЕННОСТИ ГОРЕНИЯ НАНОРАЗМЕРНЫХ ТЕРМИТОВ В ПИРОНАГРЕВАТЕЛЯХ

© 2019 г. К. А. Моногаров^{1*}, Д. Б. Мееров¹, Ю. В. Фролов¹, А. Н. Пивкина¹

¹Институт химической физики им. Н.Н. Семёнова Российской академии наук, Москва, Россия *E-mail: kostyk3d@mail.ru

Поступила в редакцию 02.03.2019; после доработки 02.03.2019; принята в печать 22.04.2019

Ранее сообщалось о нескольких перспективных термитных композициях (Al/Fe₂O₃ и Mg/Fe₂O₃) для использования их в герметичных пиротехнических источниках тепла с целью работы в условиях космоса. Экспериментальные результаты показали, что эти термиты хорошо горят внутри герметичных стальных трубок. При этом поверхность трубок нагревалась до температур 700–1000 °C. В данной статье рассматривали наноразмерные термиты, т.е. смеси того же состава, но с наноразмерными компонентами. Методом синхронного термического анализа исследованы реакционная способность таких термитных составов и продукты реакции. Определено влияние наноразмерных термитов и способа смешения компонентов на скорость горения, температуру на поверхности трубки и критический диаметр горения.

Ключевые слова: пиротехнический нагреватель, термитный состав, наноразмерный термит, синхронный термический анализ, критический диаметр горения. **DOI:** 10.1134/S0207401X19080119

введение

Термитные композиции – системы, где в качестве горючего выступает металл, а в качестве окислителя – оксид другого металла. Такие системы сочетают в себе высокую энергетику, широкие пределы регулирования скорости реакции и разные соотношения газообразных и конденсированных продуктов [1, 2]. Одно из интересных применений термитов в качестве рабочего тела пиротехнических нагревателей предложено в работах [2, 3]. В частности, пиротехнические нагреватели применяются в условиях космоса, и в этом случае от композиции требуется практическое отсутствие газовых продуктов. Теоретические оценки показывают, что число твердофазных реакций в процессе которых не происходит образования газовых продуктов, либо их количество крайне мало, превышает 500 [4]. Однако для эффективной передачи тепла в пиронагревателе желательно образование продуктов горения в жидком состоянии, и данное обстоятельство сильно сужает круг доступных композиций. Предварительно проведенный цикл исследований [3] показал, что наиболее перспективными являются термитные составы Al/Fe₂O₃ и Mg/Fe₂O₃, так как при их горении достигается нагрев внешней поверхности

стальной оболочки пиронагревателя до 700—1000°C без нарушения герметичности устройства ввиду роста давления. В последующих работах показано, что созданный прототип пиронагревательного устройства позволяет получить важную информацию о развитии давления и механизме распространения реакции [5], а также определить температуру горения композиций [6].

В последнее время в литературе широкий интерес вызывают так называемые наноразмерные термиты - композиции термитного типа, имеющие хотя бы один компонент в наноразмерном состоянии [7-10]. Для подобных нанокомпозитов вследствие увеличенной площади контактов реагентов наблюдаются повышенные значения скоростей реакции [11, 12], газовыделения и достигаемого давления [13]. Можно ожидать, что использование нанотермитов с более высокой скоростью горения позволит снизить критический диаметр горения и, тем самым, даст возможность уменьшить размеры пиронагревателя. Однако при переходе к наноразмерным композитам появляется сложность обеспечения равномерного распределения компонентов и, как следствие, влияние способа перемешивания на их свойства [14, 15]. Таким образом, цель настоящей работы сравнительное исследование наноразмерных и

Рис. 1. Электронно-микроскопические изображения поверхности таблетки термита Al/Fe₂O₃: *a* – наноразмерный термит, полученный механическим смешением; *б*, *в* – наноразмерный термит, полученный ультразвуковым смешением компонентов.

микроразмерных термитных композиций составов Al/Fe_2O_3 и Mg/Fe₂O₃, полученных с помощью различных способов смешения, в условиях работы пиротехнического нагревателя.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Компоненты термитных составов

В работе использован алюминий двух типов: микроразмерный пластинчатый порошок ПАП-2 и наноразмерный – марки ALEX. Размер частиц микроразмерного алюминия по результатам электронной микроскопии составил 10-20 мкм при толщине пластин порядка 500 нм. Наноразмерный алюминий, полученный электровзрывом проволочки, представлял собой сферические частицы диаметром 30-300 нм (подробности приведены в работе [14]). В составах на основе магния также использовали порошок микронного (МПФ-4, ГОСТ 6001-79) и субмикронного размера (лабораторный образец, средний размер частиц 300 нм). В качестве окислителя в обеих термитных композициях использовали оксил железа также двух дисперсностей: микроразмерный (тип К, ТУ 6-09-5346-87) и наноразмерный (лабораторный образец, частицы 50-100 нм).

Смешение термитных композиций

Порошок алюминия или магния смешивали с оксидом железа в стехиометрическом соотношении путем механического перемешивания в бензине. Альтернативный способ смешения заключался в применении ультразвукового гомогенизатора в бензине. Полученные после испарения бензина пастообразные смеси сушили в вакууме и для опытов по сжиганию запрессовывали в таблетки при давлении 350 МПа (детали приведены в работе [3]). Образцы наноразмерных термитов после механического смешения обозначали буквой М, а после ультразвукового — буквой U. На рис. 1 приведены электронно-микроскопические изображения поверхности изготовленных таблеток железо-алюминиевого нанотермита, светлые частицы соответствуют оксиду железа. Сравнение образцов наноразмерных термитов, полученных двумя способами смешения, показывает, что при ультразвуковом способе наблюдаемый размер конгломератов алюминия значительно ниже. Следовательно, качество смешения для смесей после ультразвуковой обработки повышается, что согласуется с литературными данными [14, 16].

Термическое поведение составов

Термическое поведение исходных компонентов и термитных составов изучали с помощью линейного нагрева в приборе синхронного термического анализа (NETZSCH STA 449 F3). Измерения проводили в потоке аргона (70 мл \cdot мин⁻¹), образцы помещали в корундовые тигли. Как известно из литературных данных [17], изменение скорости нагрева может менять наблюдаемый механизм термитной реакции. Так, для железо-алюминиевого термита с частицами микронного размера ранее [18, 19] была показана необходимость использования высоких скоростей нагрева в приборе термического анализа для наблюдения термитной реакции. В соответствии с этой рекомендацией в настоящей работе была выбрана скорость 50° С · мин⁻¹. На рис. 2, 3 приведены кривые зависимостей ДСК для образцов из микро- и наноразмерных компонентов при различном смешении. В случае термита на основе алюминия (рис. 2) все образцы обнаруживают четыре характерных участка: 1) экзотермический пик при 600-

МОНОГАРОВ и др.

Рис. 2. Кривые ДСК при линейном нагреве образцов термита Al/Fe₂O₃ разной дисперсности и способа смешения (М – механическое смешение, U – ультразвуковое смешение).

Рис. 3. Кривые ДСК при линейном нагреве образцов термита Mg/Fe₂O₃ разной дисперсности и способа смешения (М – механическое смешение, U – ультразвуковое смешение).

610°С, соответствующий термитной реакции в твердой фазе; 2) эндотермический пик при 644—654°С, связанный с плавлением алюминия; 3) экзотермический эффект с пиком около 811-918°С – высокотемпературная термитная реакция; 4) эндотермический эффект около 1530°С, обусловленный плавлением образовавшегося в результате реакции железа. Регистрируемые синхронно термогравиметрические зависимости показывают неизменность массы образца. Видно, что для наноразмерного термита на основе Al пик высокотемпературной термитной реакции смещается в сторону меньших температур, а тепловыделение при температурах до плавления алюминия более значительно. Применение ультразвукового способа смешивания еще больше увеличивает данные эффекты.

Для составов на основе магния термитная реакция иллюстрируется выраженным пиком энерговыделения (рис. 3). При этом порошки исходного магния плавятся около 633° С и выше 750° С начинают испаряться. Таким образом, термитная реакция Mg + Fe₂O₃ начинается после плавления металла и, судя по образованию железа (эндотермический пик выше 1500° С) и практически неизменной массы образца, протекает с высокой полнотой. Также как и для составов на основе Al, применение наноразмерных компонентов в составах на основе Mg снижает температуру взаимодействия с 672 до $636-650^{\circ}$ С.

Рис. 4. Схема пиронагревательного устройства: *1* – стальная трубка, *2* – термопары, *3* – система воспламенения, *4* – датчик давления, *5* – усилитель сигнала термопар, *6* – система регистрации.

Состав конденсированных продуктов реакции

Анализ конденсированных продуктов реакции после синхронного термического анализа осуществляли на рентгеновском дифрактометре D8 Advance (Bruker). Для микроразмерного термита Al/Fe_2O_3 в продуктах обнаружены 45% Al_2O_3 , 52% Fe₂O₃ и 3% Fe, для наноразмерного термита – 59% Al₂O₃, 24% FeAl₂O₄ и 17% Fe. Для термитного состава на основе магния состав продуктов микроразмерной композиции – 77% MgO, 17% Fe₃O₄, 6% Fe, для наноразмерного термита — 81% MgO, 4% Fe₃O₄, 15% Fe. Таким образом, большее содержание продуктов термитной реакции (железа и оксила алюминия или магния) и меньшее количество исходного оксида железа свидетельствует о более полном протекании реакции в составах с наноразмерными компонентами.

Критический диаметр горения

Влияние уменьшения размера частиц компонентов на критический диаметр горения исследовали при сжигании прессованных образцов в стальных трубках диаметром 2-10 мм (толщина стенок 2 мм). Сжигание проводили в бомбе постоянного давления при 5 МПа азота. Навеска быстрогорящего состава подпрессовывалась снизу для более точного определения момента конца горения основного заряда. Для микроразмерных термитов получено, что критический диаметр горения меньше либо равен 3 мм. Для наноразмерного термита Mg/Fe₂O₃ критический диаметр составил 3 мм, для нанотермита Al/Fe₂O₃ – меньше либо равен 2 мм.

Горение термитов в пиронагревательном устройстве

Пиронагревательное устройство, использованное в работе, подробно описано ранее [3, 6]. Краткая схема установки показана на рис. 4 и состоит из: (1) – стальной трубки внутренним диаметром 8 мм, наружным 14 мм и длиной 120 мм, (2) – системы термопар на поверхности трубки, (3) – системы инициирования, (4) – датчика давления, (5) – усилителя сигнала термопар и (6) – системы цифровой регистрации данных. Образцы термитного состава порционно запрессовывали в трубку. При этом величина пористости термитного заряда состава Al/Fe₂O₃ осталась неизменной при переходе от микроразмерного порошка к наноразмерному, в то время как для Mg/Fe₂O₃ она уменьшилась в два раза.

На рис. 5 представлены зарегистрированные кривые изменения давления в трубке при инициировании термитных зарядов. Хотя термитные реакции считаются малогазовыми, можно увидеть рост давления в герметичной системе почти до 400 атм. Результаты опытов суммированы в табл. 1, где указаны: средняя пористость зарядов П, средняя скорость горения $U_{\rm r}$, максимальное давлении $P_{\rm max}$, максимальная температура на внеш-

Рис. 5. Рост давления внутри трубок при сгорании наноразмерных термитов: $a - Al/Fe_2O_3$ (M), $\delta - Mg/Fe_2O_3$ (U).

ХИМИЧЕСКАЯ ФИЗИКА том 38 № 8 2019

МОНОГАРОВ и др.

Состав термитной композиции	П, %	U_{Γ} , мм · с ⁻¹	<i>Р_{тах}</i> , МПа	T_{max} , °C	β, °C/c
Микроразмерный термит Al/Fe ₂ O ₃	36	36	89.8	774	57
Наноразмерный термит Al/Fe ₂ O ₃ (M)	32	140	37.3	722	68
Наноразмерный термит Al/Fe ₂ O ₃ (U)	33	210	61.9	_	—
Микроразмерный термит Mg/Fe ₂ O ₃	35	33	46.4	742	57
Наноразмерный термит Mg/Fe ₂ O ₃ (M)	15	5.2	5.2	748	37
Наноразмерный термит Mg/Fe ₂ O ₃ (U)	18	7.7	7.0	762	44

Таблица 1. Характеристики горения термитов в пиронагревателе

Примечание. В опыте с наноразмерным термитом Al/Fe₂O₃ ("U") произошел взрыв и часть характеристик не была зарегистрирована.

ней поверхности трубки Т_{тах} и скорость нагрева поверхности стальной трубки β. (М) соответствует механическому смешению компонентов, a (U) – ультразвуковому. Скорость горения термита алюминий/оксид железа при замене микроразмерных частиц на наноразмерные повышается с 36 до 140 мм · с⁻¹. Использование ультразвукового способа смешения увеличивает скорость до 210 мм · с⁻¹ (в результате локального перегрева трубки в опыте наблюдался взрыв), по-видимому, из-за повышения гомогенности смеси. Неожиданно для термита магний/оксид железа наблюдается обратная тенденция – снижение скорости горения при использовании наноразмерных компонентов в 6 раз по сравнению с термитом из микроразмерных частиц. Данный результат, возможно, следует связать со значительным изменением пористости для нанотермитов.

Сравнение двух термитных композиций показывает, что железо-алюминиевый наноразмерный термит сгорает значительно быстрее и с большим достигаемым максимальным давлением, по сравнению с железо-магниевым составом. Полученный экспериментальный результат показывает приблизительность теоретических оценок величины газовыделения термитных реакций, так как для Mg/Fe_2O_3 она значительно ниже [20]. При этом, величина максимальной температуры лежит в интервале 720–760°С и приблизительно одинакова для всех изученных композиций вне зависимости от типа металла, дисперсности и способа смешения.

ЗАКЛЮЧЕНИЕ

В опытах при низких скоростях нагрева (в условиях термического анализа) изученные термитные композиции реагируют с малым газовыделением, в то время как при высоких темпах нагрева (сгорание в пиронагревателе) развиваются давления до 400 атм. Подобные условия при горении должны способствовать сгоранию наноразмерных частиц металла в предложенном в работе [21] ре-

жиме диспергирования расплава. В таком режиме наблюдаются высокие скорости распространения реакции, что согласуется со скоростями до $210 \text{ мм} \cdot \text{c}^{-1}$, полученными в настоящей работе для наноразмерного термита алюминий/оксид железа. У состава магний/оксид железа наблюдается обратная тенденция – скорость горения наноразмерного термита значительно снижается. Видимо, это связано с низкой пористостью состава и высокой температурой кипения промежуточных и конечных продуктов реакции, что приводит к протеканию реакции в чисто кондуктивном режиме в конденсированной фазе. Использование ультразвукового смешения позволяет повысить качество смешения по сравнению с механическим перемешиванием, что, в свою очередь, приводит к возрастанию скорости горения. Таким образом, использование наноразмерных термитных композиций в пиротехнических нагревателях позволяет расширить пределы регулирования ключевых параметров, таких как время срабатывания и скорость нагрева устройства. При этом снижение критического лиаметра горения открывает возможность создания пиронагревательных устройств с диаметром до 2-3 мм.

Работа выполнена за счет субсидии на выполнение государственного задания по теме 0082-2018-0002, АААА-А18-118031490034-6.

СПИСОК ЛИТЕРАТУРЫ

- Wang L.L., Munir Z.A., Maximov Y.M. // J. Mater. Sci. 1993. V. 28. P. 3693; https://doi.org/10.1007/BF00353167
- 2. *Мержанов А.Г.* Процессы горения и синтез материалов, Черноголовка: Изд-во ИСМАН, 1998.
- Goroshin S., Higgins A.J., Jiang L. et al. // Microgravity Sci. Technol. 2005. V. 16. P. 322; https://doi.org/10.1007/BF02945999
- 4. *Ivanov D., Frolov Y., Pivkina A. et al.* Theory and practice of energetic materials (V. VIII). Beijing, China: Science Press, 2007. P. 301.
- 5. *Merzhanov A.G.* Combustion and Plasma Synthesis of High-Temperature Materials. New York: VCH, 1990.

ХИМИЧЕСКАЯ ФИЗИКА том 38 № 8 2019

- Monogarov K., Pivkina A., Muravyev N. et al. // Phys. Procedia. 2015. V. 72. P. 362; https://doi.org/10.1016/j.phpro.2015.09.111
- 7. *Monogarov K., Muravyev N., Meerov D. et al.* // MATEC Web Conf. 2018. V. 243. P. 00004; https://doi.org/10.1051/matecconf/201824300004
- Berthe J.-E., Comet M., Schnell F. et al. // Propell., Explos., Pyrotech. 2016. V. 41. P. 994; https://doi.org/10.1002/prep.201600029
- Miziolek A.W. // AMPTIAC Newsl. 2013. V. 6. P. 43; https://doi.org/10.1016/j.combustflame.2012.09.009
- Puszynski J.A., Bulian C.J., Swiatkiewicz J.J. // J. Propul. Power. 2007. V. 23. P. 698; https://doi.org/10.2514/1.24915
- Pantoya M.L., Levitas V.I., Granier J.J. et al. // Ibid. 2009. V. 25. P. 465; https://doi.org/10.2514/1.36436
- Pantoya M., Granier J. // Propell. Explos., Pyrotech. 2005. V. 30. P. 53; https://doi.org/10.1002/prep.200400085
- Bockmon B.S., Pantoya M.L., Son S.F. et al. // J. Appl. Phys. 2005. V. 98. P. 064903; https://doi.org/10.1063/1.2058175

- 14. Sanders V.E., Asay B.W., Foley T.J. et al. // J. Propul. Power. 2007. V. 23. P. 707; https://doi.org/10.2514/1.26089
- Muravyev N., Frolov Y., Pivkina A. et al. // Propell., Explos., Pyrotech. 2010. V. 35. P. 226; https://doi.org/10.1002/prep.201000028
- 16. *Puszynski J.A., Bichay M.M., Swiatkiewicz J.J.* Wet processing and loading of percussion primers based on metastable nanoenergetic composites // Патент США US7670446B2. 2010.
- Lafontaine E., Comet M. Nanothermites, Hoboken (NJ), USA: John Wiley & Sons, Inc., 2016; https://doi.org/10.1002/9781119329947
- 18. *Granier J.J., Rai A., Park K. et al.* // Proc. AIChE Annu. Meet. 2005. P. 511.
- Wang S.-X., Liang K.-M., Zhang X.-H. et al. // J. Mater. Sci. Lett. 2003. V. 22. P. 855; https://doi.org/10.1023/A:1024438030689
- 20. Fischer S.H., Grubelich M.C. // Proc. 24th Intern. Pyrotech. Semin., California, USA, 1998. P. 231.
- Levitas V.I., Pantoya M.L., Dean S. // Combust. and Flame. 2014. V. 161. P. 1668; https://doi.org/10.1016/j.combustflame.2013.11.021