ГОРЕНИЕ, ВЗРЫВ И УДАРНЫЕ ВОЛНЫ

УДК 541.124

Светлой памяти А.А. Борисова посвящается

ВЛИЯНИЕ РЕАКЦИИ CH₃ + O₂ НА КИНЕТИКУ САМОВОСПЛАМЕНЕНИЯ УГЛЕВОДОРОДОВ ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ

© 2019 г. А. М. Тереза^{1*}, Э. К. Андержанов¹

¹Институт химической физики им. Н.Н. Семёнова Российской академии наук, Москва, Россия *E-mail: tereza@chph.ras.ru

Поступила в редакцию 22.03.2019; после доработки 22.03.2019; принята в печать 22.04.2019

В рамках численного моделирования проведено изучение влияния реакции метильного радикала с молекулярным кислородом на самовоспламенение различных углеводородов при температурах выше 1300 К. Расчеты с использованием детального кинетического механизма показали, что взаимодействие CH_3 с O_2 существенно для самовоспламенения метана и ацетона и не имеет значительного влияния в случае остальных углеводородов. Обнаружено, что с повышением температуры чувствительность к каналу взаимодействия CH_3 с O_2 ослабевает. Модельные расчеты показали, что увеличение количества компонентов и реакций в детальных кинетических механизмах может приводить к снижению влияния взаимодействия CH_3 с O_2 .

Ключевые слова: задержка воспламенения, ударные волны, химическая кинетика, численное моделирование, константа скорости.

DOI: 10.1134/S0207401X19080120

введение

Радикал CH_3 — самый стабильный алкильный радикал, поэтому его реакции с молекулярным кислородом являются очень важными в кинетике воспламенения и горения большинства углеводородных топлив. Это определило проведение большого числа экспериментальных и теоретических исследований, напрямую направленных на получение кинетической информации по каждому из возможных каналов взаимодействия CH_3 с O_2 [1, 2]. В основном реакция протекает по трем каналам:

$$CH_3 + O_2 \rightarrow CH_2O + OH,$$

$$\Delta H_{298} = -51.4 \text{ ккал/моль},$$
(R1)

$$CH_3 + O_2 \rightarrow CH_3O + O, \tag{P2}$$

$$\Delta H_{298} = +21.5$$
 ккал/моль, (К2)

$$CH_3 + O_2 \rightarrow CH_3OO,$$

 $\Delta H_{298} = -31.9 \text{ ккал/моль.}$ (R3)

Четвертый возможный канал, а именно,

$$CH_3 + O_2 \rightarrow HCO + H_2O,$$

$$\Delta H_{298} = +82.8 \text{ ккал/моль},$$
(R4)

более эндотермичный, чем (R1). Канал (R3) проявляет зависимость от давления и становится существенным при T < 1000 К [2]. При температурах выше 1000 К окисление метильных радикалов определяется исключительно конкуренцией каналов (R1) и (R2) [1–3]. Важность реакций (R1)– (R3) при воспламенении углеводородов определяется их присутствием среди ведущих стадий при анализах локальной чувствительности в рамках различных детальных кинетических механизмов (ДКМ) [4–12].

Самовоспламенение углеводородных топлив наиболее сильно проявляет себя при T > 1000 К. Поэтому основные экспериментальные значения констант скорости взаимодействия метильных радикалов с молекулярным кислородом, k_1 и k_2 , были получены посредством измерений на ударных трубах [3, 13–19]. Методики исследования высокотемпературного самовоспламенения различных углеводородных топлив достаточно хорошо известны [1]. В их ряду метод ударной трубы является одним из самых значимых, поскольку за достаточно короткое время удается нагреть исследуемую смесь до заданной температуры [1, 20– 22]. При этом минимизируется влияние многих побочных физико-химических факторов, таких,

Рис. 1. Температурные зависимости константы скорости реакции (R1). Экспериментальные измерения: $\bigcirc -[13], \triangledown -[14], \square -[15], \diamondsuit -[16], ★ -[3], × -[17], ▲ -[18], ▼ -[19]. Теоретические расчеты в рамках$ $РРКМ: <math>\triangle -[25]$. Значения, принятые в ДКМ: *I* - [6], *2* - [9], *3* - [8, 11], *4* - [5].

например, как диффузия и влияние стенки. Оборудованная различными диагностическими приборами ударная труба позволяет регистрировать целый ряд физико-химических параметров, определяющих процесс самовоспламенения реагирующих смесей, и получать кинетические зависимости расходования и формирования исходных реагентов и их различных продуктов [1, 23].

Из представленного краткого обзора видно, какой большой вклад в развитие подходов и методик в получении кинетической информации оказали работы с участием проф. А.А. Борисова и его учеников [1, 20-24]. В своих ранних работах [20, 22] А.А. Борисов показал, что, правильно используя научный аналитический подход при постановке экспериментов, на основании простых кинетических схем, состоящих всего из нескольких элементарных реакций, можно определять искомые значения констант скорости заданных реакций с высокой степенью надежности. Такой подход в полной мере был осуществлен коллективом под руководством проф. А.А. Борисова для измерения значения k_1 [15]. Для этого авторы работы [15] использовали статическую перепускную установку и отраженные ударные волны в диапазоне температур от 880 до 1880 К для измерений задержек воспламенения т в различных обедненных топливом и стехиометрических смесях СН₄-О₂ с добавками N₂O от 5 до 40%. Добавки N₂O использовались в качестве источника зарождения активных центров в виде атомов О для развития цепной реакции CH₄-O₂. Сведя кинетический механизм развития цепного процесса

всего к пяти основным реакциям, в условиях квазистационарного состояния по активным частицам из измеренных температурных зависимостей τ Борисову с соавт. [15] удалось определить значение $k_1 = 2 \cdot 10^{12} \exp(-6670/T) \, \text{см}^3$ /моль · с. Полученное значение k_1 в течение всех последующих лет до настоящего времени практически не изменялось в пределах фактора три. На рис. 1 значками с линиями представлены данные по измеренным и теоретически рассчитанным значениям k_1 , а только линиями — значения k_1 , принимаемые в различных ДКМ, представленных в литературе. Из рис. 1 видно, что разброс значений k_1 при T > 1000 К представляет более двух порядков по величине. Измерения, проведенные позднее [3, 16], практически подтвердили результат работы [15]. В тоже время данные работ [14, 17, 18] значительно отличаются с учетом экстраполяции в область низких температур от результатов из работ [3, 15, 16]. Самые поздние прямые измерения k_1 , проведенные [19], имеют туже энергию активации, что и в [13, 15, 16], и приблизительно в три раза меньше по значению предэкспонента k_1 . При этом данные k_1 из [19] совпадают с теоретическими расчетами в рамках теории Райса-Рамспегера-Касселя-Маркуса (РРКМ), проведенными в [25]. Результаты работы [19], фактически подтвердившие полученные в [15] данные, вынудили разработчиков ДКМ [5, 11] внести коррективы в значение k_1 . В ДКМ из [4] осталось значение k_1 , близкое к полученным в работах [3, 15, 16]. Следует заметить, что в выражении для k_1 в работах [8, 9] присутствует иное значение энергии активации, чем в [3, 15, 16]. С изменением температуры влияние параметра k_1 может стать существенным. Кроме того, в ДКМ из [7] канал (R1) отсутствует совсем при наличии каналов (R2) и (R3). Таким образом, вопрос влияния канала (R1) и его соотношений с (R2) и (R3) на самовоспламенение остается открытым.

В данной работе проведено численное моделирование самовоспламенения ряда простейших углеводородов с использованием ДКМ из работ [8, 10, 12] с целью получения информации о влиянии реакций (R1) и (R2) на воспламенение при *T* > 1300 К. Температурный диапазон ниже 1300 К не рассматривался в связи с неоднозначными объяснениями особенности температурной зависимости задержек воспламенения смесей углеводородов и водорода с кислородом и воздухом (эффект обратного температурного коэффициента (ОТК)). Так, в литературе не только образованием перекисных радикалов R'OO ($R = C_i H_i$) объясняется экспериментально наблюдаемый эффект ОТК, а также влиянием роста давления за отраженной ударной волной на временах более 0.001 с [26], колебательной и поступательной неравновесностью радикалов и молекул за фронтом удар-

Рис. 2. Температурная зависимость рассчитанных по ДКМ из работы [10] задержек воспламенения τ для смесей метана с воздухом при $P_0 = 1$ атм: 1 - 10% CH₄ + 20% O₂ + 70% N₂ ($\varphi = 1$), 4 - 24% CH₄ + 16% O₂ + 60% N₂ ($\varphi = 3$), 6 - 3.4% CH₄ + 20.4% O₂ + 76.2% N₂($\varphi = 0.33$). Линии 2, 5, 7 – расчеты по ДКМ из [10] с $3k_1$ для $\varphi = 1$, 3, 0.33 соответственно. Линия 3 – расчет по ДКМ из [8] для $\varphi = 1$.

ной волны [27, 28], остаточной малой примесностью атомов, радикалов и частиц [29–31], квантовыми поправками к значениям констант скорости реакций инициирования [32] и очаговым воспламенением [31, 33]. Поскольку в результатах работ [2] и [19] было показано, что при T > 1200 К доминирует реакция (R1), то основной анализ касался именно этой реакции.

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Все вычисления в данной работе проводились с помощью пакета программ СНЕМКІМ III [34] в предположении V = const при $P_0 = 1$ атм. Данный программный модуль требует использования термодинамических параметров для всех содержащихся в ДКМ частиц в формате NASA [35]. Поэтому численное моделирование проводилось только с представленными в литературе ДКМ [8. 10, 12], содержащими соответствующие термодинамические файлы данных. Под задержкой самовоспламенения горючих смесей в расчетах принималось значение времени т, соответствующее максимальному росту давления. В случае, если в эксперименте не наблюдалось значительного роста давления, что характерно для сильно разбавленных смесей, значение т определялось по максимуму свечения регистрируемого излучателя. Почти все расчеты проводились с использованием ДКМ из работы [10] с k_1 из [19]. Поскольку

данные по k_1 из [19] отличаются от значения k_1 , полученного в [15], приблизительно в три раза, то влияние канала (R1) определялось по увеличенному в 3 раза значению k_1 .

На рис. 2 представленые результаты расчета задержек воспламенения для смесей СН₄-воздух с $\phi = 3, 1$ и 0.33. Видно, что для всех трех значений ϕ при увеличении в три раза значения k_1 наблюдается одинаковая тенденция их изменения. Если при T = 1300 К задержка воспламенения сокращается приблизительно в 1.5-2 раза, то с ростом температуры зависимость τ от увеличения k_1 практически исчезает при T = 2000 К. На рис. 2 также приведены расчетные значения τ по ДКМ из работы [8] для $\phi = 1$. Значения τ , рассчитанные по ДКМ из работ [8] и [10], оказываются очень близкими, незначительно различаясь по наклону их температурных зависимостей. Это незначительное различие определяется разными значениями энергии активации в выражении для k_1 (рис. 1).

В случае самовоспламенения других углеводородов в смесях с воздухом заметной температурной зависимости т с ростом величины k_1 не наблюдается. На рис. 3 представлены температурные зависимости т для стехиометрических смесей ($\varphi = 1$) метана (10% CH₄ + 20% O₂), этана (5.7% C₂H₆ + 20% O₂), этилена (6.5% C₂H₄ + 19.5% O₂), ацетилена (7.75% C₂H₂ + 19.38% O₂) и ацетона (4.99% (CH₃)₂CO + 19.95% O₂) с воздухом. Поскольку для смесей этана, этилена и ацетилена зависимости т

Рис. 3. Температурная зависимость рассчитанных по ДКМ из [10] задержек воспламенения τ для стехиометрических смесей метана $(1 - k_1)$ и $(2 - 3k_1)$, этана $(3 - k_1$ и $3k_1)$, этилена $(4 - k_1$ и $3k_1)$, ацетилена $(5 - k_1$ и $3k_1)$, ацетона $(6 - k_1)$ и $(7 - 3k_1)$. Состав смесей в воздухе: 10% CH₄ + 20% O₂, 5.7% C₂H₆ + 20% O₂, 6.5% C₂H₄ + 19.5% O₂, 7.75% C₂H₂ + + 19.38% O₂, 4.99% (CH₃)₂CO + 19.95% O₂. Начальное давление $P_0 = 1$ атм.

от изменения значения k_1 не обнаружено в рамках ДКМ из [10], то на рис. 3 соответствующие им линии расчетов для k_1 и $3k_1$ совпадают. Следует полагать, что наибольшее влияние реакции (R1) должно ощущаться при самовоспламенении тех углеводородов, которые быстро образуют при своем пиролизе радикалы СН₃. Таким углеводородом является ацетон. На рис. 3 представлены рассчитанные температурные зависимости τ для ацетона со значениями k_1 и $3k_1$. Видно, что влияние реакции (R1) в случае самовоспламенения ацетона незначительно и по масштабу своего вклада сопоставимо с воспламенением метана (рис. 3).

Как было показано в работе [36], задержки воспламенения всех углеводородов располагаются между нижними граничными значениями τ для ацетилена и верхними граничными значениями этого параметра для метана. При этом различия по этим границам уменьшается с трех порядков величины τ при 1300 К до одного порядка при 2000 К (рис. 3). В то же время задержки воспламенения остальных углеводородов располагаются в диапазоне разброса значений, равных половине порядка величин τ (рис. 3). Это позволяет во многих случаях моделирования сложных процессов горения и детонации значительно упростить ДКМ до аппроксимационных формул для τ [1] или уравнений глобальной кинетики [37].

Незначительное влияние реакции (R1) на самовоспламенение углеводородов в рамках расчетов по ДКМ не отменяет важности этой реакции

при описании профилей концентраций атомов, радикалов и электронно-возбужденных частиц, регистрация которых позволяет проводить мониторинг процессов горения топливовоздушных смесей. Так, в работе [38] показана важность реакции (R1) в формировании радикала CH, приводящего к образованию электронов по реакции $CH + O = CHO^+ + e^-$. Аналогичная ситуация наблюдается при описании профилей эмиссионных сигналов радикалов OH*, CH* и молекулы CO_2^* в электронно-возбужденном состоянии [39, 40]. На рис. 4 представлен экспериментальный [41] и вычисленные временные профили свечения электронно-возбужденных СО₂^{*} и ОН*. Помимо увеличения значения k_1 в три раза при моделировании были проведены расчеты с увеличением k_2 . Обнаружено, что десятикратное увеличение k_2 вносит тот же вклад, что и трехкратное увеличение k_1 . Поэтому на рис. 4 кривые с $3k_1$ и $10k_2$ совпадают. Из рис. 4 видно, что изменение k_1 и k_2 не вносит существенного влияния в формирование рассчитанной задержки воспламенения τ, которая определялась как время достижения максимума свечения CO_2^* и OH* [40-42]. В то же время она способна вносить вклад в характер нарастания сигнала свечения CO_2^* и OH* [40]. Известно, что характер свечения ОН* меняется при увеличении значения ϕ и разных комбинациях углеводородных топлив [39, 42].

Рис. 4. Сравнение экспериментальных и рассчитанных по ДКМ из [12] временны́х профилей свечения электронновозбужденных CO_2^* и OH*: *1*, *2* – экспериментальные профили для CO_2^* и OH*, соответственно, по данным [41]. Линии *3*, *5* и *4*, *6* – рассчитанные профили для CO_2^* и OH* с k_1 и $3k_1$ (10 k_2) соответственно. Условия эксперимента: 0.5% (CH₃)₂CO + 2% O₂ в аргоне ($\varphi = 1$), $T_{50} = 1469$ К и $P_{50} = 1.23$ атм.

Возникает вопрос, почему вычисляемая задержка воспламенения углеводородов проявляет слабую чувствительность к реакции СН₃ + О₂. Ответ может быть в следующем. С развитием ДКМ число составляющих их компонентов и, соответственно, реакций резко возрастает. Новые компоненты и реакции берут на себя часть потока химических превращений, которые определяются реакциями (R1)-(R3), тем самым снижая чувствительность к ним. Расчеты задержки воспламенения для стехиометрической смеси этана с воздухом показали для ряда ДКМ [4, 6, 9], что прямое исключение реакций (R1)–(R3) практически не изменяет значения т при T > 1300 К. Однако при использовании редуцированных кинетических механизмов влияние этих реакций существенно [1]. Поэтому, проводя редуцирование ДКМ, необходимое при его адаптации к различным физико-химическим расчетам, требуется соблюдать процедуры, ограничивающие исключение таких важных химических взаимодействий, как реакции (R1)-(R3).

выводы

В рамках численного моделирования показано, что при T > 1300 К взаимодействие CH₃ с O₂ существенно для самовоспламенения метана и ацетона и не имеет значительного влияния в случае остальных углеводородов. Установлено, что с повышением температуры чувствительность к каналу взаимодействия CH_3 с O_2 ослабевает. Обнаружено, что увеличение количества компонентов и реакций в ДКМ приводит к снижению вклада реакции CH_3 с O_2 . Однако при редуцировании ДКМ в сторону глобального кинетического механизма исключение взаимодействия CH_3 с O_2 может приводить к существенным ошибкам при численном моделировании [1].

Работа выполнена в рамках Программы фундаментальных исследований Российской академии наук на 2013–2020 гг. по теме ИХФ РАН № 49.23 (номер государственной регистрации ЦИТИС – АААА-А18-118031590088-8).

СПИСОК ЛИТЕРАТУРЫ

- Заманский В.М., Борисов А.А. // Итоги науки и техники. Сер. "Кинетика и катализ". М.: ВИНИТИ, 1989. С. 160.
- Zhu R., Hsu C.-C., Lin M.C. // J. Chem. Phys. 2001. V. 115. P. 195.

- 3. Zellner R., Ewig F. // J. Phys. Chem. 1988. V. 92. P. 2971.
- Fernandez-Galisteo D., Sanchez A.L., Linan A., Williams F.A. // Combust. Theory and Modelling. 2009. V. 13. № 4. P. 74; http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
- Westbrook C.K., Pitz W.J., Herbinet O., Curran H.J., Silke E.J. // Combust. and Flame. 2009. V. 156. P. 181.
- Wang H., Warner S.J., Oehlschlaeger M.A. et al. // Ibid. 2010. V. 157. P. 1976; http://ignis.usc.edu/USC Mech II.htm
- Ranzi E., Frassoldati A., Grana R. et al. // Progr. Energy and Combust. Sci. 2012. V. 38. № 4. P. 468501; https://doi.org/10.1016/j.pecs.2012.03.004
- Metcalfe W.K., Burke S.M., Ahmed S.S., Curran H.J. // Intern. J. Chem. Kinet. 2013. V. 45. P. 638; http://www.nuigalway.ie/c3/Mechanism_release/frontmatter.html
- Battin-Leclerc F, Warth V, Bounaceur R. et al. // Proc. 35th Sympos. (Intern.) on Combust. Pittsburgh, PA: The Combust. Inst., 2014. P. 349; https://hal.archives-ouvertes.fr/hal-00772058/file/Supplemental_data_2.txt
- 10. Smirnov V.N., Tereza A.M., Vlasov P.A., Zhiltsova I.V. // Comb. Sci. and Tech. 2017. V. 189. № 5. P. 854; http://old.chph.ras.ru/lab 0114.html
- Tao Y, Smith G.P., Wang H. // Combust. and Flame. 2018. V. 195. P. 18; https://web.stanford.edu/group/haiwanglab/FFCM1/ pages/FFCM1.html
- Tereza A.M., Medvedev S.P., Smirnov V.N. // Acta Astronaut. 2019;
 https://doi.org/10.1016/j.actaastra.2010.02.001
- https://doi.org/10.1016/j.actaastro.2019.03.001
- 13. Olson D.B., Gardiner W.C., Jr. // Combust. and Flame.1978. V. 32. P. 151.
- Bhaskaran K.A., Frank P., Just Th. // Proc. Intern. Sympos. Shock Waves. V. 12. Jerusalem: Magnes Press, 1980. P. 503.
- 15. Борисов А.А., Драгалова Е.В., Заманский В.М., Лисянский В.В., Скачков Г.И. // Кинетика и катализ. 1981. Т. 22. № 2. С. 305.
- Saito K., Ito R., Kakumoto T., Imamura A. // J. Phys. Chem. 1986. V. 90. P. 1422.
- Grela M.A., Amorebieta V.T., Colussi A.J. // Ibid. 1992.
 V. 96. P. 7013.
- Yu C.L., Wang C., Frenklach M. // Ibid. 1995. V. 99. P. 14377.
- 19. Srinivasan N.K., Su M.C., Michael J.V. // J. Phys. Chem. A. 2007. V. 111. P. 11589.
- 20. *Когарко С.М., Борисов А.А.* // Изв. АН СССР. Отд. хим. наук. 1960. № 8. С. 1348.

- 21. *Борисов А.А., Когарко С.М., Скачков Г.И.* // Науч.техн. проблемы горения и взрыва. 1965. № 1. С. 15.
- Борисов А.А., Когарко С.М., Любимов А.В. // ЖПМТФ. 1960. № 3. С. 175.
- 23. Борисов А.А., Заслонко И.С., Когарко С.М. // Там же. 1964. № 6. С. 104.
- Борисов А.А., Скачков Г.И., Трошин К.Я. // Хим. физика. 1999. Т. 18. № 9. С. 45.
- 25. *Тейтельбойм М.А., Романович Л.Б., Веденеев В.И. //* Кинетика и катализ. 1978. Т. 19. С. 1399.
- 26. Davidson D.F., Hanson R.K. // Shock Waves. 2009. V. 19. P. 271; https://doi.org/10.1007/s00193-009-0203-0
- 27. Диваков О.Г., Еремин А.В., Зиборов В.С., Фортов В.Е. // Докл. АН. 2000. Т. 373. № 4. С. 487.
- Скребков О.В., Каркач С.П. // Кинетика и катализ. 2007. Т. 48. № 3. С. 388.
- 29. Гельфанд Б.Е., Попов О.Е., Медведев С.П. и др. // Докл. АН. 1993. Т. 33. № 4. С. 457.
- Тропин Д.А., Федоров А.В., Пенязьков О.Г., Лещевич В.В. // Физика горения и взрыва. 2014. Т. 50. № 6. С. 11.
- Агафонов Г.Л., Тереза А.М. // Хим. физика. 2015. Т. 34. № 2. С. 49.
- 32. Medvedev S.P., Agafonov G.L., Khomik S.V. // Acta Astronautica. 2016. V. 126. P. 150153.
- 33. *Medvedev S.P., Agafonov G.L., Khomik S.V., Gelfand B.E. //* Combust. and Flame. 2010. V. 157. P. 1436.
- 34. *Kee R.J., Rupley F.M., Meeks E., Miller J.A.* CHEMKIN III: Tech. Rep. № SAND96-8216. Livermore CA: Sandia National Laboratories, 1996.
- Burcat A. Report № TAE-867. Tel-Aviv: Technion-Israel Institute of Technology. 2001; http://garfield.chem.elte.hu/Burcat/burcat.html
- 36. Slutsky V.G., Kazakov O.D., Severin E.S. et al. // Combust. and Flame. 1993. V. 94. P. 108.
- 37. Басевич В.Я., Беляев А.А., Фролов С.М. // Хим. физика. 1998. Т. 7. № 9. С. 112.
- Agafonov G.L., Mikhailov D.I., Smirnov V.N., Tereza A.M., Vlasov P.A., Zhiltsova I.V. // Combust. Sci. Tech. 2016. V. 188. № 11. P. 1815.
- Aul C.J., Metcalfe W.K., Burke S.M. et al. // Combust. and Flame. 2013. V. 160. P. 1153.
- 40. Tereza A.M., Nazarova N.V., Smirnov V.N. et al. // J. Phys. Conf. Ser. 2019. V. 1147. P. 012043; https://doi.org/10.1088/1742-6596/1147/1/012043
- 41. Smirnov V.N., Tereza A.M., Vlasov P.A. et al. // J. Phys. Conf. Ser. 2018. V. 946. P. 012071.
- 42. Власов П.А., Демиденко Т.С., Смирнов В.Н., Тереза А.М., Аткин Э.В. // Хим. физика. 2016. Т. 35. № 11. С. 54.