ХИМИЧЕСКАЯ ФИЗИКА ПОЛИМЕРНЫХ МАТЕРИАЛОВ

УДК 54.06; 678.6-1

НОВЫЙ ПОДХОД К АНАЛИЗУ ИНИЦИИРОВАННОЙ ТЕРМОДЕСТРУКЦИИ ПОЛИКАРБОНАТА

© 2020 г. А. В. Куценова^{1*}, В. Б. Иванов¹, О. Е. Родионова¹, А. Л. Померанцев¹

¹Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук, Москва, Россия

> **E-mail: ivb@chph.ras.ru* Поступила в редакцию 22.11.2019; после доработки 25.03.2020; принята в печать 20.04.2020

Методом динамического термогравиметрического анализа установлено, что диметилдитиокарбамат висмута, защищающий ряд полимеров от действия тепла и света, ускоряет термодеструкцию поликарбоната на основе бисфенола A и является в данном случае инициатором. Методом нелинейного регрессионного анализа проведено моделирование кинетики многостадийного процесса инициированной термодеструкции поликарбоната. Особенность предложенного подхода заключается в оценке параметров уравнения Аррениуса для каждой из стадий совместно при всех температурных программах. Показано, что такой анализ позволяет избежать ограничений, характерных для методов Kissinger и Kissinger—Akahira—Sunose, традиционно используемых для определения энергий активации термодеструкции полимеров.

Ключевые слова: моделирование, нелинейная регрессия, термодеструкция, термогравиметрический анализ, энергия активации.

DOI: 10.31857/S0207401X20120080

введение

Поликарбонат (ПК) на основе бисфенола А, благодаря хорошим термическим и механическим свойствам, является одним из широко используемых в технике конструкционных полимеров. Поликарбонат и пленки из него используют также и как замедлители горения (антипирены).

Механизм термодеструкции ПК на воздухе и в атмосфере азота рассмотрен в работах [1, 2] и цитируемых в них публикациях. В основном, авторы изучали образование продуктов как функцию потери массы. На начальной стадии при температурах ниже 310°C основную роль играет процесс окисления, который сопровождается отщеплением водорода от изопропилиденовой связи и дальнейшим разрывом углерод-углеродной связи. Окисление является прелюдией к более поздней стадии термической деструкции. Однако чисто термическая леструкция может иметь место при повышенных температурах и независимо от окисления. В области более высоких температур (450-560°С) деструкция протекает по закону случая. Основной реакцией является разрыв сложноэфирных связей с выделением диоксида углерода. Однако изучению кинетики процесса термодеструкции не уделено достаточного внимания.

Простым и надежным методом, позволяющим оценить термостойкость различных полимеров и полимерных композиций, а также получить информацию о кинетике и механизме процессов термодеструкции и, в частности, определить энергию активации процесса, является термогравиметрический анализ (ТГА) [3–10]. Самое общее описание одностадийного процесса термодеструкции в динамическом режиме ТГА имеет вид

$$\frac{d\alpha}{dt} = k(T)f(\alpha), \tag{1}$$

где а – конверсия, определяемая выражением

$$\alpha = (m_0 - m) / (m_0 - m_{\infty}), \qquad (2)$$

где m_0 , m, m_{∞} — начальная, текущая и конечная масса образца соответственно, k(T) — константа скорости процесса, $f(\alpha)$ — кинетическая функция, зависящая от конкретного механизма деградации. В литературе [11, 12] приведена классификация основных функций, используемых для описания термических процессов в твердой фазе, так называемых идеальные реакционные модели. Зависимость константы скорости от температуры обычно описывается уравнением Аррениуса:

$$k(T) = A \exp(-E/RT), \qquad (3)$$

Рис. 1. Термограммы потери массы ПК в отсутствии (*1*) и в присутствии ДМДТК висмута (*2*) при скорости нагрева 5 °С/мин.

где A — предэкспоненциальный фактор, E — энергия активации, R — газовая постоянная, T — абсолютная температура. Наиболее распространенной неизотермической программой изменения температуры со временем является линейное изменение T, так что скорость нагрева $\beta = dT/dt = \text{const. B слу-}$ чае, когда процесс термодеструкции включает в себя несколько параллельных стадий, выражение для скорости изменения конверсии имеет вид

$$d\alpha/dt = \sum_{i=1}^{j} b_i A_i \exp(-E_i/RT) f(\alpha_i), \qquad (4)$$

где индекс *i* относится к *i*-той стадии, *j* – число стадий, b_i – весовой коэффициент, представляющий долю стадии в общем процессе деструкции, при этом $b_i \ge 0$ и $b_i + ... + b_j = 1$, а общая конверсия $\alpha = b_i \alpha_i + ... + b_i \alpha_i$.

Для кинетического анализа термограмм ТГА используют те или иные приближенные решения уравнения (1) в виде линейных аппроксимаций, в частности, интегральный изоконверсионный метод KAS (Kissinger-Akahira-Sunose) [13] и метод Kiss (Kissinger) [14]. Можно также обрабатывать данные ТГА методом нелинейной регрессии [15], при этом уравнение (1) решается численно. Ранее на примере деструкции ПК без добавок было показано, что модернизированный метод нелинейной регрессии, предложенный в работе [16], позволяет достаточно точно описать кинетику этого процесса и выявить ряд его особенностей, не доступных при изучении стандартными методами. Основные цели нашей работы – исследование возможности применения разработанного подхода [16] для анализа и моделирования кинетики термодеструкции ПК в присутствии диметилдитиокарбамата (ДМДТК) висмута и определение

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 12 2020

кинетических параметров (A_i , E_i и b_i) отдельных стадий этого сложного многостадийного процесса.

МЕТОДИКА ЭКСПЕРИМЕНТА

В работе использовали нестабилизированный коммерческий ПК на основе бисфенола А (Оргсинтез, Казань, Россия) без дополнительной очистки со средневязкостной молекулярной массой $M_n =$ = 30000. Диметилдитиокарбамат висмута дважды перекристализировали из хлороформа. Добавку вводили в раствор полимера. Пленки толщиной 10-20 мкм формировали медленным испарением растворителя из 5%-ного раствора полимера в хлороформе, нанесенного на полированную стеклянную поверхность, а затем отслаивали дистиллированной водой. Следы растворителя удаляли хранением пленки в вакуумной камере при комнатной температуре в течении суток. Измерения предварительно измельченных образцов проводили на воздухе с использованием дериватографа Q-15000D (МОМ, Будапешт, Венгрия). Регистрацию осуществляли с помощью аналого-цифрового блока фирмы "Экохром" (Россия), связанного с персональным компьютером. Потерю массы регистрировали как функцию температуры и времени при трех скоростях нагрева (5, 10 или 20°С/мин) в температурной области 130-900°С. Первичные экспериментальные данные по потере массы экспоненциально сглажены и при необходимости трансформированы в конверсию согласно выражению (2).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Как показано на рис. 1, термостойкость ПК в присутствии ДМДТК висмута существенно уменьшается. Так, например, 3%-ные потери массы достигаются уже при температуре 262°С, в то время как для чистого ПК – лишь при 357°С (при β = 5°С/мин).

Анализ методом ТГА термодеструкции на воздухе вплоть до существенного изменения массы образцов (~80%) свидетельствует о сложном механизме процесса (рис. 1). Особенно четко это проявляется при небольшой скорости нагрева.

Для обработки термограмм ТГА в динамическом режиме использовали два широко применяемых метода, основанных на линейных аппроксимациях: метод Kiss [13] и метод KAS [14]. Первый из них основан на зависимости температуры T_{max} , соответствующей точке перегиба на кривой потери массы, или максимуму на кривой ДТГА от скорости нагрева (β):

$$\ln(\beta/T_{max}^2) = \ln(AR/E_a) - E_a/(RT_{max}), \qquad (5)$$

где E_a — энергия активации процесса, T_{max} — температура максимальной скорости потери массы, R – газовая постоянная, A = const. Наклон прямой в координатах уравнения (5), дает величину энергии активации. Однако даже при относительно небольших значениях β точки перегиба могут смещаться в область более высоких температур из-за наложения отдельных стадий. В общем случае, для выделения этих стадий необходимо дополнительное моделирование. На рис. 2 в качестве примера представлена экспериментальная кривая потери массы при скорости нагрева 5°С/мин и ее первая производная (верхний рисунок), а также моделирование дифференциальной кривой с помощью набора гауссовых пиков (нижний рисунок). Поиск параметров гауссовых пиков проводили, минимизируя среднеквадратичную ошибку между теоретическими и экспериментальными кривыми. Экспериментальные и моделированные данные были обработаны в соответствии с методом Kiss. Как следует из данных табл. 1, уравнение (5) достаточно хорошо выполняется, однако между экспериментальными и полученными в результате моделирования величинами энергий активации наблюдаются заметные отличия, особенно для третьей и четвертой стадий.

Интегральный изоконверсионный метод KAS основан на связи между температурой, при которой достигается заданная конверсия, и скоростью нагрева:

$$\ln(\beta_i/T_{a,i}^2) = \operatorname{const} - E_a/(RT_{a,i}), \tag{6}$$

где β_i — скорость нагрева при *i*-той температурной программе; $T_{a, i}$ — температура, при которой достигается степень конверсии *a* при заданном значении β_i ; E_a — энергия активации процесса при степени конверсии *a*; R — универсальная газовая постоянная. Как видно из рис. 3, зависимость E_a от

Рис. 2. Кривая потери массы ПК в присутствии ДМДТК висмута при скорости нагрева 5° С/мин на воздухе и ее первая производная (вверху); моделирование дифференциальной кривой с помощью набора гауссовых пиков (внизу).

степени конверсии имеет сложный характер, поэтому энергию активации можно оценить лишь в области температур 300—400 °С, что соответствует значениям конверсии 0.2—0.4. Найденное значение E_a составляет порядка 100 кДж/моль. Таким образом, методами линейной аппроксимации, даже с привлечением дополнительного моделирования, не

β, °С/мин	<i>T</i> _{max} , °С (эксперимент)	<i>Е_а,</i> кДж/моль	R^2	<i>T_{max}</i> , °С (моделирование по Гауссу)	<i>Е_а,</i> кДж/моль	<i>R</i> ²
5 10 20	222.2 240.6 250.9	94.1	0.964	222.2 239.0 249.3	101.0	0.973
5 10 20	313.6 331.4 360.6	87.4	0.985	313.6 328.4 355.3	91.3	0.972
5 10 20	373.9 390.7 401.6	170.0	0.980	375.1 391.5 414.9	119.2	0.991
5 10 20	488.7 511.2 545.7	113.8	0.986	490.7 516.1 558.931	94.2	0.979

Таблица 1. Оценка параметров для четырех пиков при трех скоростях нагрева методом Kiss (R^2 – коэффициент детерминации для линейной линии тренда)

Рис. 3. Зависимость энергии активации термодеструкции в присутствии ДМДТК висмута, рассчитанные по экспериментальным данным методом KAS.

удается адекватно описать кинетику термодеструкции ПК в присутствии ДМДТК висмута и корректно определить значения энергий активации отдельных стадий, важных для понимания механизма деструкции и прогнозирования этого процесса.

Для определения кинетических параметров (A, E, b) было проведено моделирование термодеструкции с помощью модернизированного метода нелинейной регрессии, так называемого "серое моделирование", применимого к S-образным термогравиметрическим кривым [16]. Основная идея состоит в последовательном оценивании параметров, когда общая модель закономерно изменяется от одного уровня моделирования к другому. На первом этапе используется функция Аврами–Ерофеева (AE) [17, 18]:

$$f(a) = q(1-a)[-\ln(1-a)]^{1-1/q},$$
(7)

далее – функция Sestak-Berggren (SB) [19]:

$$f(a) = a^{m}(1 - a)^{n}$$
, (8)

которая при введении соответствующей константы C в правую часть уравнения охватывает как бы "зонтиком" различные кинетические функции [20].

Для подгонки модели и оценивания неизвестных параметров применяли программное обеспечение FITTER [15]. Эта программа использует модифицированный метод градиентного поиска, а ее отличительной чертой является аналитическое вычисление производных, которое обеспечивает высокую точность счета модели и установления неизвестных параметров. В случае, если f(a) определяется уравнением (7) дифференциальное уравнение (1) имеет точное решение [16]:

$$\alpha(t) = 1 - \exp\left[-p(t)^q\right]. \tag{9}$$

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 12 2020

Интегрируя уравнение (9), получаем выражение

$$p(t) = A \int_{0}^{t} \exp\left(\frac{E/R}{T_0 + \beta\tau}\right) d\tau, \qquad (10)$$

где τ — переменная интегрирования, а p(t) — так называемый температурный интеграл. В работе [16] предложена аппроксимация выражения (10)

$$p(x) \approx A \frac{E}{\beta R} x^{-2} e^{-x} G(x), \qquad (11)$$

где

$$x = \frac{E/R}{T_0 + \beta t}; \quad G(x) = \frac{0.7284x + 0.2387x^2}{1 + 1.2056x + 0.2387x^2}.$$
 (12)

При расчетах использовали масштабирование переменных с целью уменьшения разброса между ними. Например, время *t* (мин), делилось на 60, температура *T* (К), делилась на 1000. Таким образом, получены следующие области изменения масштабированных переменных: $0 \le t \le 1, 0.4 \le T \le 1.2, 0.3 \le \beta \le 1.2.$

На первом этапе моделирования проводили одновременную подгонку данных ТГА при всех температурных программах для *I*-стадий с использованием модели Аврами—Ерофеева (далее АЕ-модель), уравнение (7). Результатом этого этапа является установление числа стадий. Для каждой стадии i = 1...I оценены параметры Арениуса, A_i и E_i , а также весовой коэффициент b_i и параметр Аврами—Ерофеева q_i .

На втором этапе для каждой стадии проводили аппроксимацию индивидуальной AE-модели (с учетом значений q_i) функцией Sestak—Berggren, далее SB-модель (уравнение 8). Поиск параметров проводили путем минимизации среднеквадратичной ошибки между функциями AE и SB. Для каждой отдельной стадии i = 1...I получены параметры функции SB m_i и n_i , а также масштабирующие факторы C_i . Эти факторы использованы для корректировки значений A_i , найденных на первом этапе. Результаты аппроксимации представлены на рис 4. Параметры, полученные на этом этапе, использованы в качестве начальных значений для финальной оптимизационной процедуры (этап 3).

На этом, последнем этапе проводили одновременную подгонку данных ТГА при всех температурных программах для *I*-стадий моделью в форме системы дифференциальных уравнений с SB-функцией. В результате для каждой стадии i = 1...I находили параметры Аррениуса A_i и E_i , а также весовой коэффициент b_i и параметры функции Sestak–Berggren m_i и n_i .

Результаты моделирования представлены на рис. 5 и в табл. 2. Видно, что экспериментальные данные (открытые маркеры) удовлетворительно

Рис. 4. Данные моделированния. Подгонка АЕ-модели (маркеры) SB-моделью (сплошные кривые) для стадий 1, 2, 3.

Рис. 5. Экспериментальные данные (маркеры) и результаты моделирования (сплошные кривые) инициированной деструкции ПК при трех скоростях нагрева: 5, 10, 20 °С/мин; вклад каждой из стадий (вторые цифры) показан точечными кривыми.

описываются кинетической моделью, учитывающей три основные стадии деструкции (сплошные кривые). На первой стадии термодеструкции поликарбоната, в соответствии с имеющимися представлениями [1, 2], происходит преимущественно окисление изопропилиденовых групп. Реакции с промежуточным участием пероксидных и алкоксильных радикалов приводят к образованию CO, CO₂, ацетальдегида, формальдегида и воды [1]. Значение энергии активации первой стадии, полученное в работе (табл. 2), находится в том же ряду, что и энергии активации термоокисления большинства полимеров (70–120 кДж/моль). Вторую стадию можно отнести к процессу деполимеризации с

Рис. 6. Зависимость энергии активации от степени конверсии для трех основных стадий инициированной деструкции ПК, рассчитанных для моделированных данных (рис. 5) методом KAS (закрытые маркеры – первая стадия, открытые – вторая, крестики – третья).

образованием бисфенола А. Механизм третьей стадии остается дискуссионным из-за трудностей анализа остатков веществ, участвующих в данном процессе. Можно предположить, что на этой ста-

дии происходит окисление и деструкция полисопряженных структур. Оценки энергии активации для каждой стадии, полученные при обработке моделированных кривых методом линейной аппрок-

Параметр	Этап 1 АЕ-модель	Этап 2 SB-молель	Этап 3 SB-молель	
RSS	0.051	$(2.4) \cdot 10^{-6} - (7.4) \cdot 10^{-6}$	0.049	
A_1 (мин ⁻¹)	$(5.3 \pm 0.12) \cdot 10^5$	$(4.6 \pm 0.0005) \cdot 10^5$	$(6.3 \pm 0.18) \cdot 10^5$	
<i>E</i> ₁ (кДж/моль)	78.3 ± 2.0	78.26 ± 0.01	79 ± 2.7	
q_1	0.885 ± 0.024	_	_	
m_1	_	1.048 ± 0.0002	1.269 ± 0.118	
<i>n</i> ₁	-	-0.134 ± 0.0002	$-0.071 \pm 0.0.037$	
A_2 (мин ⁻¹)	$(1.4 \pm 0.1) \cdot 10^4$	$(2.6 \pm 0.0005) \cdot 10^4$	$(3.03 \pm 0.32) \cdot 10^4$	
E_2 (кДж/моль)	75.95 ± 5.9	75.87 ± 0.01	78.2 ± 10.5	
q_2	1.716 ± 0.131	_	_	
<i>m</i> ₂	-	0.837 ± 0.0006	0.711 ± 0.134	
<i>n</i> ₂	-	0.424 ± 0.0002	0.361 ± 0.125	
A_{3} (мин $^{-1}$)	$(0.22 \pm 0.009) \cdot 10^2$	$(1.3 \pm 0.00026) \cdot 10^2$	$(1.04 \pm 0.05) \cdot 10^2$	
<i>Е</i> ₃ (кДж/моль)	39.2 ± 1.7	39.2 ± 0.01	38.4 ± 1.8	
q_3	5.543 ± 0.847	—	—	
<i>m</i> ₃	_	0.675 ± 0.001	0.641 ± 0.157	
<i>n</i> ₃	-	0.828 ± 0.0002	0.812 ± 0.063	
N_l	6	4	7	

Таблица 2. Оценка параметров при "сером моделировании"

Примечание: RSS – конечная сумма квадратов, *N*_l – величина разброса.

симации (KAS, рис. 6, 79.0, 76.8 и 37.2 кДж/моль) согласуются со значениями, приведенными в табл. 2.

ЗАКЛЮЧЕНИЕ

Для анализа термодеструкции поликарбоната на основе бисфенола А в присутствии ДМДТК висмута использован метод, отличительной особенностью которого является одновременный нелинейный регрессионный анализ всех кривых ТГА с использованием обшей кинетической модели, включающей несколько стадий. Параметры Аррениуса для каждой стадии, число стадий, также как и доля каждой индивидуальной стадии оценены одновременно для всех температурных программ. Вычислительные трудности, связанные с нелинейной подгонкой многостадийных данных, преодолены последовательной оценкой неизвестных параметров, когда общая модель изменяется при переходе от одного этапа моделирования к другому. Полученные параметры использованы в качестве начальных значений для согласования данных ТГА моделью в форме системы дифференциальных уравнений. Данный подход свободен от ограничений и недостатков, свойственных широко используемым методам линейной аппроксимации (Kiss и KAS), что позволяет адекватно и точно описать форму кинетических кривых ТГА, а также определить кинетические параметры отдельных стадий многостадийной инициированной деструкции полимера.

Работа выполнена в соответствии с госзаданием № 0082-18-006, номер государственной регистрации АААА-А18-118020890097-1.

СПИСОК ЛИТЕРАТУРЫ

- 1. Lee L.H. // J. Polym. Sci. 1964. V. 2. P. 2859.
- Jang B.N., Wilkie C.A. // Thermochim. Acta. 2005. V. 426. P. 73.
- 3. Иванов В.Б., Солина Е.В., Староверова О.В. и др. // Хим. физика. 2017. Т. 36. № 11. С. 1.
- 4. Ivanov V.B., Zavodchikova A.A., Popova T.I. et al. // Thermochim. Acta. 2014. V. 589. P. 70.
- Ломакин С.М., Шаулов А.Ю., Коверзанова Е.В. и др. // Хим. физика. 2019. Т. 38. № 4. С. 74.
- 6. *Хватов А.В., Бревнов Н.Н., Шилкина Н.Г. и др. //* Хим. физика. 2019. Т. 38. № 6. С. 71.
- 7. Захаров В.В., Чуканов Н.В., Зюзин И.Н. и др. // Хим. физика. 2019. Т. 38. № 2. С. 3–8.
- 8. Захаров В.В., Чуканов Н.В., Шилов Г.В. и др. // Хим. физика. 2019. Т. 38. № 4. С. 45.
- 9. Стовбун С.В., Ломакин С.М., Щеголихин А.И. и др. // Хим.физика. 2018. Т. 37. № 1. С. 21.
- Быстрицкая Е.В., Карпухин О.Н., Куценова А.В. // Хим. физика. 2013. Т. 32. № 8. С. 65.
- 11. Vyazovkin S., Burnham A.R., Criado J.M. et al. // Thermochim. Acta. 2011. V. 520. P. 1.
- 12. *Opfermann J.J.* // J. Therm. Anal. Calorim. 2000. V. 60. P. 641.
- 13. Kissinger H. // Anal. Chem. 1957. V. 29. № 11. P. 1072.
- 14. *Akahira T., Sunose T. //* Res. Report. Chiba Inst. Technol. (Japan) 1971. V. 16. P. 22.
- Bystritskaya E.V., Pomerantsev A.L., Rodionova O.Y. // J. Chemom. 2000. V. 14. P. 667.
- Pomerantsev A.L., Kutsenova A.V., Rodionova O.Y. // Phys. Chem. Chem. Phys. 2017. V. 19 (5). P. 3606.
- 17. Avrami M. // J. Chem. Phys. 1939. V. 7. P. 1103.
- Ерофеев Б.В. // Докл. АН СССР. 1946. Т. 52. № 6. С. 515.
- Sestak J., Berggren G. // Thermochim. Acta. 1971. V. 3. P. 1.
- Perez-Maqueda L.A., Criado J.M., Sanchez-Jimenez P.E. // J. Phys. Chem. A. 2006. V. 110. P. 12456.