ХИМИЧЕСКАЯ ФИЗИКА АТМОСФЕРНЫХ ЯВЛЕНИЙ

УДК 504.3.054. 541.124; 541.124.7

РАЗРУШЕНИЕ СТРАТОСФЕРНОГО ОЗОНА В КАТАЛИТИЧЕСКИХ ЦИКЛАХ В СЕВЕРНОМ ПОЛУШАРИИ В КОНЦЕ XX ВЕКА

© 2020 г. И.К.Ларин*

Институт энергетических проблем химической физики им. В.Л. Тальрозе Российской академии наук, Москва, Россия *E-mail: iklarin@narod.ru Поступила в редакцию 09.01.2019; после доработки 09.01.2019;

принята в печать 21.01.2019

Представлены данные о скорости разрушения стратосферного озона в каталитических циклах O_x , HO_x , NO_x , CIO_x и BrO_x в Северном полушарии в диапазоне широт $10^\circ - 80^\circ$ в декабре и июне 1995 года. Данные для расчетов были получены с помощью интерактивной радиационно-химической двумерной модели SOCRATES. В качестве начальных условий использовался сценарий Межправительственной группы экспертов по изменению климата (IPCC) RCP 4.5 для условий декабря и июня 1995 года. Было показано, что наибольший вклад в разрушение стратосферного озона в рассматриваемый период вносили азотно-окисный (NO_x), водородный (HO_x) и кислородный (O_x) циклы, причем этот вклад (как и вклад других циклов) существенным образом изменялся с сезоном и высотой.

Ключевые слова: цепные процессы, каталитические циклы, лимитирующая стадия, скорость разрушения озона.

DOI: 10.31857/S0207401X20030085

введение

Расчеты скорости гибели стратосферного озона, $W_x(-O_3)$, в каталитических циклах O_x , HO_x , NO_x, ClO_x и BrO_x проводились по формуле [1]

$$W_x(-O_3) = 2\sum_{i=2}^{i=n} \left(\frac{1}{W_i(X)}\right)^{-1},$$
 (1)

где n — число реакций продолжения цепи в цикле, $W_i(X)$ — скорость *i*-той реакции продолжения це-

пи в цикле X, $\sum_{i=2}^{i=n} \left(\frac{1}{W_i(X)}\right)^{-1}$ – скорость продол-

жения цепи в цикле Х. Коэффициент "2" означает, что в реакциях продолжения цепи погибают две частицы нечетного кислорода. Согласно законам химической кинетики [2], суммарная скорость последовательно протекающих реакций (к которым относятся и реакции продолжения цепи в каталитических циклах) определяется скоростью лимитирующей стадии, т.е. скоростью наиболее медленной реакции. Именно так до сих пор и рассчитывалась скорость гибели озона в каталитических циклах. Так, например, в работе [3] было предположено, что в азотно-окисном цикле лимитирующей стадией является реакция $NO_2 + O \rightarrow NO + O_2$. Однако легко показать, что это

верно только для нижней и средней стратосферы, тогда как в верхней стратосфере лимитирующей стадией становится другая реакция цикла – NO + $+ O_3 \rightarrow NO_2 + O_2$. В другой работе [4] скорость гибели озона в циклах определялась фактически в отдельных, достаточно узких (по высоте) зонах стратосферы, для которых можно было выделить одну какую-нибудь реакцию продолжения цепи в качестве лимитирующей стадии. Но это далеко не всегда можно сделать. Так, например, в бромном цикле (см. ниже) в продолжении цепи участвуют до пяти реакций, и выделить одну из них в качестве лимитирующей стадии достаточно трудно. В другом случае реакций продолжения цепи может быть всего две (как в хлорном цикле), но в верхней стратосфере их скорости становятся одинаковыми, и выбрать лимитирующую стадию, руководствуясь правилом "узкого горла", изложенным в работе [2], не представляется возможным.

Имея в виду эти трудности, можно считать, что формула (1) представляет собой универсальное решение задачи, поскольку она автоматически определяет лимитирующую стадию каталитического цикла и ее скорость при любом числе реакций продолжения цепи, для любого диапазона стратосферных высот и при любой близости скоростей реакций, что является основной проблемой при выборе наиболее медленной реакции. И, может быть, что самое важное — формула (1) учитывает вклад всех других реакций продолжения цепи, что не предусмотрено классическим определением лимитирующей стадии.

Концентрации компонент, участвующих в реакциях каталитических циклов, были получены с помощью интерактивной радиационно-химической двумерной модели SOCRATES [5], позволяющей получать данные с разрешением 1 км в диапазоне от 0 до 120 км в широтном диапазоне от 85° ю.ш. до 85° с.ш. с разрешением 5° . В качестве начальных условий для расчетов с помощью модели SOCRATES использовался сценарий концентраций парниковых газов Межправительственной группы экспертов по изменению климата (IPCC) RCP 4.5 [6] для условий декабря и июня 1995 года. Указанный год в качестве референтного был выбран потому, что в этом году наблюдалось максимальное снижение обшего солержания озона в Северном полущарии, обусловленное воздействием антропогенных хлорфторуглеродов на озоновый слой, что привело к максимально контрастному распределению вклада разных циклов в разрушение озонового слоя [7].

Ниже приводятся данные расчетов скорости гибели озона для разных циклов и сезонов с соответствующими комментариями.

КИСЛОРОДНЫЙ ЦИКЛ O_r

Кислородный цикл нечетного кислорода был открыт выдающимся английским геофизиком Чепменом в 1930 году [8]. Он включает в себя следующие компоненты: O_3 , $O({}^3P)$ и $O({}^1D)$, где две последние – атомы кислорода в основном и метастабильно-возбужденном состояниях. В кислородном цикле происходят различные процессы с участием всех трех компонент O_x , описанные в работе [1], но поскольку нас интересует скорость гибели озона в цикле, то можно считать, что она обусловлена реакцией

$$O(^{3}P) + O_{3} \xrightarrow{k_{O(^{3}P)+O_{3}}} O_{2} + O_{2}$$
(I)

и равна

$$W_{O_x}(-O_3) = 2k_{O_3}({}^{3}P) + O_3 \left[O({}^{3}P)\right][O_3].$$
 (2)

Заметим здесь, что кислородный цикл не является цепным процессом. Поэтому скорость гибели в этом цикле рассчитывается не по формуле (1), как в других циклах, а по формуле (2), которая непосредственно следует из прямой реакции (I) гибели нечетного кислорода.

Высотно-широтные профили скорости гибели озона в цикле O_x в диапазоне широт $10^\circ - 80^\circ$ с.ш. в декабре и июне 1995 года показаны на рис. 1*а* и б

соответственно. Можно видеть, что в декабре максимальная скорость разрушения озона в кислородном цикле происходит на высоте ≈45 км и составляет $9 \cdot 10^5$ см⁻³ · с⁻¹, а в июне $- 2 \cdot 10^6$ см⁻³ · с⁻¹. При этом в декабре максимум резко сдвинут к низким широтам, так что в высоких широтах разрушение озона практически не происходит. что объясняется резким падением концентрации $O({}^{3}P)$ с ростом широты. В июне максимум размывается, так что скорость разрушения озона в низких широтах отличается от таковой в высоких широтах (на высоте 45 км) не более чем в два раза. Это объясняется разнонаправленным изменением параметров в формуле (2) при переходе от 10° к 80° с.ш.: концентрация O(³P) увеличивается в полтора раза, концентрация О₃ несколько падает, а константа скорости реакции (I) увеличивается в полтора раза из-за разницы температур в этих областях.

ВОДОРОДНЫЙ ЦИКЛ НО,

Водородный цикл был первым каталитическим циклом, открытым Дж. Хэмпсоном в 1964 году¹⁾. Цикл HO₂ включает компоненты ОН и HO₂. Высотно-широтные профили скорости разрушения озона в диапазоне широт 10° — 80° с.ш. на высотах 15—50 км в декабре и июне 1995 года показаны на рис. 2*a* и *б* соответственно.

В декабре 1995 года максимум разрушения озона в цикле HO_x составляет $7 \cdot 10^5$ см⁻³ · с⁻¹ и находится в верхней стратосфере, причем резко сдвинут в сторону низких широт. В июне максимум примерно в два раза больше, составляет $1.26 \cdot 10^6$ см⁻³ · с⁻¹, находится в верхней стратосфере в верхних широтах и размыт по широте.

Основной вклад в разрушение озона в декабре в области максимума вносят следующие каталитические водородные циклы [1].

Цикл V:

$$OH + O_3 \xrightarrow{k_{OH+O_3}} HO_2 + O_2, \qquad (II)$$

$$\frac{\text{HO}_2 + \text{O} \xrightarrow{k_{\text{HO}_2+\text{O}}} \text{OH} + \text{O}_2}{\text{O}_3 + \text{O} \rightarrow 2\text{O}_2}.$$
 (III)

Цикл II:

$$OH + O \xrightarrow{k_{OH+O}} H + O_2, \qquad (IV)$$

$$H + O_2 \xrightarrow{k_{H+O_2+M}} HO_2 + M, \qquad (V)$$

$$\frac{\text{HO}_2 + \text{O} \xrightarrow{k_{\text{HO}_2+\text{O}}} \text{OH} + \text{O}_2}{\text{O} + \text{O} \rightarrow \text{O}_2}.$$
 (III)

¹⁾ Hampson J. "Chemical Instability of the Stratosphere", paper presented at the International Association of Meteorology and Atmospheric Physics (IUGG) Symposium on Atmospheric Radiation. Leningrad, USSR, 1964.

Рис. 1. Скорость разрушения стратосферного озона в цикле O_x в декабре (*a*) и в июне (*б*) 1995 года в единицах см⁻³ · c⁻¹.

При переходе к высоким широтам роль этих циклов в декабре падает и на широте 80° с.ш. основную роль на всех высотах начинает играть следующий цикл [1].

Цикл III:

$$OH + O_3 \xrightarrow{\kappa_{O_3 + OH}} HO_2 + O_2, \qquad (II)$$

$$\underbrace{\mathrm{HO}_{2} + \mathrm{O}_{3} \xrightarrow{k_{\mathrm{HO}_{2} + \mathrm{O}_{3}}} \mathrm{OH} + \mathrm{2O}_{2}}_{(\mathrm{VI})}$$

 $O_3 + O_3 \rightarrow 3O_2,$

скорость гибели озона в котором на высоте 50 км составляет всего 0.1 см $^{-3} \cdot c^{-1}$.

В июне основную роль в разрушении озона на всех широтах играют циклы III (на высотах $\approx 15-30$ км), I (на высотах $\approx 30-40$ км) и V (на высотах $\approx 40-50$ км) [1].

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 3 2020

Цикл I:

$$OH + O \xrightarrow{k_{OH+O}} H + O_2,$$
 (IV)

$$H + O_3 \xrightarrow{k_{H+O_3}} OH + O_2$$
 (VII)

Цикл V:

$$OH + O_3 \xrightarrow{k_{OH+O_3}} HO_2 + O_2, \qquad (II)$$

$$\frac{\text{HO}_2 + \text{O} \xrightarrow{k_{\text{HO}_2+0}} \text{OH} + \text{O}_2}{\text{(III)}}$$

$$O_3 + O \rightarrow 2O_2$$
.

 $O + O_3 \rightarrow O_2 + O_2$.

С ростом широты относительная роль цикла V в июне возрастает, и на широтах $50^{\circ}-80^{\circ}$ с.ш. он вносит основной вклад в разрушение озона на высотах $\approx 40-50$ км.

Рис. 2. Высотно-широтный профиль скорости разрушения стратосферного озона в цикле HO_x в декабре (*a*) и в июне (δ) 1995 года.

АЗОТНО-ОКИСНЫЙ ЦИКЛ NO_r

Автором азотно-окисного цикла является известный голландский химик, лауреат Нобелевской премии 1995 года по химии Пауль Крутцен, который в 1971 году высказал мнение, что содержание озона в стратосфере зависит от окислов азота, образующихся из закиси азота N₂O, поступающей в стратосферу с поверхности Земли [9]. Высотно-широтные профили скорости разрушения озона в цикле NO_x в диапазоне широт 10° -80° с.ш. в декабре и июне 1995 года показаны на рис. За и б соответственно.

В декабре максимальная скорость разрушения озона в цикле NO_x происходит на высоте 36–38 км и составляет 3.2 \cdot 10⁶ см⁻³ \cdot с⁻¹. При этом максимум достаточно резко сдвинут к низким широ-

там, так что гибелью озона в высоких широтах можно пренебречь. В июне максимум разрушения приходится примерно на те же высоты, при этом существенное разрушение озона происходит на всех широтах. В широтной полосе 10° — 40° в июне скорость разрушения озона составляет $3.6 \cdot 10^6$ см⁻³ · с⁻¹.

В декабре основной вклад в разрушение озона в цикле NO_x практически на всех широтах вносит цикл I [1]:

$$NO + O_3 \xrightarrow{k_{NO+O_3}} NO_2 + O_2,$$
 (VIII)

$$\frac{\text{NO}_2 + O \xrightarrow{k_{\text{NO}_2+0}} \text{NO} + O_2}{O_2 + O \xrightarrow{} O_2 + O_2}$$
(IX)

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 3 2020

Рис. 3. Высотно-широтный профиль скорости разрушения стратосферного озона в цикле NO_x в декабре (*a*) и в июне (δ) 1995 года.

Правда, в широтной полосе $30^{\circ}-50^{\circ}$ в нижней стратосфере некоторый небольшой вклад вносит также и цикл II [1]:

$$NO + O_3 \xrightarrow{k_{NO+O_3}} NO_2 + O_2, \qquad (VIII)$$

$$NO_2 + O_3 \xrightarrow{k_{NO_2+O_3}} NO_3 + O_2, \qquad (X)$$

$$NO_3 + hv \xrightarrow{k_{NO_3+NO}} NO + O_2$$
 (XI)

$$O_3 + O_3 \rightarrow 3O_2$$

На широтах более 60° цикл II в декабре перестает работать из-за высоких зенитных углов Солнца (превышающих 90°), которые рассчитывались с применением параметризации, предложенной в работе [10]. Помимо этого при переходе

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 3 2020

к высоким широтам концентрация атомов О падает, а вместе с ней падает и скорость разрушения озона, которая на широте 80° (на высоте максимума) составляет всего $10 \text{ см}^{-3} \cdot \text{c}^{-1}$, что на пять порядков меньше, чем на широте 10° .

В июне основную роль в разрушении озона на всех широтах также играет цикл I. Однако в этом случае спад концентрации атомов О при движении к высоким широтам происходит гораздо медленнее, чем в декабре. В результате даже на широте 80° скорость гибели озона (на высоте максимума, составляющем 35–40 км) остается на уровне $\approx 2 \cdot 10^{6}$ см⁻³ · с⁻¹, т.е. всего в полтора раза меньше, чем на широте 10° .

Рис. 4. Высотно-широтный профиль скорости разрушения стратосферного озона в цикле ClO_x в декабре (*a*) и в июне (*б*) 1995 года.

ХЛОРНЫЙ ЦИКЛ CIO_x

Хлорный цикл разрушения стратосферного озона был впервые и одновременно предложен Столярским, Цицероном [11] и Вофси, Макэлроем [12] в 1974 году. Высотно-широтные профили скорости разрушения озона в цикле ClO_x в диапазоне широт $10^\circ - 80^\circ$ с.ш. в декабре и июне 1995 года показаны на рис. 4*а* и *б* соответственно.

Можно видеть, что в декабре максимальная скорость разрушения озона в ClO_x -цикле происходит на высоте ≈ 45 км и составляет $6.0 \cdot 10^5$ см⁻³ · с⁻¹. Такая скорость разрушения озона имеет место в ши-

ротной полосе $10^{\circ} - 50^{\circ}$, после чего довольно резко падает, так что на широте 70° она уменьшается до $\approx 50 \text{ см}^{-3} \cdot \text{с}^{-1}$. Гибель озона в хлорном цикле в декабре на всех высотах и широтах определяется циклом I [1]:

$$Cl + O_3 \xrightarrow{k_{Cl+O_3}} ClO + O_2,$$
 (XII)

$$\underline{\text{ClO} + \text{O} \xrightarrow{k_{\text{ClO}+\text{O}_3}} \text{Cl} + \text{O}_2}$$
(XIII)

$$O_3 + O \rightarrow O_2 + O_2.$$

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 3 2020

Рис. 5. Высотно-широтный профиль скорости разрушения стратосферного озона в цикле BrO_x в декабре (*a*) и в июне (*б*) 1995 года.

На высотах 40–50 км скорости реакций (XII) и (XIII) в декабре имеют близкие значения, и эти реакции начинают вносить приблизительно одинаковый вклад в разрушение озона. В июне максимальная скорость разрушения озона достигается на высоте \approx 42 км и составляет $1.8 \cdot 10^6$ см⁻³ · c⁻¹ на широте 70°–80°. Как и в декабре, разрушение озона обусловлено циклом I. На высотах 40–50 км, как и в декабре, скорости реакций (XII) и (XIII) имеют близкие значения. Следует также отметить, что скорости разрушения озона на высоте максимума в июне различаются не более чем в два раза, что объясняется небольшими различиями в концентрации атомарного кислорода, которая слегка увеличивается с ростом широты.

БРОМНЫЙ ЦИКЛ ВгО_г

Первые два цикла разрушения стратосферного озона бромными компонентами были предложены Вовси с соавт. [13] в 1975 г. В 1980 г. Юнг с соавт. [14] предложили еще четыре цикла с участием бромных частиц. Высотно-широтные профили разрушения озона в цикле BrO_x в декабре и июне 1995 года показаны на рис. *5а* и *б* соответственно. В декабре максимальное разрушение озона происходит в двух зонах: на высоте 24–26 км в широтной полосе 10°–40° со скоростью 8000 см⁻³ · c⁻¹, и на высоте 42–44 км в широтной полосе 10°–50°, где скорость разрушения озона изменяется от 6000 см⁻³ · c⁻¹ на широте 10° до 3000 см⁻³ · c⁻¹ на широте 50°. Разрушение озона в нижнем максимуме в декабре обусловлено главным образом циклами III и IV [1].

Цикл III:

$$Br + O_3 \xrightarrow{k_{Br+O_3}} BrO + O_2,$$
 (XIV)

$$Cl + O_3 \xrightarrow{k_{Cl+O_3}} ClO + O_2,$$
 (XII)

$$\underline{\operatorname{BrO} + \operatorname{ClO} \xrightarrow{k_{\operatorname{ClO} + \operatorname{BrO}}} \operatorname{Br} + \operatorname{Cl} + \operatorname{O}_2} \qquad (XV)$$

$$O_3 + O_3 \rightarrow 3O_2.$$

Цикл IV:

$$Br + O_3 \xrightarrow{\kappa_{Br+O_3}} BrO + O_2, \qquad (XIV)$$

$$BrO + NO_2 + M \xrightarrow{k_{BrO+NO_2+M}} BrONO_2 + M, (XVI)$$

$$BrONO_2 + h\nu \xrightarrow{J_{BrONO_2}} Br + NO_3,$$
 (XVII)

$$NO_3 + hv \xrightarrow{J_{NO_3 \to NO}} NO + O_2,$$
 (XI)

$$\frac{\text{NO} + \text{O}_3 \longrightarrow \text{NO}_2 + \text{O}_2}{\text{MO}_2 + \text{O}_2}$$
(X)

$$O_3 + O_3 \rightarrow 3O_2.$$

Разрушение озона в верхнем максимуме в декабре обусловлено действием цикла I [1]:

$$Br + O_3 \xrightarrow{\kappa_{Br+O_3}} BrO + O_2, \qquad (XIV)$$

$$BrO + O \xrightarrow{k_{BrO+O}} Br + O_2$$
 (XVIII)

$$O_3 + O \rightarrow 2O_2$$
.

В июне (рис. 56) разрушение озона в бромном цикле происходит в двух широких максимумах на высотах $\approx 15-25$ км и $\approx 40-45$ км, прилегающих к высоким широтам: в нижнем максимуме в широтной полосе $\approx 40^{\circ}-80^{\circ}$, а в верхнем — в широтной полосе $\approx 60^{\circ}-80^{\circ}$. Максимальная скорость разрушения озона в этих полосах достигает $1.3 \cdot 10^4$ см⁻³ · с⁻¹. В нижнем максимуме разрушение озона практически во всей области широт в июне обусловлено циклами III и IV. В верхнем максимуме основной вклад в разрушение озона вносит цикл I.

выводы

 Выполнены расчеты скорости разрушения стратосферного озона в каталитических циклах в Северном полушарии в декабре и июне 1995 года. 2. Показано, что в декабре максимальное разрушение озона происходит преимущественно в нижних широтах верхней стратосферы с максимумом в цикле NO_x , который составляет $3.2 \cdot 10^6$ см⁻³ · с⁻¹.

3. В июне максимум скорости разрушения озона, как правило, смещается к низким широтам, причем широтная полоса, в которой происходит интенсивное разрушение стратосферного озона существенно расширяется по сравнению с декабрем. Максимальная скорость разрушения озона имеет место в цикле NO_x и составляет $3.6 \cdot 10^6$ см⁻³ · c⁻¹.

4. В бромном цикле, в отличие от других циклов, высотно-широтный профиль скорости разрушения озона в декабре и июне имеет два максимума: в нижней и верхней стратосфере. Наибольшая скорость разрушения озона в этом цикле достигается в июне и составляет в обоих максимумах $1.3 \cdot 10^4$ см⁻³ · c⁻¹.

Работа выполнена по теме АААА-0047-2019-0002.

СПИСОК ЛИТЕРАТУРЫ

- Ларин И.К. Химическая физика озонового слоя. М.: Российская академия наук, 2018.
- 2. *Пурмаль А.П.* А,Б.В... Химической кинетики. М.: ИКЦ "Академкнига", 2004.
- 3. *Jacob Daniel J.* Introduction to Atmospheric Chemistry. Princeton: University Press. 1999.
- 4. *Lary D.J.* // J. Geoph. Res. 1997. V. 102. № D17. P. 21515.
- 5. http://acd.ucar.edu/models/SOCRATES/
- http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=welcome
- Scientific Assessment of Ozone Depletion: 2014. World Meteorological Organization Global Ozone Research and Monitoring Project – Report No. 55.
- 8. Chapman S. // Phil. Mag. 1930. V. 10. P. 369.
- 9. Crutzen P.J. // J. Geophys. Res. 1971. V. 76. P. 7311.
- Gerrstl S.A.W., Zardecki A., Wiser H.L. // Nature. 1981. V. 294. P. 352.
- Stolarski R.S., Cicerone R.J. // Can. J. Chem. 1974. V. 52. P. 1610.
- 12. Wofsy S.C., McElroy M.B. // Can. J. Chem. 1974. V. 52. P. 1582.
- Wofsy S.C., McElroy M.B., Yung Y.L. // Geophys. Res. Lett. 1975. V. 2. P. 215.
- Yung Y.L., Pinto J.P., Watson R.T., Sander S.P. // J. Atmos. Sci. 1980. V. 37. P. 339.