ХИМИЧЕСКАЯ ФИЗИКА, 2020, том 39, № 3, с. 42–47

КИНЕТИКА И МЕХАНИЗМ ХИМИЧЕСКИХ РЕАКЦИЙ, КАТАЛИЗ

УДК 544.431

РЕАКЦИЯ 2-БУТАНОЛА С ГИДРОПЕРОКСИЛЬНЫМ И 2-ГИДРОКСИ-2-БУТИЛПЕРОКСИЛЬНЫМ РАДИКАЛАМИ

© 2020 г. С. В. Пучков^{1, 2*}, Ю. В. Непомнящих^{1, 2}

¹Кузбасский государственный технический университет им. Т.Ф. Горбачева, Кемерово, Россия ²Институт химических и нефтегазовых технологий, Кемерово, Россия

> **E-mail: psv.toos@kuzstu.ru* Поступила в редакцию 13.02.2019; после доработки 05.04.2019; принята в печать 22.04.2019

Методом теории функционала плотности (DFT) с гибридным функционалом B3LYP в базисе 6-311++G(d, p) рассчитаны функции Фукуи для атомов водорода CH-связей 2-бутанола в случаях электрофильной и нуклеофильной атак, локализованы переходные состояния, вычислены энергии активации и энтальпии элементарных реакций электрофильных гидропероксильного (HOO[•]) и 2-гидрокси-2-бутилпероксильного ((CH₃)(C₂H₅)C(OH)OO[•]) радикалов со всеми типами CH-связей 2-бутанола. Показано, что направленность атаки пероксильными радикалами CH-связей 2-бутанола определяется соотношением электронодонорной и электроноакцепторной способностей атомов водорода CH-связей спирта. Установлена связь между величиной энергии активации, длиной разрывающейся CH-связи в переходном состоянии и нуклеофильностью образующегося углеродцентрированного радикала.

Ключевые слова: 2-бутанол, функции Фукуи, пероксильные радикалы, квантовохимические расчеты. **DOI:** 10.31857/S0207401X20030139

Известно, что при умеренных температурах в процессе окисления спиртов атаке пероксильными радикалами HOO' и R₂C(OH)OO' подвергаются в основном наиболее реакционноспособные, ближайшие к гидроксильной функциональной группе α-СН-связи [1–6], а вклад реакций пероксильных радикалов с менее реакционноспособными β-, γ- и более удаленными СН-связями незначителен [1, 3-6]. Значение реакций пероксильных радикалов с СН-связями субстрата в положениях β-, γ- и других увеличивается при высоких температурах [1]. Большую реакционную способность α-СН-связей [2-5] и сильную дезактивацию β-СН и γ-СН-связей спиртов, по сравнению с СН-связями предельных углеводородов. связывают в основном с полярным влиянием гидроксильной группы [2-5, 7]. Имеющиеся объяснения причин различной реакционной способности α - и в особенности β -, γ - и более удаленных СН-связей вторичных спиртов в реакциях с пероксильными радикалами носят преимущественно описательный характер, и поэтому требуют дополнительного изучения с применением квантовохимических расчетов.

Цель работы — теоретическое изучение элементарных реакций радикалов НОО[•] и (CH₃) (C₂H₅)C(OH)OO[•] с CH-связями 2-бутанола квантовохимическими методами.

МЕТОДЫ РАСЧЕТА

Оптимизацию геометрии всех структур проводили методом теории функционала плотности (DFT) с гибридным функционалом B3LYP в базисе 6-311++G(d, p) [8–10]. Поиск переходных состояний проводили методом релаксированного сканирования по координате реакции [9]. Путем решения колебательной задачи подтверждено, что все структуры являются стационарными точками на поверхности потенциальной энергии [10].

Энергии активации исследуемых реакций находили как разности полных энергий переходного состояния и реагентов [10]. Энтальпии реакций рассчитывали как разности полных энергий продуктов и реагентов. Анализ заселенности проводили методом натуральных валентных орбиталей по натуральной схеме (NPA) [11].

Функции Фукуи для нуклеофильной (f^+) и электрофильной (f^-) атак рассчитывали по следующим формулам [12, 13]:

$$f^{+} = q_{k(N+1)} - q_{k(N)},$$

$$f^{-} = q_{k(N)} - q_{k(N-1)},$$

где $q_{k(N)}$, $q_{k(N+1)}$ и $q_{k(N-1)}$ – электронные плотности на атоме (k) для структур с N, N + 1 и N - 1 электронами соответственно.

Анализ заселенности для структур с N + 1 и N - 1электронами проводили в однодетерминантном приближении [14] с использованием оптимизированной геометрии молекулы с N-электронами, полученной методом DET с гибридным функционалом B3LYP в базисе 6-311++G(d, p).

Общий индекс электрофильности рассчитывали по формуле [15]

$$\omega = \mu^2/2\eta$$
,

где µ — электронный химический потенциал, η — химическая жесткость.

Потенциал ионизации (IP) и энергию сродства к электрону (EA) рассчитывали по формулам [16, 17]

$$IP = E_{N-1} - E_N,$$

$$EA = E_N - E_{N+1},$$

где E_N — энергия структуры с Nэлектронами, E_{N-1} и E_{N+1} — энергии структур с N-1 и N+1 электронами, рассчитанные с использованием геометрии структуры с N электронами.

Локальный индекс электрофильности для радикального центра рассчитывали по формуле [18–21]:

$$\omega_{rc} = \omega f^+$$

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В реакциях продолжения цепей при окислении вторичных спиртов участвуют два типа пероксильных радикалов [2, 22, 23]. Для 2-бутанола это радикалы НОО[•] и (CH₃)(C₂H₅)C(OH)OO[•] [5].

Так как молекула 2-бутанола содержит четыре типа CH-связей: первичные (β 1) (положение 1) и вторичные (β 2) (положение 3) β -CH-связи, α -CH-связь (положение 2) и γ -CH-связи (положение 4), взаимодействие пероксильных радикалов с CH-связями 2-бутанола можно представить следующей схемой параллельных элементарных реакций:

$$CH_{3}-CH-CH_{2}-CH_{3}$$

$$CH_{3}-CH-CH_{2}-CH_{3}$$

$$CH_{3}-CH-CH_{2}-CH_{3}$$

$$CH_{3}-CH-CH_{2}-CH_{3}$$

$$CH_{3}-CH-CH_{2}-CH_{3}$$

$$OH$$

$$CH_{3}-CH-CH_{2}-CH_{3}$$

$$OH$$

$$CH_{3}-CH-CH_{2}-CH_{3}$$

$$OH$$

$$CH_{3}-CH-CH_{2}-CH_{2}$$

$$OH$$

$$(I)$$

Направленность превращений определяется как природой субстрата, так и природой атакующей частицы [2].

Известно, что, например, трет-бутилпероксильный радикал проявляет электрофильные свойства в реакциях радикального отрыва с замещенными толуолами, о чем свидетельствует отрицательная величина регрессионного коэффициента р уравнения Гаммета, близкая по значению к аналогичной величине для электрофильного атома хлора [24]. Поэтому можно предположить, что пероксильные радикалы HOO' и $(CH_3)(C_2H_5)C(OH)OO'$, также могут проявлять электрофильные свойства в реакциях радикального отрыва. О электрофильности радикалов можно судить по расчетным величинам индексов электрофильности [25, 26]. Общий индекс электрофильности для трет-бутилпероксильного радикала составляет 3.372 эВ, для гидропероксильного радикала – 3.916 эВ, для радикала (CH₃) (C₂H₅)C(OH)OO[•] - 4.053 эВ [27]. Более высокие

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 3 2020

значения индексов электрофильности для радикалов НОО' и (СН₃)(С₂Н₅)С(ОН)ОО' позволяют предполагать большую электрофильность, а следовательно, и большую селективность этих радикалов в реакциях радикального отрыва по сравнению с трет-бутилпероксирадикалом, а незначительное различие индексов электрофильности для радикалов HOO' и $(CH_3)(C_2H_5)C(OH)OO'$, вероятно, свидетельствует об их сопоставимой селективности в реакциях радикального отрыва [24]. О более высокой селективности радикала НОО и радикалов типа R₂C(OH)OO[•] по сравнению с трет-бутилпероксильным радикалом можно заключить, сопоставляя данные по селективности образования продуктов жидкофазного окисления циклогексанола в присутствии трет-бутилгидропероксида [4], когда окислительную цепь ведет трет-бутилпероксильный радикал, и без него [3], когда в реакциях продолжения цепи участвуют гидропероксильный и 1-гидроксициклогексилпероксильный радикалы. Так, по данным работ [3, 4], при переходе от трет-бутилпероксильного радикала к гидропероксильному и 1-гидроксициклогексилпероксильному радикалам селективность окисления циклогексанола по СН-связи в положении "1" увеличивается более чем в два раза.

Для сравнения реакционной способности радикалов HOO[•] и (CH₃)(C₂H₅)C(OH)OO[•] методом B3LYP/6-311++G(*d*, *p*) рассчитаны энергии (*E*_{SOMO}) молекулярных орбиталей, занятых неспаренным электроном (SOMO), и потенциалы ионизации (IP): *E*_{SOMO} = -8.565 эВ и IP = 12.654 эВ для радикала HOO[•], *E*_{SOMO} = -7.842 эВ и IP = 10.591 эВ для радикала (CH₃)(C₂H₅)C(OH)OO[•]. Видно, что для гидропероксильного радикала величина энергии SOMO-орбитали ниже, а потенциал ионизации выше, чем для радикала (CH₃)(C₂H₅)C(OH)OO[•], что свидетельствует о меньшей реакционной способности последнего [24].

Отсутствие экспериментальных данных не позволяет напрямую сравнить реакционную способность гидропероксильного и 2-гидрокси-2-бутилпероксильного радикалов. Однако можно провести оценку реакционной способности двух типов пероксильных радикалов, НОО' и R₂C(OH)OO', в сравнении с реакционной способностью трет-бутилпероксильного радикала в реакциях радикального отрыва.

Так, константа скорости реакции 1-гидроксициклогексилпероксильного радикала (радикал такого же типа, как 2-гидрокси-2-бутилпероксильный радикал) с циклогексанолом при 348 К составляет 0.44 М⁻¹ · c⁻¹ [28], тогда как константа скорости реакции трет-бутилпероксильного радикала с циклогексанолом при 353 К равна 9.7 М⁻¹ · c⁻¹ [28], что свидетельствует о большей реакционной способности третбутилпероксильного радикала. Константа скорости реакции радикала HOO · с бензальдегидом при 273 К составляет 17 М⁻¹ · c⁻¹ [28], а константа скорости реакции третбутилпероксильного радикала с бензальдегидом при 303 К – 0.85 М⁻¹ · c⁻¹ [28], что указывает на бо́льшую реакционную способность гидропероксильного радикала.

Таким образом, рассмотренные пероксильные радикалы можно расположить в следующий ряд по увеличению реакционной способности: 1-гидроксициклогексилпероксильный радикал (предположительно, и 2-гидрокси-2-бутилпероксильный радикал) < трет-бутилпероксильный радикал < гидропероксильный радикал. Можно ожидать, что электрофильные пероксильные радикалы предпочтительнее будут атаковать атомы водорода СН-связей 2-бутанола с большей электронодонорной способностью, которая количественно характеризуется величиной функций Фукуи для электрофильной атаки или отношением функций Фукуи для электрофильной и нуклеофильной атак [29].

Для каждого атома водорода СН-связей молекулы 2-бутанола (рис. 1) были рассчитаны значения функций Фукуи для электрофильной (f^{-}) и нуклеофильной (f^+) атак, средние значения этих функций (f^{-}, f^{+}) в каждом положении, а также отношения средних значений функций Фукуи для электрофильной и нуклеофильной атак (f^{-}/f^{+}) по положениям (табл. 1). По величинам средних значений функций Фукуи для электрофильной атаки (табл. 1) видно, что вероятность атаки пероксильными радикалами СН-связей 2-бутанола снижается в рялу по положениям 2 > 3 > 1 > 4. Вместе с тем известно, что относительная реакционная способность СН-связей 2-бутанола в реакции окисления в положениях 1-4 снижается в ряду 2 > 3 > 4 > 1 [17] (табл. 2), что хорошо согласуется со значениями энергий разрыва СН-связей в этих положениях [17]. Таким образом, наименьшая реакционная способность СН-связей спирта наблюдается в положении "1", а не в положении "4", как предсказывают средние значения функций Фукуи для электрофильной атаки.

По значениям отношений f^-/f^+ функций Фукуи (табл. 1) видно, что снижение вероятности атаки СН-связей 2-бутанола пероксильными радикалами происходит в ряду по положениям 2 > 3 > 4 > 1, что полностью соответствует экспериментально определенной реакционной способности СН-связей 2-бутанола в реакциях с пероксильными радикалами. Вероятно, при интерпретации результатов расчетов функций Фукуи нужно рассматривать не только электронодонорную способность реакционного центра, но и ее соотношение с электроноакцепторной способностью этого же центра.

В похожих реакциях электрофильного атома хлора и замещенных бутанов предполагается, что изменение реакционной способности СН-связей под действием электроноакцепторного заместителя происходит за счет диполь-дипольного отталкивания образующихся в структуре переходного состояния углерод-центрированного радикала и хлороводорода [30]. Учитывая, что в соответствии с постулатом Хэммонда структура переходного состояния для эндотермичных реакций близка к строению конечных продуктов [31], такое объяснение представляется вполне вероятным. Поскольку элементарные реакции (схема (I)) являются эндотермичными, что видно из рассчитанных энтальпий этих реакций (табл. 2), можно предположить аналогичное приведенному в работе [30] объяснение различия в реакционной способности СН-связей 2-бутанола в реакциях с пероксильными радикалами. С целью подтверждения такого предположения для элементарных

Рис. 1. Система нумерации атомов для 2-бутанола.

реакций (схема (I)) пероксильных радикалов со всеми типами CH-связей 2-бутанола были локализованы переходные состояния с оптимизацией их геометрических параметров. На рис. 2 в качестве примера приведены структуры переходных состояний для реакций гидропероксильного и 2-гидрокси-2-бутилпероксильного радикалов с α-CH-связью 2-бутанола.

В структуре переходных состояний можно выделить образующийся углерод-центрированный радикал и гидропероксид, а количественной характеристикой диполь-дипольного взаимодействия между ними, вероятно, может служить длина разрываемой СН-связи, например для положения "2" – длина связи С2–Н4 (рис. 2). Величины длин разрывающихся СН-связей и энергий активации элементарных реакций приведены в табл. 2. При сопоставлении данных табл. 2 с относительной реакционной способностью СН-связей 2-бутанола видно, что в реакции как с гидропероксильным радикалом, так и с радикалом $(CH_3)(C_2H_5)C(OH)OO'$, наибольшей реакционной способности СН-связи 2-бутанола в положении "2" соответствуют наименьшие длина разрываемой связи. энергия активации. энтальпия и энергия разрыва СН-связи. Для положений 1, 3 и 4 также наблюдается соответствие между перечисленными параметрами и относительной реакционной способностью СН-связей. Необходимо отметить, что величины всех рассчитанных параметров для реакции 2-бутанола с радикалом HOO[•] оказались ниже, чем величины соответствующих параметров для реакции спирта с радикалом (CH₃) $(C_{2}H_{5})C(OH)OO'$, что также свидетельствует о большей реакционной способности гидропероксильного радикала.

Соответствие между длиной разрывающейся CH-связи, энергией активации и относительной реакционной способностью CH-связей 2-бутанола позволяет предположить, что устойчивость, а следовательно, и потенциальная энергия переходного состояния в реакциях с пероксильными радикалами определяются степенью взаимного притяжения или отталкивания между образующимися в структуре переходного состояния продуктами. Возможной причиной различия, в длине разрываемой CH-связи в переходном состоянии может быть природа образующегося углеродцентрированного радикала.

Известно, что углерод-центрированные радикалы являются нуклеофильными частицами [24– 26]. При этом количественно нуклеофильность этих радикалов можно оценить по величинам индексов электрофильности [25, 26].

по положениям (j , j) и их отношение (j , j), pacter no exemented												
Положение (тип CH-связи)	Атом	f^+	f^{-}	$\overline{f^+}$	$\overline{f^{-}}$	$\overline{f^{-}}/\overline{f^{+}}$						
1 (β1)	1H	0.1935	0.0385		0.0507	0.4331						
	2H	0.0546	0.0495	0.1169								
	3H	0.1027	0.0640									
2 (α)	4H	0.1354	0.1675	0.1354	0.1675	1.2370						
3 (β2)	5H	0.0836	0.0488	0.0543	0.0492	0.0061						
	6H	0.0251	0.0497	0.0545	0.0492	0.9001						
4 (γ)	7H	0.0770	0.0464			0.6048						
	8H	0.0216	0.0162	0.0479	0.0290							
	9H	0.0453	0.0244									

Таблица 1. Функции Фукуи для электрофильной (f^-) и нуклеофильной (f^+) атак для атомов водорода CH-связей молекулы 2-бутанола, средние значения этих функций

ПУЧКОВ, НЕПОМНЯЩИХ

Таблица 2. Относительная реакционная способность (RR), энергии разрыва CH-связей (BDE) 2-бутанола, локальные индексы электрофильности образующихся углерод-центрированных радикалов (ω_{rc}), длины разрываемых CH-связей в переходном состоянии (*I*), энергии активации (*E*) и энтальпии (Δ*H*) реакций радикалов HOO[•] (I) и (CH₃)(C₂H₅)C(OH)OO[•] (II)с CH-связями 2-бутанола

Положение (тип СН-связи)	RR [5]	BDE [5], кДж∙моль ⁻¹	<i>ω_{rc}</i> , эВ	l, Å		E, кДж · моль ^{-1}		ΔH , кДж · моль ⁻¹	
				(I)	(II)	(I)	(II)	(I)	(II)
1 (β1)	0.4	429.1	0.874	1.395	1.403	77.1	101.3	70.1	82.2
2 (a)	427.7	386.7	0.166	1.311	1.318	37.8	41.1	31.9	44.1
3 (β2)	1.5	419.6	0.463	1.369	1.376	65.6	90.4	57.8	69.9
4 (γ)	1.0	426.3	0.590	1.383	1.402	73.7	97.7	68.4	80.5

Известно, что наличие гидроксильной группы при атоме углерода, являющемся радикальным центром, увеличивает нуклеофильность углеродцентрированного радикала, а при расположении электроноакцепторной группы у соседнего с радикальным центром атома углерода напротив, приводит к снижению нуклеофильности радикального центра [25]. Поэтому можно ожидать, что углерод-центрированные радикалы, образующиеся при атаке пероксильными радикалами СН-связей 2-бутанола по положениям 1-4 (схема (I)) могут обладать различной нуклеофильностью. Локальные индексы электрофильности для углеродцентрированных радикалов, рассчитанные методом теории функционала плотности DFT с гибридным функционалом B3LYP в базисе 6-311++G(d, p) по натуральной схеме NPA, приведены в табл. 2. Меньшее значение индекса электрофильности соответствует более высокой нуклеофильности радикального центра. Сравнение полученных значений индексов электрофильности с данными табл. 2 и относительной реакционной способностью СН-связей 2-бутанола в реакциях с пероксильными радикалами показывает, что более высокая нуклеофильность радикального центра образующегося углерод-центрированного радикала соответствует большей реакционной способности СН-связи спирта. Следовательно, в эндотермичных реакциях радикального отрыва атома водорода пероксильными радикалами от молекулы 2-бутанола, природа образующегося углерод-центрированного радикала оказывает влияние на геометрические параметры переходного состояния, энергию активации и направленность превращения спирта в реакциях окисления.

Более высокую нуклеофильность углеродцентрированного радикала в положении "2" можно объяснить образованием трехэлектронной связи, стабилизирующей его и увеличивающей тем самым электронную плотность на радикальном центре [32]. Более низкая нуклеофильность углеродцентрированных радикалов в положениях 1, 3 и 4, вероятно, обусловлена снижением электронной плотности на радикальном центре под действием электроноакцепторной группы. Таким образом, направленность превращения 2-бутанола в реакциях с пероксильными радикалами НОО[•] и (CH₃)(C₂H₅)C(OH)OO[•] определяется согласованным действием по крайней мере двух факторов: полярного взаимодействия электрофильного пероксильного радикала с молекулой спирта на начальной стадии реакции и природой образующегося углерод-центрированного радикала.

Рис. 2. Структура переходных состояний реакций – гидропероксильного (*a*) и 2-гидрокси-2-бутилпероксильного радикалов (*b*) с α-CH-связью 2-бутанола.

Вероятно, приведенный в работе подход можно использовать при объяснении экспериментальных данных по реакционной способности СН-связей других алифатических спиртов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Boot M. Biofuels from Lignocellulosic Biomass: Innovations beyond Bioethanol. John Wiley & Sons, 2016.
- 2. Denisov E.T., Afanas'ev I.B. Oxidation and Antioxidants in Organic Chemistry and Biology. Boca Raton (FL): Taylor and Francis, 2005.
- 3. Пучков С.В., Бунеева Е.И., Перкель А.Л. // ЖПХ. 2002. T. 75. № 2. C. 256.
- 4. Пучков С.В., Бунеева Е.И., Перкель А.Л. // Кинетика и катализ. 2002. Т. 43. № 6. С. 813.
- 5. Пучков С.В., Непомняших Ю.В. // ЖФХ. 2017. Т. 91. № 12. C. 2050.
- 6. Black G., Simmie J.M. // J. Comput. Chem. 2009. V. 31. № 6. P. 1236: https://doi.org/10.1002/jcc.21410
- 7. Денисова Т.Г., Емельянова Н.С. // Кинетика и катализ. 2005. Т. 46. № 6. С. 852.
- 8. Ramachandran K.I., Gopakumar D., Namboori K. Computational Chemistry and Molecular Modeling: Principles and Applications. Berlin, Heidelberg: Springer-Verlag, 2008; https://doi.org/10.1007/978-3-540-77304-7
- 9. Чиркина Е.А., Леванова Е.П., Кривдин Л.Б. // ЖОрХ. 2017. Т. 53. № 7. С. 974.
- 10. Самаркина А.Б., Хурсан С.Л. // Вестн. Башк. ун-та. 2008. T. 13. № 3(I). C. 780.
- 11. Gangadharan R.P., Krishnan S.S. // Acta Phys. Pol., A. 2015. V. 127. № 3. P. 748: https://doi.org/10.12693/APhysPolA.127.748
- 12. Parr R.G., Yang W. Density-functional theory of atoms and molecules. New York: Oxford Univ. Press, 1989.
- 13. Thanikaivelan P., Padmanabhan J., Subramanian V. et al. // Theor. Chem. Acc.: Theory, Computation, and Modeling (Theoretica Chimica Acta). 2002. V. 107. № 6. P. 326; https://doi.org/10.1007/s00214-002-0352-z
- 14. Груздев М.С., Вирзум Л.В., Крылов Е.Н. // Бутлеров. сооб. 2015. Т. 41. № 2. С. 115.
- 15. Parr R.G., Szentpály L.v., Liu S. // J. Amer. Chem. Soc. 1999. V. 121. № 9. P. 1922; https://doi.org/10.1021/ja983494x

- 16. Pérez-González A., Rebollar-Zepeda A.M., León-Carmona J.R. et al. // J. Mex. Chem. Soc. 2012. V. 56. № 3. P. 241: https://doi.org/10.29356/jmcs.v56i3.285
- 17. Shankar R., Senthilkumar K., Kolandaivel P. // Intern. J. Ouantum Chem. 2009. V. 109. P. 764: https://doi.org/10.1002/qua.21883
- 18. De Vleeschouwer F., Speybroeck V.V., Waroquier M. et al. // Org. Lett. 2007. V. 9. № 14. P. 2721: https://doi.org/10.1021/ol071038k
- 19. Padmanabhan J., Parthasarathi R., Sarkar U. et al. // Chem. Phys. Lett. 2004. V. 383. № 1–2. P. 122; https://doi.org/10.1016/j.cplett.2003.11.013
- 20. Chattaraj P.K., Giri S., Duley S. // Chem. Rev. 2011. V. 111. № 2. P. R43; https://doi.org/10.1021/cr100149p
- 21. Chamorro E., Chattaraj P.K., Fuentealba P. // J. Phys. Chem. A. 2003. V. 107. №36. P. 7068; https://doi.org/10.1021/jp035435y
- 22. Москвитина Е.Г., Пучков С.В., Борисов И.М. и др. // Кинетика и катализ. 2012. Т. 53. № 3. С. 299.
- 23. Москвитина Е.Г., Пучков С.В., Борисов И.М. и др. // Хим. физика. 2013. Т. 32. № 6. С. 43; https://doi.org/10.7868/S0207401X13060095
- 24. Fleming I. Molecular Orbitals And Organic Chemical Reactions. John Wiley and Sons, 2010.
- 25. Santschi N., Nauser T. // ChemPhysChem. 2017. V. 18. № 21. P. 2973; https://doi.org/10.1002/cphc.201700766
- 26. Héberger K., Lopata A. // J. Org. Chem. 1998. V. 63. № 24. P. 8646; https://doi.org/10.1021/jo971284h
- 27. Пучков С.В., Непомнящих Ю.В. // Хим. физика. 2018. T. 37. № 9. C. 21. https://doi.org/10.1134/S0207401X18080162
- 28. Landolt-Börnstein Group II Molecules and Radicals 13D. Berlin: Springer-Verlag, 1984.
- 29. Karthick T., Tandon P. // J. Mol. Model. 2016. V. 22. № 6. P. 141; https://doi.org/10.1007/s00894-016-3015-z
- 30. Нонхибел Д., Уолтон Дж. Химия свободных радикалов. М.: Мир, 1977.
- 31. Денисов Е.Т. Кинетика гомогенных химических реакций. М.: Высш. школа, 1988.
- 32. Кособуцкий В.С. // Химия высоких энергий. 2006. T. 40. № 5. C. 323.