ХИМИЧЕСКАЯ ФИЗИКА, 2020, том 39, № 4, с. 19–30

СТРОЕНИЕ ХИМИЧЕСКИХ СОЕДИНЕНИЙ, КВАНТОВАЯ ХИМИЯ, СПЕКТРОСКОПИЯ

УДК 535.34:539.19

МОЛЕКУЛЯРНАЯ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА БИНАРНЫХ ФТОРИДОВ ЗОЛОТА

© 2020 г. Ш. Ш. Набиев^{1*}, Л. А. Палкина¹

¹Национальный исследовательский центр "Курчатовский институт", Москва, Россия *E-mail: Nabiev_SS@nrcki.ru Поступила в редакцию 19.05.2019; после доработки 10.06.2019; принята в печать 20.06.2019

Представлены и обобщены наиболее достоверные данные по структуре индивидуальных фторидов золота (I, III, V–VII) в различных агрегатных состояниях, в том числе в условиях матричной изоляции, а также в экстремальных (сверхвысокие давления) условиях. Исследованы колебательные спектры бинарных фторидов золота в разных степенях окисления. Особое внимание уделено изучению спектров аномально сильной льюисовской кислоты AuF_5 . На основании анализа совокупности спектроскопических, электронографических и рентгеноструктурных данных, а также данных квантовохимических расчетов сделаны предположения о строении молекул AuF_k (k = 4-7) и Au_mF_n (m = 2, 3; n = 6, 9) в конденсированном состоянии.

Ключевые слова: колебательный спектр, кислота Льюиса, частота колебания связи, интенсивность, катион-анионные взаимодействия, структурная трансформация, кристаллическая решетка, степень окисления.

DOI: 10.31857/S0207401X20040147

1. ВВЕДЕНИЕ

Изучение фторидов и оксофторидов металлов второго и третьего переходных рядов в высших степенях окисления относится к одному из наиболее интересных разделов химии фтора [1]. Интерес к ним обусловлен высокой реакционной способностью, не уступающей молекулярному фтору, а также сильными комплексообразующими свойствами [2, 3]. Комплексы высших фторидов и оксофторидов переходных металлов обладают высокой окислительной способностью и превосходят фтор по ряду эксплуатационных характеристик, что позволяет использовать их в качестве фторокислителей в реакциях с неорганическими и органическими веществами [1].

Среди высших фторидов металлов третьего переходного ряда одним из наименее изученных является $\operatorname{AuF}_5[4]$, первое сообщение о синтезе которого появилось в начале 70-х годов прошлого столетия [5]. Пентафторид золота в отличие от других фторидов переходных металлов обладает аномально высокой химической активностью, которая проявляется в том, что при T = 273 К он окисляет элементарный Хе по крайней мере до XeF₄ [6, 7]. При этом средняя энергия связи Au—F в AuF₅ (≈54 ккал/моль) незначительно отличается от соответствующей величины в AuF₃ (≈61 ккал/моль) [4, 8].

В данной работе представлены и обобщены наиболее достоверные данные по структуре индивидуальных фторидов золота (I, III, V-VII) в различных агрегатных состояниях, в том числе в условиях матричной изоляции, а также в экстремальных (сверхвысокие давления) условиях. Исследованы колебательные спектры фторидов золота в разных степенях окисления. Особое внимание уделено изучению спектров аномально сильной льюисовской кислоты AuF₅. На основании анализа совокупности спектроскопических, электронографических и рентгеноструктурных данных, а также данных *ab initio* расчетов сделаны предположения о строении молекул AuF_k (k = 4-7) и $\operatorname{Au}_m F_n$ (m = 2, 3; n = 6, 9) в конденсированном состоянии.

2. СТРУКТУРНЫЕ ОСОБЕННОСТИ ФТОРИДОВ ЗОЛОТА

2.1. Фториды золота (I)

Возможность существования термодинамически нестабильного фторида золота (I) в газовой фазе была экспериментально доказана с использованием метода масс-спектрометрии [9]. Авторами работы [10] зарегистрирован микроволновый (MB) спектр фторида золота(I), полученный методом лазерной абляции на поверхности металлического Au в при-

Рис. 1. Геометрическая структура AuF, димера Au₂F₂, основного ($C_{2\nu}$) и переходного (D_{3h}) состояний AuF₃ и структура димера Au₂F₆ (D_{2h}).

сутствии F₂. По результатам анализа MB-спектра была определена вращательная постоянная $B_e =$ = 7924.83328 МГц и постоянная колебательно-вращательного взаимодействия $\alpha_e =$ 56.02704 МГц, что, в свою очередь, позволило определить равновесную длину связи Au–F во фториде золота(I): $R_e = 1.918449(5)$ Å.

В работе [11] на основе приближений Хартри– Фока (ХФ), второго порядка теории возмущений Меллера–Плессета (МР2), связанных кластеров (СК), теории функционала плотности (B3LYP) были изучены геометрические параметры мономера AuF и димера Au₂F₂ (рис. 1). Согласно проведенным расчетам длина связи Au–F в AuF составляет 1.964 Å (ХФ), 1.973 Å (B3LYP), 1.944 Å (МР2) и 1.954 Å (СК), что несколько выше соответствующей величины, определенной из MB-спектра AuF [10].

Для димера Au_2F_2 длина связи Au—F больше: 2.268 Å (XФ), 2.261 Å (B3LYP), 2.215 Å (MP2) и 2.229 Å (СК). Значение угла \angle (F—Au—F) лежит в пределах 93.7—101.7°, расстояние F…F равно 3.215 Å (XФ) и 3.151 Å (MP2), а расстояние Au…Au составляет 2.856 Å (СК), 3.008 Å (MP2) и 3.051 Å (B3LYP). Столь короткий контакт Au…Au в Au₂F₂ свидетельствует о наличии аурофильного взаимодействия. Понятие "аурофильности" введено относительно недавно [12] и определяется как "непредсказуемое" взаимодействие между атомами Аи даже при электронной конфигурации с "замкнутой оболочкой" и эквивалентных зарядах. По силе это взаимодействие соответствует энергии H-связи (≤50 кДж/моль), в некоторых случаях превышает ее и способно влиять на конформацию комплексов и их кристаллическую упаковку [11].

2.2. Фториды золота (III)

Молекулярная геометрия мономера AuF₃ и димера Au₂F₆ экспериментально определена с помощью метода газовой электронографии (ЭГ), а также ab initio расчетов [11]. Геометрические параметры AuF₃ и Au₂F₆ в газовой (паровой) фазе приведены в табл. 1. Полученные ЭГ данные, а также результаты расчетов показали, что структура основного состояния (${}^{1}A_{1}$) AuF₃ имеет симметрию C_{2v} (рис. 1) с одной короткой ($R(Au-F_2) =$ = 1.893 ± 0.012 Å) и двумя более длинными $(R(Au-F_3) = R(Au-F_4) = 1.913 \pm 0.008 \text{ Å})$ связями Au-F. При этом AuF₃ в состоянии ${}^{1}A_{1}$ обладает Т-образной конфигурацией с ∠(F₂-Au-F₃) = = 94.4°. Такая необычная геометрия реализуется из-за проявления эффекта Яна-Теллера и, как следствие, искажения тригонально-бипирамидальной (ТБП) структуры с симметрией D_{3h} , в которой две экваториальные позиции заняты неподеленными электронными парами.

Димер Au_2F_6 имеет плоскую конфигурацию симметрии D_{2h} (рис. 1), в которой атомы золота, образующие слегка искаженную плоскую квадратную координацию, соединены F-мостиками. Согласно данным ЭГ, а также результатам *ab initio* расчетов [11], длина концевой связи Au_1-F_5 близка к таковой в мономере AuF_3 : 1.876 Å (ЭГ), 1.895 Å (B3LYP) и 1.873 Å (MP2); длина мостиковой связи Au_1-F_3 больше: 2.033 Å (ЭГ), 2.059 Å (B3LYP) и 2.03 Å (MP2); $\angle(F_5-Au_1-F_6)$ близок прямому: 92.1° (ЭГ), 89.7° (B3LYP), 89.3° (MP2), а $\angle(F_3-Au_1-F_4) = 80.4^\circ$ (ЭГ), 78.8° (B3LYP).

Кристаллическая структура монокристаллического AuF₃, который кристаллизуется в гексагональную конфигурацию (пространственная группа $P6_{1}22-D_{62}$), исследовалась в работе [13]. Было показано, что кристаллическая структура AuF₃ очень своеобразна и представляет собой спиралевидную полимерную цепь с F-мостиками; связь между отдельными цепями осуществляется посредством более слабых F-мостиков. Каждый атом золота образует достаточно прочные связи с двумя концевыми и двумя мостиковыми F-атомами, что приводит к реализации плоской квадратной конфигурации AuF₄; каждый из бло-

Параметр*	Значение			
Мономер AuF ₃ ($C_{2\nu}$)				
$\Delta R \equiv R(\mathrm{Au}_1 - \mathrm{F}_3) - R(\mathrm{Au}_1 - \mathrm{F}_2)$	0.020			
$R(\mathrm{Au}_1 - \mathrm{F}_2)$	1.893 ± 0.012			
$R(\mathrm{Au}_1 - \mathrm{F}_3)$	1.913 ± 0.008			
$R(F_2 \cdots F_3)$	2.950 ± 0.057			
$R(\mathbf{F}_3\cdots\mathbf{F}_4)$	3.748 ± 0.029			
$\angle(F_2-Au-F_3)$	94.4 ± 1.9			
\angle (F ₃ -Au-F ₄)	157.0 ± 4.1			
Дим	$ep \operatorname{Au}_2 F_6(D_{2h})$			
$\Delta R \equiv R(\mathrm{Au}_1 - \mathrm{F}_3)_b - R(\mathrm{Au}_1 - \mathrm{F}_5)_{\mathrm{t}}$	0.1570.002			
$R(\mathrm{Au}_1-\mathrm{F}_5)_t$	1.876 ± 0.006			
$R(\mathrm{Au}_1-\mathrm{F}_3)_b$	2.003 ± 0.007			
$R(\operatorname{Au}_1 \cdots \operatorname{Au}_2)$	3.082 ± 0.006			
\angle (F ₃ -Au ₁ -F ₄)	92.1 ± 1.0			
$\angle(F_5 - Au_1 - F_6)$	80.4 ± 1.6			

Таблица 1. Геометрические параметры мономеров AuF₃ и димеров Au₂F₆ в газовой (паровой) фазе (T = 600 K)

* Расстояния между атомами даны в единицах Å, а углы – в градусах; индексы "*t*" и "*b*" – обозначение концевой (terminal) и мостиковой (bridge) связей.

ков AuF₄ соединен между собой F-мостиками, в результате чего образуется спиральная цепочечная структура. Длина связей $R(Au-F_1) = R(Au-F_2) = 1.868$ Å, $R(Au-F_3) = R(Au-F_4) = 1.998$ Å, $R(Au-F_b) = 2.761$ Å, $\angle (Au-F_3-Au) = 119.3^\circ$. Структурные параметры мономеров AuF₃ в кристаллическом состоянии представлены в верхней части табл. 2.

Молекула AuF₃ ($C_{2\nu}$) имеет шесть нормальных колебаний с типами симметрии $\Gamma_{\nu ib} = 3A_1 + 2B_1 + B_2$, активных как в ИК-спектре, так и в спектре комбинационного рассеяния (КР). В колебательном спектре AuF₃ наблюдается шесть полос со следующими частотами: $v_1(A_1) = 632 \text{ см}^{-1}$, $v_2(A_1) = 439 \text{ см}^{-1}$, $v_3(A_1) = 182$, 164 см⁻¹, $v_4(B_1) = 594 \text{ см}^{-1}$, $v_5(B_1) =$ $= 254 \text{ см}^{-1}$, $v_6(B_2) = 206 \text{ см}^{-1}$. Вид спектра КР AuF₃ в твердой фазе представлен на рис. 2*a*. Расшепление линий при 650 и 200 см⁻¹ связано с наличием различно ориентированных блоков AuF₄ в решетке AuF₃, с действием кристаллического поля, а также с проявлением эффектов внутренней асимметрии [14].

Молекула Au₂F₆ (точечная симметрия D_{2h}) характеризуется 18 нормальными колебаниями с типами симметрии $\Gamma_{vib} = 4A_g + B_{1g} + B_{2g} + 3B_{3g} + A_u + 2B_{1u} + 3B_{2u} + 3B_{3u}$, из которых колебания с симметрией A_g , B_{1g} , B_{2g} и B_{3g} активны в спектре KP, а колебания с симметрией B_{1u} , B_{2u} и $B_{3u} - в$ ИК-спектре. Расчетные колебательные частоты Au₂F₆ имеют

следующие значения: $v_1(A_g) = 644 \text{ см}^{-1}, v_2(A_g) =$ = 486 см⁻¹, $v_3(A_g) = 230 \text{ см}^{-1}, v_4(A_g) = 121 \text{ см}^{-1},$ $v_5(A_u) = 29 \text{ см}^{-1}, v_6(B_{1g}) = 200 \text{ см}^{-1}, v_7(B_{1g}) = 626 \text{ см}^{-1},$ $v_8(B_{1g}) = 636 \text{ см}^{-1}, v_9(B_{1u}) = 471 \text{ см}^{-1}, v_{10}(B_{1u}) =$ = 217 см⁻¹, $v_{11}(B_{2g}) = 172 \text{ см}^{-1}, v_{12}(B_{2u}) = 636 \text{ см}^{-1},$ $v_{13}(B_{2u}) = 471 \text{ см}^{-1}, v_{14}(B_{2u}) = 125 \text{ см}^{-1}, v_{15}(B_{3g}) =$ = 416 см⁻¹, $v_{16}(B_{3u}) = 230 \text{ см}^{-1}, v_{17}(B_{3u}) = 172 \text{ см}^{-1},$ $v_{18}(B_{3u}) = 72 \text{ см}^{-1}.$

У большинства молекул типа X_2Y_6 (точечная симметрия D_{2h}) частоты v_1, v_8, v_{12}, v_{16} принадлежат в основном валентным колебаниям концевых групп XY_2 . Значения этих частот выше, чем частот v_2, v_6, v_{13}, v_{17} , которые относятся преимущественно к колебаниям мостиковых групп X_2Y_2' .

2.3. Фториды золота (V)

Полученные к сегодняшнему дню результаты по изучению структуры фторида золота(V) различными методами не дают однозначного ответа на вопрос о строении молекулы AuF₅ как в газовой (паровой), так и в твердой фазах. Электронографические исследования [15] показали, что в паровой фазе при $T \approx 500$ K AuF₅ состоит в основном из димеров Au₂F₁₀ (D_{2h}) и тримеров Au₃F₁₅ (D_{3h}) в соотношении $\approx 80 : 20$. В более поздней работе [16], в которой изучалась структура твердого и газообразного AuF₅, было показано, что он имеет структуру димера Au₂F₁₀ с гексакоординирован-

НАБИЕВ, ПАЛКИНА

	Экспериментальные данные			
Параметр*	рентгеноструктурный анализ	электронография	Теоретические расчеты**	
Мономер AuF ₃				
$R(Au-F_1), R(Au-F_2)$	1.868(3)	1.893 ± 0.012	1.902	
$R(Au-F_3), R(Au-F_4)$	1.998(2)	1.913 ± 0.008	1.911	
$R(Au-F_b)$	2.761(3)	_	-	
$R(F_2 \cdots F_3)$	-	2.950 ± 0.057	-	
$R(F_3 \cdots F_4)$	-	3.748 ± 0.029	—	
\angle (Au-F ₃ -Au)	119.3(2)	_	—	
\angle (F ₂ -Au-F ₃)	-	94.4 ± 4.0	94.6	
Димер (AuF ₅) ₂				
$R(Au-F_1), R(Au-F_4)$	1.891(6)	1.901(5)	1.925	
$R(Au-F_2), R(Au-F_3)$	2.103(5)	2.031(5)	2.060	
$R(Au-F_5), R(Au-F_6)$	1.854(6)	1.875(6)	1.884	
\angle (F ₂ -Au-F ₃)	78.4(2)	80.1(5)	78.0	
$\angle(F_1-Au-F_4)$	178.5(3)	181.0(11)	178.7	
\angle (F ₅ -Au-F ₆)	87.0(3)	92.3(17)	88.8	

Таблица 2. Экспериментальные и расчетные структурные параметры мономера AuF₃ и димера (AuF₅)₂ в кристаллическом состоянии

* См. примечание к табл. 1.

** Усредненные данные, полученные в результате *ab initio* расчетов с использованием методов XФ, MP2, СК и B3LYP.

 **	Значение		
Параметр	димер $Au_2F_{10}(D_{2h})$	тример $Au_3F_{15}(D_{3h})$	
$\Delta R \equiv R(\mathrm{Au} - \mathrm{F}_a) - R(\mathrm{Au} - \mathrm{F}_t)$	0.067(16)	_	
$R(Au-F_a)^{**}$	1.889(9)	_	
$R(\mathrm{Au}-\mathrm{F}_{t})$	1.822(8)	_	
$R(\mathrm{Au-F}_b)$	2.030(7)	_	
$\angle(F_a - Au - F_a)$	181.0(1.1)	193.1(3.2)	
$\angle (F_t - Au - F_t)$	93.3(1.7)	75.3(6.5)	
$\angle(\mathbf{F}_b - \mathbf{A}\mathbf{u} - \mathbf{F}_b)$	80.1(0.5)	115.7(1.1)	
$\angle(\mathrm{Au}-\mathrm{F}_{a}-\mathrm{Au})$	99.9(0.5)	124.3(1.1)	

Таблица 3. Геометрические параметры димеров Au_2F_{10} и тримеров Au_3F_{15} в газовой (паровой) фазе ($T \approx 500$ K) *

* См. примечание к табл. 1.

** F_a – атом фтора в аксиальной связи Au–F.

ным атомом Au и восьмигранную геометрию расположения F-атомов вокруг каждого атома Au. Был точно определен состав газообразного AuF_5 – смесь димера и тримера в соотношении 82:12. В табл. 3 приведены структурные параметры Au_2F_{10} и Au_3F_{15} в газовой (паровой) фазе.

Анализ мессбауэровских спектров ряда простых и комплексных фторидов Au(III) и Au(V) показал, что самые низкие значения изомерного сдвига δ зарегистрированы для фторидов AuF₃ и AuF₅ [17]. Эту особенность можно объяснить увеличением ковалентности связи Au–F при переходе от

Рис. 2. Спектр КР AuF₃ (*a*) и колебательный спектр AuF₅ (δ) в кристаллической фазе. Звездочкой обозначены линии сапфира (материал КР-ячейки). На вставках приведен вид кристаллической структуры AuF₃ (вверху) и AuF₅ (внизу).

 AuF_4^- к AuF_3 и от AuF_6^- к AuF_5 , обуславливающим увеличение электронной плотности на ядре. Аномально низкое значение δ шестикоординационного AuF_3 можно объяснить образованием по оси

z дополнительных π -связей за счет электронов атомных d_{zx} - и d_{xy} -орбиталей Au, более локализованных на атомах фтора по сравнению с делокализованными d-электронами в случае восьмикоорди-

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 4 2020

национного AuF_4^- . В то же время в соединениях Au(V) степень делокализации можно считать практически неизменной. Хотя и нет строгой зависимости δ от структурных параметров, эта величина чувствительна к изменению координации атома Au.

На основании рентгенографических данных порошка AuF₅ было сделано предположение [18], что наиболее предпочтительной структурой AuF₅ можно считать закрученную в спираль полимерную цепочку (винтовая ось шестого порядка), которая состоит из координационных полиэдров - искаженных октаэдров Au^VF₆. Эти полиэдры соединены между собой в цис-положении мостиковыми Au-F-Au-связями: ...-F-AuF₄-F-AuF₄-F-... (симметрия $C_{2\nu}$), причем расстояние Au···Au равно 4.24 Å, а длина связей $Au-F_b$ должна быть не менее 2.12 Å. Авторами работы [18] отмечалось, что надежное определение структуры AuF₅ возможно только после получения рентгеноструктурных данных для кристаллического пентафторида золота.

Такие данные были получены в более поздней работе [16], авторами которой было обнаружено, что пентафторид золота в кристаллической фазе имеет схожую со структурой AuF₅ в паровой фазе димерную, слегка искаженную структуру симметрии D_{2h} , в которой молекулы AuF₅ соединены между собой экваториальными F-мостиками. При этом длина связей $R(Au-F_{ax}) = 1.891$, 1.901 Å; $R(Au-F_{eqv}) = 1.854$, 1.874 Å, $R(Au-F_b) = 2.013$, 2.030 Å.

О реализации димерной структуры кристаллического AuF₅ могут свидетельствовать результаты квантовохимических расчетов [16, 19]: $R(Au-F_{ax}) =$ = 1.965 Å, $R(Au-F_{eqv}) = 1.925$ Å, $R(Au-F_b) = 2.077$ Å (MP2) [16]; $R(Au-F_{ax}) = 1.887$ Å, $R(Au-F_{eqv}) =$ = 1.846 Å, $R(Au-F_b) = 2.024$ Å (B3LYP) [19].

На основании анализа совокупности экспериментальных и теоретических данных по структуре фторидов золота, а также предположительного описания геометрического строения AuF_n (n = 1, 3, 5), представленных в настоящей работе, для монокристаллического AuF₅ предпочтение отдается реализации именно димерной D_{2h} -структуры. Структурные параметры (AuF₅)₂ (симметрии D_{2h}) в кристаллическом состоянии представлены в нижней части табл. 2.

Особенностью колебательных спектров AuF₅ в твердой фазе является тот факт, что они по своим параметрам кардинально отличаются от спектров других пентафторидов металлов [14]. Так, в ИК-спектре AuF₅ наблюдаются три полосы: вблизи 645, 582, 540 см⁻¹, а в спектре KP – две линии с частотами при 656, 597 см⁻¹ и линия вблизи 227 см⁻¹ с плечом при 220 см⁻¹ (рис. 26). Частоты в области

 $660-590 \text{ см}^{-1}$ можно отнести к валентным, а частоты вблизи 220 см⁻¹ – к деформационным колебаниям AuF_5 в составе $(AuF_5)_2$. Полосы при 540 (ИК-спектр) и 550 см⁻¹ (КР-спектр) можно отнести к колебанию мостиковых связей. Такое отнесение не противоречит данным рентгеноструктурного анализа и свидетельствует в пользу полимерной структуры AuF₅ в твердой фазе. Анализ спектра КР Au F_5 в растворе HF дает основание предположить, что в этом случае он также имеет полимерную структуру, где каждый атом Au имеет октаэдрическое окружение, а соседние фрагменты AuF_6 соединены F-мостиками в цис-положениях. Линия вблизи 540 см⁻¹ может и не наблюдаться из-за низкой интенсивности колебаний F-мостиковых связей в спектрах КР жидких сред [20].

3. КВАНТОВОХИМИЧЕСКИЕ ИССЛЕДОВАНИЯ СТРУКТУРЫ ФТОРИДОВ ЗОЛОТА(V, VI И VII)

Изучению геометрической конфигурации фторидов золота методами квантовой химии посвящено относительно небольшое количество работ (см., например, работы [11, 12, 16, 19] и ссылки в них). Это связано с тем, что для многоэлектронных молекул, какими являются фториды золота, нахождение минимумов на потенциальных поверхностях энергии (ППЭ), определение строения молекул, расчет равновесных межъядерных расстояний и валентных углов, энергии химических связей и других параметров, сопряжено с заметными трудностями [21]. Только в последние годы с разработкой новых подходов, методик и алгоритмов квантовохимических расчетов [22] появились реальные возможности расчета структурных параметров и колебательных частот для фторидов золота(V, VI и VII).

Авторами работы [19] методами ХФ, МР2, СК, B3LYP были рассчитаны структурные параметры мономера, димера и тримера AuF₅. Результаты расчетов показали, что для мономера AuF₅ реализуется квадратно-пирамидальная конфигурация ($C_{4\nu}$), которая может легко изменяться посредством структурной трансформации в ТБП-конфигурацию (высота барьера равна 9.5 кДж · моль⁻¹). Длины связей в AuF₅ ($C_{4\nu}$) составили: $R(Au-F_{ax}) = 1.80$ Å (XФ), 1.888 Å (MP2), 1.867 Å (СК), 1.882 Å (B3LYP); $R(Au-F_{eqv}) = 1.858$ Å; 1.80 Å (ХФ), 1.93 Å (MP2), 1.905 Å (СК), 1.921 Å (B3LYP).

Анион Au F_6^- , как и ожидалось, имеет симметрию O_h при длинах связи Au-F, равных 1.939 Å. Небольшие отклонения от конфигурации идеального октаэдра, по-видимому, являются следствием заметных катион-анионных взаимодействий, характерных для большинства комплексных фторидов с участием сильных кислот Льюиса [2, 3, 7, 14].

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 4 2020

Рис. 3. a – Оптимизированные методом B3LYP структуры AuF₇; δ – модельный спектр аддукта AuF₅–F₂.

Для изучения возможности получения степени окисления золота до Au(VI) и Au(VII), авторами работ [19, 23] были рассмотрены низшие уровни электронного состояния молекул AuF₆ и AuF₇. Результаты расчетов показали, что для молекулы AuF₆ существуют локальные минимумы, соответствующие низкоспиновому дублету (D_{2h}) и высокоспиновому секстету (O_h). Секстет лежит на 369.6 кДж · моль⁻¹ выше основного состояния дублета. За счет эффекта Яна–Теллера в дублете наблюдается уменьшение длины связей (Au–F)_{ax} (≈ 0.12 Å), а также небольшое нарушение симметрии в экваториальной плоскости, сопровождающееся структурной трансформацией $D_{4h} \rightarrow D_{2h}$.

Экспериментальному исследованию возможности существования молекулы AuF_7 посвящена работа [24]. Ее авторы представили AuF_7 как реально существующее соединение Au(VII) лишь на основании наблюдавшейся в ИК-спектре одной полосы при 734 см⁻¹. Однако, согласно оценкам из работы [25], AuF_6 имеет огромное адиабатическое сродство к электрону (≈8.2–9.6 эВ), что делает практически невозможным получение сте-

пени окисления Au выше +5. Авторы работ [19, 26] смогли обнаружить только один минимум на ППЭ основного состояния синглета d^4 молекулы AuF₇ – пятиугольную бипирамиду (D_{5h}) (рис. 3*a*) и ни одного устойчивого минимума для триплета и квинтета.

Модель VSEPR (Valence Shell Electron Pair Repulsion) [27] для систем типа XY₇ предполагает реализацию еще двух координационных полиэдров в гепта-координатах [28]: одношапочный октаэдр ($C_{3\nu}$). Результаты расчетов [19, 26] показали, что структура одношапочной треугольной призмы молекулы AuF₇ является переходным состоянием с мнимой частотой в 70.3*i* см⁻¹. Оптимизация структуры одношапочного октаэдра ($C_{3\nu}$) дает стационарную точку с двумя мнимыми частотами (50.7*i* и 37.0*i* см⁻¹). Оптимизированные структуры для этих точек располагаются на 16.5 ($C_{2\nu}$) и 17.2 кДж · моль⁻¹ ($C_{3\nu}$) выше минимума D_{5h} .

Проведенные нами расчеты гармонических колебательных частот для фторидов Au(V), Au(VI)

и Au(VII) показали, что AuF₇ в конформации основного состояния D_{5h} не имеет колебания с частотой (734 ± 3) см⁻¹, на основе наличия которой в [24] был идентифицирован AuF₇. Самые высокие расчетные значения частоты валентных колебаний для связей Au–F составили 634, 592 и 589 см⁻¹ для D_{5h} -, C_{2v} - и C_{3v} -структур соответственно. Самые высокие частоты, вычисленные для AuF₆ (631 см⁻¹), AuF₅ (633 см⁻¹) и (AuF₅)₂ (647 см⁻¹), также заметно ниже, чем частота 734 см⁻¹. Отметим, что вычисленные для AuF₅ и (AuF₅)₂ частоты хорошо коррелируют с экспериментальными данными, полученными авторами [5, 6, 16, 17].

В работах [23, 26] сделано предположение, что наблюдаемая в [24] частота 734 см⁻¹ принадлежит колебаниям аддукта AuF₅ · F₂, который более чем на 205 кДж · моль⁻¹ стабильнее, чем AuF₇. Результаты моделирования ИК-спектра $AuF_5 \cdot F_2$ (рис. 36) показали, что он сформирован слабыми полосами в области 50-250 см⁻¹, а также двумя сильными полосами при 595 и 779 см⁻¹. Полосы вблизи 50-250 и 595 см⁻¹ могут быть отнесены к деформационным и валентному колебанию связей Au-F, а частота 779 см⁻¹ – к колебанию связи F–F молекул F₂ в составе AuF₅ · F₂. Отметим, что длина связи F-F в зависимости от координации молекул F₂ в составе аддукта $AuF_5 \cdot F_2$, находящихся в сильном поле AuF₅, может увеличиваться. Это ведет к смещению частоты этой связи в область более низких значений на 30-40 см⁻¹. По-видимому, именно эту частоту (734 см⁻¹) наблюдали авторы работы [24].

4. ФТОРИДЫ ЗОЛОТА (IV И VI) ПРИ ВЫСОКИХ ДАВЛЕНИЯХ

Экстремальные условия, в частности высокие и сверхвысокие давления, широко используются как средство изучения природы веществ и происходящих в них явлений [29]. Эти условия применяются в качестве методов получения новых и обработки уже известных материалов [30]. Сверхвысокие давления в настоящее время активно используются в различных областях физики твердого тела, химии, геофизики, геохимии и др. [31, 32].

Для химии веществ, находящихся в условиях высокого давления, существен тот факт, что в этом случае происходит не только уменьшение межатомных расстояний и объема атомов, но и принципиальная перестройка электронных уровней [31, 33]. Вследствие этого вещество, находящееся в "сжатом" состоянии, может проявлять совершенно иные свойства, отличающиеся от присущих ему свойств при атмосферном давлении.

В работе [34] было показано, что окислительная способность фтора усиливается с ростом давления. Поэтому при условии устойчивости фторидов Au при высоких давлениях можно ожидать появления новых окислительных состояний золота, которые не проявляются при атмосферном давлении.

Недавно [35] с использованием методов теории функционала плотности и CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization) [36] были изучены структура и устойчивость соединений $\operatorname{Au}_m \operatorname{F}_n$ (m = 1, n = 1 - 7 или m = 2, n = 1) при давлениях 1 атм. и 25, 50, 100, 200 ГПа. Устойчивость соединений Au_mF_n определялась путем вычисления и сравнения значений энтальпии образования каждого соединения в диапазоне давлений $\Delta P = 0-200$ ГПа (рис. 4*a*). Результаты расчетов [35] показали, что с ростом давления фториды Au_2F , AuF_2 , AuF_4 и AuF_6 становятся стабильными, тогда как устойчивый при атмосферном давлении AuF_5 разлагается на AuF_4 и AuF_6 . Было также показано, что в диапазонах давления, характерных для стабильных фторидов Au_mF_n (рис. 4б), можно проводить реакции их синтеза. Например, реакция AuF_3 с Au при P ≥ 13.3 ГПа дает AuF₂, фторид AuF₄ может быть синтезирован с использованием AuF₃ и AuF₅ в качестве прекурсоров при $P \ge 13.5$ ГПа, а AuF₆ можно получить при более низких давлениях (Р ≥ 5.0 ГПа) смеси AuF₅иF₂.

Соединения $Au_m F_n$ (m = 1, n = 1-7 или m = 2, n = 1) в условиях высокого давления проявляют также интересные структурные особенности. Так, с ростом давления структура AuF_3 с пространственной группой $P6_{1}22$ трансформируется в структуру P-1. Обе структуры содержат квазиквадратные блоки AuF_4 ; при этом с увеличением давления одиночные F-мостики, находящиеся в *цис*-положении, превращаются в двойные F-мостики.

Соединение AuF₄ стабилизируется в тетрагональной структуре с пространственной группой *I*4/*m* при $P \ge 13.5$ ГПа, содержащей плоские квадратные молекулярные блоки. Примечательно, что ближайшее расстояние относительно атомов Au–Au при P = 50 ГПа составляет 3.85 Å. Эта величина заметно превышает расстояние аурофильного взаимодействия, составляющее 3.0 Å и указывает на очень слабое взаимодействие между соседними атомами золота. Структура AuF₅ с пространственной группой *Pnma* при P = 1.0 атм. состоит из димеров (AuF₅)₂ и становится нестабильной при $P \ge 17.3$ ГПа.

Устойчивость молекулы AuF_6 прогнозируется в тригональной структуре (пространственная группа *R*-3), состоящей из октаэдрических блоков AuF_6 . Ближайшее расстояние относительно атомов Au-Au (4.22 Å) в этой структуре заметно больше, чем в AuF_4 . Кратчайшее расстояние F–F составляет 2.22 Å. Оно намного превышает длину ковалентной связи F–F (1.44 Å) [37] и указывает

Рис. 4. Устойчивость соединений Au_mF_n (m = 1, n = 1-7 или m = 2, n = 1); a – энтальпии образования Au_mF_n при разных давлениях: 1 - 1 атм, 2 - 25 Гпа, 3 - 50 Гпа (темные и светлые точки соответствуют устойчивым и неустойчивым соединениям Au_mF_n); δ – диапазоны давления для стабильных Au_mF_n .

на то, что AuF_6 является молекулярным кристаллом. По мнению авторов работы [35], учитывая большую величину электроотрицательности фтора (3.98) и особенности молекулярных кристаллов, степени окисления Au в AuF_4 и AuF_6 могут быть идентифицированы как (+4) и (+6) соответственно.

5. ФТОРИДЫ ЗОЛОТА В УСЛОВИЯХ МАТРИЧНОЙ ИЗОЛЯЦИИ

Метод низкотемпературной матричной изоляции (МИ) широко используется для синтеза соединений, неустойчивых при комнатной темпе-

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 4 2020

ратуре, а также химически высокоактивных, токсичных и взрывоопасных веществ [38]. По спектрам молекул в условиях МИ могут быть определены их фрагменты, стехиометрия, симметрия и даже геометрические параметры [39].

В работах [40, 41] для синтеза фторидов золота в матрицах аргона, неона (T=4 K) и фтора (T=12 K) аналогично работе [10] использовался метод лазерной абляции. Результаты предварительных экспериментов в Ar-матрице (0.4% F₂) показали [40], что в ИК-спектрах присутствуют полосы при 640.1, 575.1 и 474.7 см⁻¹. При отжиге матрицы до T=30 K наблюдалась новая полоса при 646.1 см⁻¹. Увеличе-

Рис. 5. ИК-спектры продуктов реакций атомарного Au и F₂ в условиях избытка Ar (*a*) и Ne (δ) при T = 4 K; вверху $I - Au + F_2$ (4%) после 1 ч выдержки, 2 - после отжига до T = 35 K, 3 - после облучения ($\lambda > 220$ нм), 4 - после отжига до T = 40 K; внизу: $I - Au + F_2$ (0.4%) после 1 ч выдержки, 2 - после 15 мин облучения $\lambda > 530$ нм, 3 - после 15 мин облучения при $\lambda > 380$ нм, 4 - после 15 мин облучения при $\lambda = 240 - 380$ нм, 5 - после отжига до T = 10 K.

ние концентрации F_2 в смеси до 4.0% привело к появлению дополнительной группы полос при 720, 690.1, 655.0, 610.6, 489.0 см⁻¹ (рис. 5*a*). В экспериментах с использованием Ne-матрицы [41] (рис. 5*b*) наблюдались полосы при 720.0, 692.4, 664.8, 611.3 и 567.2 см⁻¹, (полоса при 692.4 см⁻¹ обладала наибольшей интенсивностью).

Перечисленные выше полосы в ИК-спектрах продуктов реакции атомов Au с F_2 в условиях матричной изоляции отнесены к колебаниям Ng–AuF (Ng = Ne, Ar), AuF₂, AuF₃, AuF₄⁻, AuF₅ и Au₂F₆. Так, частота 720 см⁻¹ отнесена к валентному колебанию Au–F в мономере AuF₅. Полосы при 567.2 и 575.1 см⁻¹ в Ne- и Ar-матрицах, соответственно, принадлежат колебанию Au–F молекулы AuF в составе комплекса Ng–AuF. Интенсивные полосы при 640.1 (Ar) и 664.8 см⁻¹ (Ne) относятся к антисимметричному колебанию связи Au–F мо-

лекулы AuF₂. Результаты анализа сдвигов частоты Au-F в Ar- и Ne-матрицах указывают на отсутствие химической связи Ng-Au, наличие которой наблюдалась в случае молекулы AuF. Согласно результатам квантовохимических расчетов [41], частота антисимметричного колебания связи Au-F молекулы AuF₂ составляет 647 см⁻¹, что ниже экспериментального значения в матрице Ne (664.8 см⁻¹). Средняя по интенсивности полоса при 690.1 см⁻¹ (Ar) и наиболее интенсивная полоса при 692.4 см⁻¹ (Ne) относятся к антисимметричноку колебанию связи Au-F в AuF₃.

Рост поглощения на частотах 611.3 (Ne) и 610.6 см⁻¹ (Ar) после облучения Ar- и Ne-матриц УФ-излучением с $\lambda > 380$ и $\lambda = 240-380$ нм, соответственно, которое разрушает [F₃]⁻-группу, дает основание предполагать, что причиной такого роста является образование аниона [AuF₄]⁻, имею-

2020

щего структуру плоского квадрата (симметрия D_{4h}) [41]. При этом расчетная частота 617.2 см⁻¹ отнесена к антисимметричному колебанию Au-F с типом симметрии E_u .

Группы полос поглощения при 655, 646 см⁻¹ (Ar) и 655, 644 см⁻¹ (Ne), а также при 489, 475 см⁻¹ (Ar) и 494, 474 см⁻¹ (Ne) могут быть отнесены соответственно к валентным и деформационным колебаниям связи Au—F в димере Au₂F₆. Однако, как уже отмечалось, для молекул типа Au₂F₆ концевые и мостиковые колебания трудно различимы. Поэтому можно предположить, что полосы при 646 и 474 см⁻¹ относятся к колебаниям терминальной и мостиковой связей Au—F в димере Au₂F₆, а более интенсивные полосы при 655 и 489 см⁻¹ – к колебаниям соответствующих связей в тримере Au₃F₉.

6. ЗАКЛЮЧЕНИЕ

Исследования молекулярной и кристаллической структуры бинарных фторидов золота на первых этапах были серьезно осложнены из-за их аномально высокой реакционной способности и, как следствие, трудностей в обращении с этими веществами. По мере развития технологий и появления новых конструкционных материалов структурные исследования фторидов золота вышли на новый качественный уровень. Результаты этих исследований показали, что фториды золота — это первые соединения, в которых степень окисления золота составляет (+5), а возможно, и (+7), и продемонстрировали примеры реализации редкой степени окисления Au, равной (+2).

В результате реакции атомов Au, полученных методом лазерной абляции, с F_2 при избытке аргона и неона наряду с более тяжелым известным гомологом ArAuF получен новый гомолог NeAuF, характеризующийся сильной химической связью Ne–AuF. В ИК-спектрах аргоновой и неоновой матриц идентифицированы молекулы AuF₂, AuF₃, AuF₄⁻ и AuF₅, при этом ИК-спектры AuF₂ – это первое наблюдение бинарного фторида золота Au(II). Весьма интересным оказалось наличие в спектрах полос мостиковой и терминальных связей Au–F, отнесенных к колебаниям димера Au₂F₆.

Изучение фазовых диаграмм, структуры и электронных свойств бинарных фторидов Au при высоких давлениях показали, что AuF_4 и AuF_6 представляют собой стабильные молекулярные кристаллы со степенью окисления Au, равной (+4) и (+6) соответственно. Полученные результаты не только дополняют ряд промежуточных состояний окисления Au, но и свидетельствуют о возможности реализации для Au беспрецедентно высокой степени окисления. Детальный анализ

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 4 2020

электронных свойств бинарных фторидов золота свидетельствует о том, что ионные связи Au-F играют ключевую роль в определении их стабильности. Кроме того, для стабилизации AuF₄ требуются меньшие давления, чем для стабилизации CuF₄ или AgF₄.

Отметим, что рассчитанные фазовые диаграммы устойчивости соединений $\operatorname{Au}_m \operatorname{F}_n(m=1, n=1-7 \text{ или} m=2, n=1)$ при высоких давлениях могут оказаться весьма полезной "путевой картой" для будущего экспериментального синтеза указанных бинарных фторидов золота.

СПИСОК ЛИТЕРАТУРЫ

- 1. Synthetic Fluorine Chemistry / Eds. Olah G.A., Chambers R.D., Prakash G.K.S. N.Y.: Wiley Inter-Science, 1992.
- 2. Набиев Ш.Ш., Соколов В.Б., Чайванов Б.Б. // Успехи химии. 2014. Т. 83. № 12. С. 1135.
- Brock D.S., Schrobilgen G.J., Žemva B. // Comprehensive Inorg. Chem. II. Eds. Reedijk J., Poepplemeier K. Oxford: Elsevier, 2013. V. 1. P. 755.
- 4. *Puddephatt R.J.* The Chemistry of Gold. N.Y.: Elsevier, 1978.
- 5. *Leary K., Bartlett N. //* J. Chem. Soc. Chem. Comm. 1972. № 15. P. 903.
- 6. Соколов В.Б., Прусаков В.Н., Рыжков А.В. и др. // Докл. АН СССР. 1976. Т. 229. С. 884.
- Набиев Ш.Ш., Соколов В.Б. // Хим. физика. 2013. Т. 32. № 4. С. 15.
- 8. Mohr F. // Gold Bull. 2004. V. 37. № 3. P. 164.
- 9. Schroder D., Hrusak J., Tornieporth-Oetting I.C. et al. // Angew. Chem. Intern. Ed. 1994. V. 33. № 2. P. 212.
- Evans C.J., Gerry M.C.L. // J. Amer. Chem. Soc. 2000. V. 122. № 7. P. 1560.
- 11. *Reffy B., Kolonits M., Schulz A. et al.* // J. Amer. Chem. Soc. 2000. V. 122. № 13. P. 3127.
- Schmidbaur H., Schier A. // Chem. Soc. Rev. 2008. V. 37. № 9. P. 1931.
- Žemva B., Lutar K., Jesih A. // J. Amer. Chem. Soc. 1991. V. 113. № 11. P. 4192.
- 14. *Набиев Ш.Ш., Соколов В.Б., Чайванов Б.Б. //* Кристаллография. 2011. Т. 56. № 5. С. 829.
- 15. *Brunvoll J., Ischenko A.A., Sokolov V.B. et al.* // Acta Chem. Scand. 1982. V. A36. № 9. P. 705.
- Hwang I., Seppelt K. // Angew. Chem. Intern. Ed. 2001. V. 40. № 19. P. 3690.
- 17. Соколов В.Б., Циноев В.Г., Рыжков А.В. // Теорет. и эксперим. химия. 1980. Т. 16. № 3. С. 345.
- Киселев Ю.М., Попов А.И., Горюнов А.В. и др. // ЖНХ. 1990. Т. 35. № 3. С. 611.
- Riedel S., Kaupp M. // Inorg. Chem. 2006. V. 45. № 3. P. 1228.
- 20. *Набиев Ш.Ш.* // Изв. АН. Сер. хим. 1999. № 4. С. 715.
- 21. *Mueller M.* Fundamentals of Quantum Chemistry. N.Y.: Kluwer, 2001.

- 22. *Lewars E.* Computational Chemistry. Dordrecht: Springer, 2011.
- Riedel S., Kaupp M. // Coord. Chem. Rev. 2009. V. 253. № 5–6. P. 606.
- 24. Тимаков А.А., Прусаков В.Н., Дробышевский Ю.В. // Докл. АН СССР. 1988. Т. 291. С. 125.
- Craciun R., Picone D., Long R.T. // Inorg. Chem. 2010. V. 49. № 3. P. 1056.
- Himmel D., Riedel S. // Inorg. Chem. 2007. V. 46. № 13. P. 5338.
- Gillespie R.J. // Coord. Chem. Rev. 2008. V. 252. P. 1315.
- Hoffmann R., Beier B., Muetterties E. // Inorg. Chem. 1977. V. 16. № 3. P. 511.
- 29. *Recio J.M., Menendez J.M., de la Roza A.O.* An Introduction to High-Pressure Science and Technology. N.Y.: CRC Press, 2016.
- 30. Алиев И.И., Коварский А.Л., Бучаченко А.Л. // Хим. физика. 2007. Т. 26. № 5. С. 11.
- Blank V.D., Estrin E.I. Phase Transitions in Solids Under High Pressure. N.Y.: CRC Press, 2014.

- 32. *Жаров А.А., Коновалова И.Б. //* Хим. физика. 2016. Т. 35. № 7. С. 76.
- Geballe Z., Liu H., Mishra A. // Angew. Chem. Intern. Ed. 2018. V. 57. № 3. P. 688.
- Peng F., Botana J., Wang Y. // J. Phys. Chem. Lett. 2016. V. 7. № 22. P. 4562.
- Lin J., Zhang S., Guan W. // J. Amer. Chem. Soc. 2018. V. 140. № 30. P. 9545.
- 36. *Wang Y., Lv J., Zhu L.* // Comput. Phys. Commun. 2012. V. 183. № 10. P. 2063.
- 37. Miao M. // Nature Chem. 2013. V. 5. № 10. P. 846.
- 38. *Turner J., Poliakoff M.* // Fresenius J. Anal. Chem. 1986. V. 324. № 8. P. 819.
- Tretyakov Yu.D., Oleynikov N.N., Shlyakhtin O.A. Cryochemical Technology of Advanced Materials. Berlin-Heidelberg: Springer, 1997.
- 40. *Wang X., Andrews L., Willmann K. et al.* // Angew. Chem. Intern. Ed. 2012. V. 51. № 42. P. 10628.
- 41. Wang X., Andrews L., Brosi F. // Chem. Eur. J. 2013. V. 19. № 4. P. 1397.